
Under review as a conference paper at ICLR 2024

APPENDIX

A FOUR CASES OF NEURON INTERACTIONS

In Section 3, we discussed how to find neuron implications between two neurons. Since each ReLU
neuron has two possible statuses (active or inactive), there are four kinds of possible implications.
We list all four possibilities and their corresponding optimization formulation here:

1. An implicant neuron z
(i2)
j2

split to inactive case implies an improved lower bound of an implicated

neuron z
(i1)
j1

(this is the case in (6) discussed in Section 3):

l∗relaxed := min
x

a(i1,j1)
⊤
x+ c(i1,j1)

s.t. x0 − ϵ ≤ x ≤ x0 + ϵ; a(i2,j2)
⊤
x+ c(i2,j2) ≤ 0

(9)

2. An implicant neuron z
(i2)
j2

split to active case implies an improved lower bound of an implicated

neuron z
(i1)
j1

:

l∗relaxed := min
x

a(i1,j1)
⊤
x+ c(i1,j1)

s.t. x0 − ϵ ≤ x ≤ x0 + ϵ; a(i2,j2)
⊤
x+ c(i2,j2) ≥ 0

(10)

3. An implicant neuron z
(i2)
j2

split to inactive case implies an improved upper bound of an implicated

neuron z
(i1)
j1

:

l∗relaxed := max
x

a(i1,j1)
⊤
x+ c(i1,j1)

s.t. x0 − ϵ ≤ x ≤ x0 + ϵ; a(i2,j2)
⊤
x+ c(i2,j2) ≤ 0

(11)

4. An implicant neuron z
(i2)
j2

split to active case implies an improved upper bound of an implicated

neuron z
(i1)
j1

:

l∗relaxed := max
x

a(i1,j1)
⊤
x+ c(i1,j1)

s.t. x0 − ϵ ≤ x ≤ x0 + ϵ; a(i2,j2)
⊤
x+ c(i2,j2) ≥ 0

(12)

Note that all four optimization problems have the same nature and can be solved using the same
technique discussed in Section C.1. we will only use Eq. (6) as an example since all other three
cases can be converted to Eq. (6). For instance, to solve Eq. (10), we can change the implicant
constraint to −a(i2,j2)⊤x − c(i2,j2) ≤ 0; to solve Eq. (11), we can change the max objective to
minx −a(i1,j1)

⊤
x− c(i1,j1).

B PROOFS

We now give the proofs for the two theorems in Section 3. Here Theorem 3.1 shows the possibility of
solving a cheap linear programming problem to find bound implications, and Theorem 3.2 shows
how we can reduce the number of optimization problems by filtering out some neurons that do not
help find bound implications.
Theorem 3.1. Given two unstable neurons and the LP formulations in Eq. (4), (5) and (6), the
following holds: (1) The LP in Eq. (6) is always feasible; (2) l∗no-imp ≤ l∗relaxed ≤ l∗imp.

Proof. (1) To show that (6) is always feasible, we must show that there exists some x such that
x0 − ϵ ≤ x ≤ x0 + ϵ also satisfies the other constraint a(i2,j2)

⊤
x+ c(i2,j2) ≤ 0.

13

Under review as a conference paper at ICLR 2024

Given that the neuron z
(i2)
j2

is an unstable neuron, we know that l(i2)j2
≤ 0. By definition of l(i2)j2

, we

know that min
x0−ϵ≤x≤x0+ϵ

a(i2,j2)
⊤
x+ c(i2,j2) ≤ 0, so such a x must exist to satisfy the constraint.

(2) The objective l∗relaxed and l∗imp have one additional constraint compared to l∗no-imp, so l∗no-imp ≤ l∗relaxed
and l∗no-imp ≤ l∗imp. It remains to prove l∗relaxed ≤ l∗imp.

Define S := {x : z
(i2)
j2

(x) ≤ 0,x ∈ C} and S̄ := {x : a(i2,j2)
⊤
x + c(i2,j2) ≤ 0,x ∈ C}. Here

C is the set x0 − ϵ ≤ x ≤ x0 + ϵ. We claim that S ⊆ S̄. This is true because given any x′ ∈ C,
if z(i2)j2

(x′) ≤ 0 (by definition, x′ ∈ S), we have a(i2,j2)
⊤
x′ + c(i2,j2) ≤ z

(i2)
j2

(x′) ≤ 0 since

a(i2,j2)
⊤
x′ + c(i2,j2) is a linear lower bound of z(i2)j2

(x′) found by α-CROWN. Thus, S ⊆ S̄.

Since S ⊆ S̄, (6) has the equal or larger feasible region compared to (5), and thus l∗relaxed ≤ l∗imp.

Theorem 3.2. Given two unstable neurons and the LP formulations in (4), (6), if the following
condition holds:

a(i2,j2)
⊤
x∗ + c(i2,j2) ≤ 0

where each element of x∗ is chosen as (here the subscript k means the k-th element in a vector):

x∗
k :=

x0,k − ϵ · a(i1,j1)k , if a(i1,j1)k > 0

x0,k + ϵ · a(i1,j1)k , if a(i1,j1)k < 0

x0,k − ϵ · sign(a(i2,j2)k), if a(i1,j1)k = 0

then l∗relaxed = l∗no-imp, i.e., there is no improvement. Additionally, one of the two cases must happen:

1.
∣∣∣a(i2,j2)⊤x0 + c(i2,j2)

∣∣∣− ϵ∥a(i2,j2)∥1 > 0, i.e., the relaxed implicant constraint does not
have an intersection with the ℓ∞ box C;

2.
∣∣∣a(i2,j2)⊤x0 + c(i2,j2)

∣∣∣− ϵ∥a(i2,j2)∥1 ≤ 0 but a(i2,j2)
⊤
x∗ + c(i2,j2) ≤ 0.

Proof. The linear programming problem (4) has a closed form optimal solution:

x′
k :=

x0,k − ϵ · a(i1,j1)k , if a(i1,j1)k > 0

x0,k + ϵ · a(i1,j1)k , if a(i1,j1)k < 0

don’t care, if a(i1,j1)k = 0

If this solution x′
k already satisfies the additional constraint a(i2,j2)

⊤
x+ c(i2,j2) ≤ 0 added in (6),

this constraint is redundant and thus l∗relaxed = l∗no-imp.

For the indices k where a
(i1,j1)
k = 0, since x′

k is unconstrained, we can choose x′
k that minimize

a(i2,j2)
⊤
x + c(i2,j2) to satisfy the new constraint in (6) as much as possible, by setting x′

k =

x0,k − ϵ · sign(a(i2,j2)k). So the setting of x∗
k gives an optimal solution of (4) that has the minimum

violation of the new constraint in (6). If x∗
k satisfies the new implicant constraint, the constraint is

redundant, and l∗relaxed = l∗no-imp.

Now, we define the set Ŝ := {x : a(i2,j2)
⊤
x+ c(i2,j2) ≤ 0}. Due to Theorem 3.1, the LP in (6) is

always feasible, so Ŝ ∩ C ≠ ∅. Geometrically, the constraint a(i2,j2)
⊤
x+ c(i2,j2) ≤ 0 is redundant

in two cases:

1. C ∈ Ŝ, or the ℓ∞ box C does not intersect with the line a(i2,j2)
⊤
x+ c(i2,j2) = 0. In this case, the

ℓ∞ distance from this line to the origin is greater than ϵ:∣∣∣a(i2,j2)⊤x0 + c(i2,j2)
∣∣∣

∥a(i2,j2)∥1
> ϵ

14

Under review as a conference paper at ICLR 2024

And this is the first case in this Theorem.

2. C∩ Ŝ ̸= C, when the line a(i2,j2)
⊤
x+c(i2,j2) = 0 cuts through C (ℓ∞ distance is less than or equal

to ϵ), however it does not remove the existing optimal solution for (4), i.e., a(i2,j2)
⊤
x∗ + c(i2,j2) ≤ 0.

This theorem allows us to filter out implicant neurons that have large ℓ∞ distance to the origin first.
Using the remaining implicant neurons, we further check each implicated unstable ReLU neuron
to see if xx satisfies the above constraint. This allows us to eliminate these pairs of neurons in
calculation.

C ALGORITHMS

We show the full algorithms discussed in Section 3 in this section.

C.1 CLOSED-FORM SOLUTION OF THE RELAXED LP

In Section 3, we show that it is possible to use a fast optimization algorithm in O(d0 log d0) time,
where d0 is the neural network input dimension. Here we present this algorithm.

We solve the problem by adding a Lagrange multiplier ρ and derive a dual form of Eq. (6):

min
x0−ϵ≤x≤x0+ϵ

max
ρ≥0

a(i1,j1)
⊤
x+ c(i1,j1) + ρ(a(i2,j2)

⊤
x+ c(i2,j2))

≥max
ρ≥0

min
x0−ϵ≤x≤x0+ϵ

(a(i1,j1) + ρa(i2,j2))
⊤
x+ c(i1,j1) + ρc(i2,j2)

=max
ρ≥0

(a(i1,j1) + ρa(i2,j2))
⊤
x0 + c(i1,j1) + ρc(i2,j2) − ∥(a(i1,j1) + ρa(i2,j2))∥1 · ϵ

=max
ρ≥0

−∥(a(i1,j1) + ρa(i2,j2))∥1 · ϵ+ ρ(a(i2,j2)
⊤
x0 + c(i2,j2)) + a(i1,j1)x0 + c(i1,j1)

(13)

Note that the inner minimization is solved in closed form using Hölder’s inequality. The maximization
problem over the dual variable ρ is a one-dimensional, non-smooth, piece-wise linear, and concave
optimization problem and can be solved by checking super-gradients at the endpoints of all linear
pieces. We list the solving procedure in Algorithm 1:

C.2 ALGORITHM OF BIG CONSTRUCTION AND UTILIZATION

In Algorithm 3, We will introduce how to construct BIG after we obtain the linear equation of all
unstable neurons (can be calculated by CROWN or α-CROWN) in the verification process. Note that
there are For loops Algorithm 3, the calculations inside them are independent and can be calculated
in parallel though. In our experiments, we construct BIG efficiently by computing all implications
only in four batches for four cases of neuron interactions.

D BOUND IMPLICATIONS WITH ADDITIONAL SPLIT CONSTRAINTS

To solve Eq. (8), we leverage k Lagrange multipliers ρi, where i ∈ [1, 2, .., k] to derive the dual form
solution:

max
ρ≥0

min
x

a(i1,j1)
⊤
x+c(i1,j1) +

M∑
k=1

ρi(a
(m[k],n[k])⊤x+ c(m[k],n[k]))

s.t. x0 − ϵ ≤ x ≤ x0 + ϵ

(14)

For the ℓ∞-norm constraint of x, the inner minimization has a closed-form solution:

15

Under review as a conference paper at ICLR 2024

Algorithm 1 The closed-form solution of Eq. (6).

1: Inputs: a(i1,j1), c(i1,j1), a(i2,j2), c(i2,j2), x0, ϵ
2: Outputs: The optimal solution of Eq. (6): l∗relaxed

3: q ← −a(i1,j1)/a(i2,j2)

4: I ← argsort(q) ▷ Dominates time complexity
5: a

(i2,j2)
sorted ← {a

(i2,j2)
I1

· ϵ,a(i2,j2)I2
· ϵ,,a(i2,j2)Id0

· ϵ} ▷ Sort a(i2,j2) by index I and scale by ϵ

6:
(
a
(i2,j2)
−

)
i
← −

∑i
k=1(|a

(i2,j2)
sorted |k), i ∈ [d0] ▷ Cumulative sum of |a(i2,j2)sorted | by its length d0

7: a
(i2,j2)
+ ← a

(i2,j2)
− − a

(i2,j2)
−d0

▷ Shift a(i2,j2)− to positive range

8: ∇a← a
(i2,j2)
+ + a

(i2,j2)
− + (a(i2,j2)

⊤
x0 + c(i2,j2)) ▷ Calculate super-gradient

9: i∗ ← i where∇ai = 0 ▷ Find the index of super-gradient is 0
10: ρ∗ ← max (qIi∗ , 0) ▷ Find the best ρ and introduce it to Eq. 13
11: l∗relaxed ← −∥(a(i1,j1) + ρ∗a(i2,j2))∥1 · ϵ+ ρ∗(a(i2,j2)

⊤
x0 + c(i2,j2)) + a(i1,j1)x0 + c(i1,j1)

12: l∗0 ← −∥a(i1,j1)∥1 · ϵ+ c(i2,j2) + a(i1,j1)x0 + c(i1,j1) ▷ Objective when ρ = 0

13: if l∗relaxed < l∗0 then
14: l∗relaxed ← l∗0 ▷ Compare to l∗0 , which is an additional end point

15: Return: l∗relaxed

Algorithm 2 Filter Top-K constraints by distance to x0.
1: Inputs: constraints of all unstable neurons a,a ∈ RN×d0 and c, c ∈ RN , where N is number of

unstable neurons and d0 is the length of the model input x0; perturbation size ϵ, K, S = ∅,S = ∅
2: function TOPKFILTERING(a,a, c, c,x0, ϵ,K)
3: for p = 1 to N do
4: S ∪ |a(ip,jp)⊤x0 + c(ip,jp)| − ϵ · ||a(ip,jp)||1
5: S ∪ |a(ip,jp)⊤x0 + c(ip,jp)| − ϵ · ||a(ip,jp)||1
6: ▷ Sort from nearest to farthest distance
7: S = argsort(dp)[: K] ▷ Indices of Top-K inactive implicant constraints
8: S = argsort(dp)[: K] ▷ Indices of Top-K active implicant constraints
9: return S,S

max
ρ≥0

a(i1,j1)
⊤
x0 + c(i1,j1) − ∥a(i1,j1)∥1 · ϵ +

M∑
k=1

ρia
(m[k],n[k])⊤x0 + ρic

(m[k],n[k]) − ∥ρia
(m[k],n[k])∥1 · ϵ

(15)

Then, we can easily solve ρ by projected gradient descent using an optimizer like Adam (Diederik
et al., 2014).

E EXPERIMENTAL DETAILS

E.1 VERIHARD BENCHMARK

The VeriHard benchmark includes models from existing benchmarks, such as MNIST-A-Adv,
CIFAR-A-Adv, CIFAR-A-Mix from SDP-FO (Dathathri et al., 2020), and CIFAR100-small,
CIFAR100-medium, CIFAR100-large, and TinyImageNet-medium from the neural networks compe-
tition (VNN-COMP (Bak et al., 2021; Müller et al., 2022a)). VeriHard applies a careful selection of

16

Under review as a conference paper at ICLR 2024

46 48 50 52 54 56 58
Branching iterations

0.6

0.5

0.4

0.3

0.2

0.1

0.0

Gl
ob

al
 lo

we
r b

ou
nd

-CROWN
BIG
subBIGs

46 48 50 52 54 56 58
Branching iterations

45000
47500
50000
52500
55000
57500
60000
62500
65000

Ex
pl

or
ed

 b
ra

nc
he

s

-CROWN
BIG
subBIGs

46 48 50 52 54 56 58
Branching iterations

1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

Av
er

ag
e

br
an

ch
ed

 n
eu

ro
ns -CROWN

BIG
subBIGs

Figure 4: {(Left) Global lower bounds; (Middle) Total explored branches; (Right) Average used
bound implications} trends along with branching iterations on one specific instance in VeriHard-
MNIST-A-Adv benchmark. More than one neurons are branched per iteration due to BIG, and the
bounds and the number explored branches both improve noticeably.

perturbation size ϵ for each instance, aiming to increase the verification challenge while ensuring
solvability. We will illustrate our ϵ configuration algorithm as follows:

We start by determining the unknown range [ϵl, ϵr] of each instance. Given an instance with an initial
ϵl = 0, we increment ϵl step by step with step-size α = 0.01, applying CROWN verification after
each step, until the vanilla CROWN verifier fails to verify the instance at the current ϵl. Conversely,
we initialize ϵr to 1.0, decreasing it by the same step size 0.01 until PGD attack succeed with
perturbation bound ϵr. In this case, any ϵ configuration within the range [ϵl, ϵr] enforces verification
using the BaB process.

For determining the final ϵ, we employ β-CROWN as our reference verifier. Binary search on ϵ is
used to assess the feasibility of verifying the instance within a timeout t, which is randomly sampled
from the interval [0.8T, 1.5T] (T is the final timeout designated for the instance). The resulting ϵ will
make β-CROWN verifier running time to be as close to the given timeout t as possible.

In VeriHard dataset, for MNIST and CIFAR10 instances, the actual timeout T is set to 200 seconds,
whereas for CIFAR100 and TinyImageNet instances, T is set to 250 seconds. We crafted 100
instances from each benchmark, assigning the respective ϵ to each instance following the algorithm
mentioned before. We will release our benchmark in the standard VNNLIB format.

E.2 EXPERIMENTAL SETUP

Our implementation is based on the open-source α, β-CROWN verifier by integrating BIG and
subBIGs construction and branching utilization code into that. For BIG and subBIGs construction, we
select top-K implicant neurons to derive our paired bound implications as mentioned in Theorem 3.2
with K = 1000. Specifically for subBIGs, we use first M = 8 splits by BaB and apply a 50-steps
gradient descent with Adam optimizer to optimize our objective l∗relaxed-multi on up to 2M = 256
unsolved subproblems with initial learning rate as 0.1 and its decay factor as 0.99. Throughout our
experiments, we employ Filtered Smart Branching (FSB) (De Palma et al., 2021a) as our branching
heuristics and apply Adam optimizer to optimize both α and β for 20 iterations during verification
process. The initial learning rate is set to be 0.1 for α optimization and 0.05 for β, while the
corresponding decay ratio is set to be 0.995 for α and 0.98 for β. All our experiments are conducted
on one NVIDIA A100 GPU device (80G memory). Timeout for classic benchmark is aligned with
prior work: MNIST-CNN-A-Adv (200s), CIFAR10-CNN-A-Adv (200s), CIFAR10-CNN-A-Mix
(200s), MNIST-ConvSmall (180s), CIFAR10-ConvSmall (180s). For VeriHard benchmark, we set
timeout to be 200 seconds for MNIST and CIFAR10 instances and 250 second for CIFAR100 and
TinyImageNet instances.

F VISUALIZATION OF BIG-ENHANCED BAB PROCESS

In this section, we provide more figures showing the bounds improvements, the number of branches,
and the average number of branched neurons per BaB iteration, on different benchmarks and data-
points.

17

Under review as a conference paper at ICLR 2024

42 44 46 48 50 52 54
Branching iterations

0.4

0.3

0.2

0.1

0.0

Gl
ob

al
 lo

we
r b

ou
nd

-CROWN
BIG
subBIGs

42 44 46 48 50 52 54
Branching iterations

30000

35000

40000

45000

50000

55000

60000

Ex
pl

or
ed

 b
ra

nc
he

s

-CROWN
BIG
subBIGs

42 44 46 48 50 52 54
Branching iterations

1

2

3

4

5

6

7

Av
er

ag
e

br
an

ch
ed

 n
eu

ro
ns -CROWN

BIG
subBIGs

Figure 5: {(Left) Global lower bounds; (Middle) Total explored branches; (Right) Average used
bound implications} trends along with branching iterations on one specific instance in VeriHard-
CIFAR10-A-Adv benchmark.

40 42 44 46 48 50 52 54
Branching iterations

0.40
0.35
0.30
0.25
0.20
0.15
0.10
0.05
0.00

Gl
ob

al
 lo

we
r b

ou
nd

-CROWN
BIG
subBIGs

40 42 44 46 48 50 52 54
Branching iterations

40000

45000

50000

55000

60000

Ex
pl

or
ed

 b
ra

nc
he

s

-CROWN
BIG
subBIGs

40 42 44 46 48 50 52 54
Branching iterations

1
2
3
4
5
6
7
8

Av
er

ag
e

br
an

ch
ed

 n
eu

ro
ns -CROWN

BIG
subBIGs

Figure 6: {(Left) Global lower bounds; (Middle) Total explored branches; (Right) Average used
bound implications} trends along with branching iterations on one specific instance in VeriHard-
CIFAR10-A-Mix benchmark.

18

Under review as a conference paper at ICLR 2024

Algorithm 3 Construct BIG
1: Inputs: constraints of all unstable neurons a,a ∈ RN×d0 and c, c ∈ RN , where N is number of

unstable neurons and d0 is the length of the model input x0; perturbation size ϵ, K
2: Outputs: BIG: G(V,E)
3: S,S← TOPKFILTERING(a,a, c, c,x0, ϵ,K) ▷ Get indices of Top-K constraints from Alg. 2
4: for p = 1 to N do ▷ Iterate implicant neurons
5: for q = 1 to N do ▷ Iterate implicated neurons
6: if p ∈ S then
7: ▷ Consider inactive implicant constraint to improve lower bound
8:

x∗
k :=

x0,k − ϵ · a(iq,jq)k , if a(iq,jq)k > 0

x0,k + ϵ · a(iq,jq)k , if a(iq,jq)k < 0

x0,k − ϵ · sign(a(ip,jp)k), if a(iq,jq)k = 0

9: if a(ip,jp)⊤x∗ + c(ip,jp) > 0 then ▷ Useful implicant constraint
10: l∗relaxed ← Solve Eq. 6 with the implicated neurons: a(iq,jq)

⊤
x+ c(iq,jq)

11: if l∗relaxed ≥ 0 then ▷ z
(iq)
jq

become to active

12: E ← E ∪ (Q
(ip)
jp

, P
(iq)
jq

) ▷ add edge (Q
(ip)
jp

, P
(iq)
jq

) to the graph

13: ▷ Consider inactive implicant constraint to improve upper bound
14:

x∗
k :=

x0,k − ϵ · a(iq,jq)k , if a(iq,jq)k > 0

x0,k + ϵ · a(iq,jq)k , if a(iq,jq)k < 0

x0,k − ϵ · sign(a(ip,jp)k), if a(iq,jq)k = 0

15: if a(ip,jp)⊤x∗ + c(ip,jp) > 0 then ▷ Useful implicant constraint
16: l∗relaxed ← Solve Eq. 10 with the implicated neurons: a(iq,jq)

⊤
x+ c(iq,jq)

17: if l∗relaxed ≤ 0 then ▷ z
(iq)
jq

become to inactive

18: E ← E ∪ (Q
(ip)
jp

, Q
(iq)
jq

) ▷ add edge (Q
(ip)
jp

, Q
(iq)
jq

) to the graph

19: if p ∈ S then
20: ▷ Consider active implicant constraint to improve lower bound
21:

x∗
k :=

x0,k − ϵ · a(iq,jq)k , if a(iq,jq)k > 0

x0,k + ϵ · a(iq,jq)k , if a(iq,jq)k < 0

x0,k + ϵ · sign(a(ip,jp)k), if a(iq,jq)k = 0

22: if a(ip,jp)
⊤
x∗ + c(ip,jp) < 0 then ▷ Useful implicant constraint

23: l∗relaxed ← Solve Eq. 11 with the implicated neurons: a(iq,jq)
⊤
x+ c(iq,jq)

24: if l∗relaxed ≥ 0 then ▷ z
(iq)
jq

become to inactive

25: E ← E ∪ (P
(ip)
jp

, Q
(iq)
jq

) ▷ add edge (P
(ip)
jp

, Q
(iq)
jq

) to the graph

26: ▷ Consider active implicant constraint to improve upper bound
27:

x∗
k :=

x0,k − ϵ · a(iq,jq)k , if a(iq,jq)k > 0

x0,k + ϵ · a(iq,jq)k , if a(iq,jq)k < 0

x0,k + ϵ · sign(a(ip,jp)k), if a(iq,jq)k = 0

28: if a(ip,jp)
⊤
x∗ + c(ip,jp) < 0 then ▷ Useful implicant constraint

29: l∗relaxed ← Solve Eq. 12 with the implicated neurons: a(iq,jq)
⊤
x+ c(iq,jq)

30: if l∗relaxed ≤ 0 then ▷ z
(iq)
jq

become to active

31: E ← E ∪ (P
(ip)
jp

, P
(iq)
jq

) ▷ add edge (P
(ip)
jp

, P
(iq)
jq

) to the graph

32: Return: G(V,E)

19

Under review as a conference paper at ICLR 2024

Algorithm 4 Generate subproblems in one BaB iteration with BIG.

1: Inputs: G(V,E), selected unstable neuron z
(i)
j

2: Outputs: BIG-generated subproblems.
3: SP ← {P (i)

j },SQ ← {Q(i)
j } ▷ traverse BIG starting from node P

(i)
j and Q

(i)
j

4: while SP has unvisited nodes do
5: Pick a unvisited node X

(i′)
j′ out from Sp

6: for e = (X
(i′)
j′ , Y

(i∗)
j∗) ∈ E do

7: SP ← SP ∪ {Y (i∗)
j∗ }

8: Mark node X
(i′)
j′ as visited

9: while SQ has unvisited nodes do
10: Pick a unvisited node X

(i′)
j′ out from SQ

11: for e = (X
(i′)
j′ , Y

(i∗)
j∗) ∈ E do

12: SQ ← SQ ∪ {Y (i∗)
j∗ }

13: Mark node X
(i′)
j′ as visited

14: Add splits z(i
′)

j′ ≥ 0 (or z(i
′)

j′ ≤ 0) from nodes in SP to subproblem z
(i)
j ≥ 0

15: Add splits z(i
′)

j′ ≤ 0 (or z(i
′)

j′ ≤ 0) from nodes in SQ to subproblem z
(i)
j ≤ 0

20

	Introduction
	Background
	Bound Implication Graph for NN Verification
	Experiments
	Related Work
	Conclusion
	Four cases of neuron interactions
	Proofs
	Algorithms
	Closed-form solution of the relaxed LP
	Algorithm of BIG construction and utilization

	Bound implications with additional split constraints
	Experimental Details
	VeriHard Benchmark
	Experimental Setup

	Visualization of BIG-enhanced BaB process

