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Abstract

In post-training for reasoning Large Language Models (LLMs), the current state of
practice trains LLMs in two independent stages: Supervised Fine-Tuning (SFT)
and Reinforcement Learning with Verifiable Rewards (RLVR, shortened as “RL”
below). In this work, we challenge whether high SFT scores translate to improved
performance after RL. We provide extensive counter-examples where this is not
true. We find high SFT scores can be biased toward simpler or more homoge-
neous data and are not reliably predictive of subsequent RL gains or scaled-up
post-training effectiveness. In some cases, RL training on models with improved
SFT performance could lead to substantially worse outcome compared to RL on
the base model without SFT. We study alternative metrics and identify general-
ization loss on held-out reasoning examples and Pass@large k performance to
provide strong proxies for the RL outcome. We trained hundreds of models up
to 12B-parameter with SFT and RLVR via GRPO and ran extensive evaluations
on 7 math benchmarks with up to 256 repetitions, spending >1M GPU hours.
Experiments include models from Llama3, Mistral-Nemo, Qwen3 and multiple
state-of-the-art SFT/RL datasets. Compared to directly predicting from pre-RL
performance, prediction based on generalization loss and Pass @large k achieves
substantial higher precision, improving R? coefficient and Spearman’s rank corre-
lation coefficient by up to 0.5 (2x). This provides strong utility for broad use cases.
For example, in most experiments, we find SFT training on unique examples for
a one epoch underperforms training on half examples for two epochs, either after
SFT or SFT-then-RL; With the same SFT budget, training only on short examples
may lead to better SFT performance, though, it often leads to worse outcome after
RL compared to training on examples with varying lengths. This work develops an
enhanced evaluation tool that will be open-sourced.

1 Introduction

The evolution of Large Language Models (LLMs) has seen a significant focus on enhancing their
reasoning abilities, a process heavily reliant on post-training (Wen et al., 2025). This phase refines
pre-trained models, adapting them for complex, multi-step tasks like mathematics, logic, and code
generation, leading to the emergence of Large Reasoning Models (LRMs) (Kumar et al., 2025). The
open-sourced DeepSeek R1 achieved phenomenal success in pushing forward the frontier of LLM’s
reasoning capabilities (Guo et al., 2025). Its new post-training paradigm, Reinforcement Learning
with Verifiable Rewards (RLVR) via Group Relative Policy Optimization (GRPO) (Liu et al., 2024;
Shao et al., 2024), has shown substantial improvements on top of previous post-training methods.
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Figure 1: Mistral-NeMo-12B-Instruct undergone SFT-RL with SFT examples from AceReasonerl.1-SFT
dataset and RLVR via GRPO on DeepScaleR dataset. Reporting Pass@ 1 performance averaged over 7 math
benchmarks. When training on Random/ /Shortest SFT examples, the final performance after RL
increases at different rates than the SFT performance. Model with the best SFT performance is not the one with
the best final performance after RL. Post-SFT and SFT+RL performance correlate, though, optimizing post-SFT
performance might not optimize the final performance after RL.

Following DeepSeek R1’s practice, current works typically conduct SFT before RL, assuming models
with better performance after SFT will ultimately be better after RL (Liu et al., 2025b; Wen et al.,
2025). In industrial practice, these post-training stages are often distributed among different teams,
with SFT and RL handled by separate groups, each optimizing for their own performance metrics
(Chen et al., 2025b; Meta, 2025). This process relies on the intuition that a model with stronger SFT
performance will yield better outcomes after RLVR (Liu et al., 2025b). With efforts and resources
being poured in improving post-training paradigms and data recipes, also escalating are the debates
on whether SFT helps or hurts the subsequent RL training.

In this setup, post-training strategies and data are often designed either for SFT or RL, but not jointly.
In practice, SFT and RL are often conducted sequentially (e.g., Rastogi et al. (2025)). SFT data is
usually selected to maximize evaluation performance after SFT (Zhang et al., 2025; Ye et al., 2025),
and the best-performing SFT models are believed to also yield stronger performance after subsequent
RL. However, this assumption is often flawed. Over-training during SFT, for instance, can constrain
the model’s behavior and limit the exploration crucial for effective RL (Chen et al., 2025a; Wang
et al., 2025). For example, we find training on repeated examples for up to 8 epochs leads to better
SFT performance than training on the same data for 2 epochs (4x compute) but yields visibly worse
outcome after RL (Figure 4, left). On the contrary, Cen et al. (2025) shows SFT training on manually
crafted “exploratory” examples, despite leading to a lower performance after SFT, helps achieve
better final outcome after RL. This leads to a critical gap in the current practice:

An SFT-trained model with the best evaluation performance may not be the best candidate for
subsequent training with RLVR (e.g., Figure I).

When the final RLVR performance is unsatisfactory, it becomes challenging to attribute the failure
to either the RL stage or a non-ideal SFT starting point. This misalignment can cause friction and
overhead between teams. Furthermore, the high computational cost of RL training and long pipelines,
especially in agentic use cases, makes end-to-end tuning across the SFT-RL stages prohibitively
expensive (Toledo et al., 2025). Early stopping during RL is also generally ineffective, as the model
with the fastest initial improvement may not achieve the highest final performance (Liu et al., 2025b).
Even with identical post-training procedures, different models may respond vastly different (Figure
2). Consequently, a significant gap remains in our ability to reliably predict RLVR outcomes.

This work centers on addressing this predictability problem. We ask the following research questions:

RQ1: Do models with better pre-RL performance always lead to better outcomes after RLVR? If
not, what are the failure modes? (Section 3)

RQ2: What are effective SFT paradigms and data recipes when considering subsequent RLVR
training? Can we determine the suitability of an SFT model before committing to the
expensive RL stage? (Section 4)

To tackle these questions, we first examine the relationship between pre-RL performance and post-RL
outcomes across various SFT training paradigms and data recipes. While we often observe some
extents of correlation between post-SFT performance and final outcome after RL, we identify cases
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Figure 2: Both models undergone SFT-RL with SFT examples from AceReasonerl.1-SFT dataset and RLVR
via GRPO on DeepScaleR dataset. Reporting Pass@1 performance averaged over 7 math benchmarks. Even
with identical post-training procedures, different models may respond vastly different. With increasing SFT
examples, Mistral’s (left) post-SFT performance and final performance after RL both increase. Yet, for Qwen3
models (right), the post-SFT performances appear uncorrelated with the final performance after RL, where the
latter remains the same despite the substantially improved SFT performance.

where the trends visibly diverge. For instance, training on the same dataset for more epochs may
significantly boost post-SFT performance but diminishes the potential for improvement during RL,
sometimes resulting in lower final performance (e.g., Figure 4). Similarly, training on simpler, shorter
reasoning examples improves pre-RL performance quickly, but these models gain much less from the
subsequent RL stage. These findings are particularly concerning given that many SFT data selection
methods favor simpler or more homogeneous examples (Zhang et al., 2025; Yu et al., 2025).

Next, we identify more reliable predictors for RL success. We find that as SFT proceeds, an eventual
increase in validation loss is strongly correlated with performance improvements in the later RL
stage. Furthermore, since the RL objective is to compress Pass @k performance into Pass@1 (i.e.,
maximize expected reward), we investigate using Pass@k at a large k as a predictor. We conduct
extensive empirical validation using Llama3-8B (Grattafiori et al., 2024), Mistral-Nemo-12B (team,
2024), and Qwen3-4B-base (Yang et al., 2025) models on state-of-the-art SFT datasets like Llama-
Nemotron (Singhal et al.) and AceReasonerl.1 (Liu et al., 2025b) and different RL datasets. Our
results demonstrate that these new metrics can reliably predict the outcome of RLVR, improving R?
coefficient and Spearman’s rank correlation coefficient by up to 0.5 (2x), providing strong utility for
broad use cases. For example, in most experiments, we find SFT training on unique examples for a
one epoch underperforms training on half examples for two epochs, either after SFT or SFT-then-RL;
With the same SFT budget, training only on short examples may lead to better SFT performance,
though, it often leads to worse outcome after RL compared to training on examples with varying
lengths. These can be captured by the proposed predictors, but not from the post-SFT performance.

To address the limitations in available tools, we developed an enhanced tool for more convenient and
reliable evaluation of reasoning models, which will be open-sourced in contribution to the community.

2 Related Works

The research landscape for reasoning post-training and data strategies is fast evolving and in its
early days. In a typical setup, post-training for reasoning LMs conducts SFT and RL sequentially,
which has been reported to work better than only conducting SFT or RL (Rastogi et al., 2025).
Viewpoints in many impactful works can be inconsistent or even contradicting: “Initial ‘cold-start’
SFT is necessary for subsequent RL” (DeepSeek-R1 technical report, Guo et al. (2025)); “over-SFT
may constrain subsequent RL” (Llama-4 technical report, Meta (2025)); “SFT generalizes poorly
and RL without SFT does better” (Chen et al., 2025a), showing prominent gaps in characterizing
post-training dynamics and the role of each stage. The lack of predictability in the post-training
outcome poses a major blocker for optimizing training paradigms or data recipes.

2.1 Post-training for Reasoning: SFT-then-RLVR paradigm

Post-training for reasoning LLMs typically consists of two or three stages: a) Supervised Fine-
Tuning (SFT), b) an optional Direct Preference Optimization (DPO) stage, and c) Reinforcement
Learning with Verifiable Rewards (RLVR) (Lambert et al., 2024). SFT serves as the “cold-start”



phase, providing the model with a strong initial policy by exposing it to high-quality reasoning chains
(Guo et al., 2025). The model is trained on problems with high-quality solutions sourced from the
frontier models. DPO fixes/strengthens targeted behaviors (e.g., precise instruction following in
math/logic derivations) assessed important for effective reasoning, which is more subjective and
often optional (Lambert et al., 2024). RL further improves the model’s reasoning and problem-
solving capability. This allows the model to explore the solution space more broadly than SFT alone,
discovering novel and more robust reasoning paths.

While the sequential SFT-then-RL pipeline is dominant, researchers have explored alternative
paradigms to more tightly integrate or unify these learning stages. Efforts include iterate or in-
terleave SFT and RL (Meta, 2025), gradually shift from SFT to RL while increasing task difficulty
(Yang et al., 2025), or directly unify the objectives of SFT and RL (Xu et al., 2025). Though these are
promising research directions, they come with their own complexities and have not yet universally
replaced the SFT-then-RL paradigm, which remains a robust and widely-adopted industry standard.
Many important issues regarding the stability, data requirements, and effectiveness of these unified
methods remain to be solved. Our work, therefore, focuses on improving the predictability and
efficiency of the prevailing SFT-then-RL pipeline, providing practical tools that are immediately
applicable to current state-of-the-art workflows.

2.2 Recent Advancements and Current Challenges

In post-training for reasoning, SFT data is usually selected to maximize evaluation performance
after SFT (Li et al., 2025; Ye et al., 2025), and the best-performing SFT models are believed to also
yield stronger performance after subsequent RL. Significant research effort is now focused on more
sophisticated selection and curation strategies for SFT data. Techniques range from filtering for
complexity and diversity to generating synthetic data that covers a wider range of reasoning structures
(Rastogi et al., 2025; Yuan et al., 2025; Ye et al., 2025; Abdin et al., 2024). Some methods propose
selecting data points based on their difficulty and influence, aiming to find a subset of examples that
provides the strongest learning signal (Muennighoff et al., 2025). Current efforts prioritize scaling up
SFT training on existing models, leading to new SOTA performance on reasoning tasks for those
models (Guha et al., 2025). A significant challenge is that standard SFT performance metrics, such
as average accuracy on benchmarks, are not always predictive of post-RL success. This creates a
critical gap between the optimization target of the SFT stage and the final performance of the model.

Several issues contribute to this gap. First, models can overfit to the specific patterns and artifacts
present in the SFT dataset, leading to poor generalization during the exploration phase of RL (Chen
et al., 2025a). Furthermore, naively collecting or generating data can lead to datasets that lack
diversity in reasoning strategies or are skewed toward simpler problems, causing the SFT-trained
model to develop biases that stifle exploration in the subsequent RL stage (Guha et al., 2025). The
landscape is further fogged by the recently reported data contamination issues (Wu et al., 2025). The
results from these models have served as the basis for many research findings.

The (lack of) predictability for final performance after RL from pre-RL models leads to quagmires
for post-training. SFT teams may provide suboptimal RL learners. It creates frictions between post-
training teams owning different SFT and RL stages and chaos in optimizing the training paradigm/data
recipes, adding overheads on the model development and hindering productivity. It calls for new
tools that better characterize the post-training dynamics and predictive of the RL outcome. This will
have profound impact on broad downstream fields—research and applications alike—from improving
SFT data curation, search for the next post-training paradigm, to RL for non-verifiable tasks, etc.

3 The SFT Metric Trap

Previous works, from SFT data selection to RL training methodologies, have often operated under
a common assumption. They implicitly assume or explicitly argue that models exhibiting better
post-SFT performance will consistently yield superior final outcomes after subsequent reinforcement
learning (Rastogi et al., 2025; Liu et al., 2025b). This assumption has justified the widespread practice
of optimizing the SFT and RL stages in isolation, with teams or processes focusing on maximizing
SFT evaluation metrics as a primary goal. However, the separation of SFT and RL optimization can
lead to a widening gap in reasoning post-training, where improvements in the initial stage do not
translate to the final stage. This motivates us to ask two fundamental questions:



* Do models with better pre-RL performance always lead to better outcomes after RLVR?
* Ifnot, what are the failure modes?

To investigate these questions, we design experiments across two representative scenarios that reflect
common practices and research directions in the field: a “dataset-level” analysis and an “instance-
level” analysis. In Dataset-Level Scenarios, SFT examples are drawn from the same data distribution,
but we vary the amount of unique samples and the training paradigm (e.g., learning rate, number of
epochs); In Instance-Level Scenarios, we consider training on different datasets while keeping the
training pipeline fixed (i.e., using the same model and training paradigm). This setup is primarily
concerned with SFT data selection and curation, examining whether strong SFT performance on a
given dataset transfers to the final outcome after RL.

3.1 Dataset-Level Scenarios

In this scenario, we draw SFT examples from the same underlying data distribution but vary the
training configuration, such as the number of unique samples/training epochs/learning rate. This
setup is highly relevant to industrial practices where SFT and RL are often handled by different teams.
In current practices, the number of training epochs is a design choice often determined by practical
factors such as data availability or compute budget. Specifically, when the amount of training samples
is a more prominent constraint (such as domains with limited high-quality examples), repeating for
more epochs on the data may be preferred to improve post-SFT performance. On the contrary, if data
is abundant relative to the allocated compute budget (for this domain/capability), current practices
(such as Singhal et al.) may prefer to train for just a single epoch on unique examples.
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3.2 Instance-Level Scenarios

In this scenario, we fix the model and the training configurations but vary the SFT datasets. This
setup is primarily concerned with SFT data selection and curation, examining whether the strong
SFT performance promised by a particular dataset transfers to strong final performance after RL.
For instance, state-of-the-art data selection methods are often prone to selecting examples that are
more “natural” or easier for the model to learn (Zhang et al., 2025; Yu et al., 2025). While this
simpler data may allow the model to achieve high SFT metrics more quickly, we question whether
this comes at the cost of learning more difficult or advanced reasoning capabilities that are crucial for
downstream success. We identified similar gaps between post-SFT performance and final outcome
after RL. Visualizing representative examples in Figure 1, high SFT scores can be biased toward
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Figure 4: Both models undergone SFT-RL with SFT examples from AceReasonerl.1-SFT dataset and RLVR
via GRPO on DeepScaleR dataset. Reporting Pass@ 1 performance averaged over 7 math benchmarks. When
repeating SFT for more epochs on the same data, Mistral’s (left) SFT continues to improve with up to 4 epochs
where the final performance after RL saturates after 2 epochs. Qwen3’s (right) final performance after RL
degrades with SFT training, though, these models’ post-SFT performance is substantially higher than the base
model. Both cases show clear divergence between post-SFT performance and final performance after RL. Here,
optimizing post-SFT performance will be suboptimal or ineffective for improving the final model.

simpler examples and are not reliably predictive of subsequent RL gains or scaled-up post-training
effectiveness. For example, training on shortest examples led to faster performance improvements
than training on randomly sampled examples during SFT. These shorter examples are closer to the
model’s original generations and easier to learn, though, these are not best examples for the model
to gain reasoning capabilities in preparation for RL. The final performance after RL is significantly
lower. These gaps are not directly captured in the post-SFT performance.

4 Proposed Metrics towards More Reliable Predictions

4.1 Generalization Loss on Validation Examples

During the investigation above, we identified a counterintuitive pattern in which post-SFT perfor-
mance improves stably when training for more epochs whereas the overtrained models show decreased
potentials during the subsequent RL. The best final performance after RL is not usually achieved on
models with the best post-SFT performance. To be able to optimize the final outcome on the given
training examples, one needs to optimize the SFT training paradigm based on the predicted final
outcome after RL. We materialize this insight and identify generalization loss after SFT to be a viable
indicator of the model’s potential during the subsequent RL. While repeating training for more epochs,
together with the improving post-SFT performance, we observe the generalization loss on validation
examples to elevate and eventually flare up, indicating strong over-fitting. This generalization loss
shows strong correlation with further performance gains during subsequent RL, allowing prediction
for the final outcome after RL (Figure 5). When using it in practice, after conducting SFT training
with different numbers of examples and epochs, we can immediately rule out post-SFT models with
both lower performance and higher generalization loss as they will likely remain underperforming
after the subsequent RL, facilitating determination of the best SFT training paradigm.

4.2 Pass@k Accuracy Evaluated at Large k

The objective of RLVR via GRPO is to maximize expected reward, which explicitly optimizes the
Pass@1 accuracy on the RL tasks. GRPO only progresses when at least one of the responses for the
RL task is correct. Recent works argue that GRPO compresses Pass@k accuracy into Pass@1 (Yue
et al., 2025), and empirical evidence appears to support the argument showing GRPO mostly improves
average Pass@1 accuracy on tasks where the original model achieves an above-zero accuracy (Liu
et al., 2025b). Though it remains debatable whether GRPO discovers new solution traces beyond the
capabilities of the original model (Liu et al., 2025a), all these analyses and findings suggest RLVR
dynamics during GRPO training to be strongly coupled with the original models Pass @k accuracy.
Hu et al. (2023) pioneers in using the Pass @high metric to study the scaling of task performance.
The authors argue that Pass @k provides finer resolution to the Pass@ 1 metric and better captures
the underlying dynamics. Acting on this intuition, we consider Pass @k performance of the post-
SFT model, especially with large k, as a candidate metric for predicting its final outcome after the
subsequent RL. When using it in practice, after SFT training, we evaluate Pass @k performance on the
post-SFT models with different values of k. For efficient implementation, we leverage the following
formula which provides unbiased estimations for Pass@k accuracies for all £k < n (Brown et al.,
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Figure 5: Llama3-8B-Instruct undergone SFT-RL with SFT examples from Llama-Nemotron-SFT dataset
and RLVR via GRPO on MATH dataset (train-split). Reporting Pass@1 performance averaged over 7 math
benchmarks and generalization loss on the validation set of SFT data. We identify generalization loss after SFT
to be a viable indicator for the model’s RL potential. While repeating training for more epochs, together with
the improving post-SFT performance, we observe the generalization loss on validation examples to elevate and
eventually flare up, indicating strong over-fitting. This generalization loss shows strong correlation with the
further performance gain during the subsequent RL, allowing prediction for the final outcome after RL.

2024), Pass@Qk = E <1 - (zg; )> where integer n denotes the total number of responses generated
k

for the task, integer k denotes the target value for k Pass@k, and integer ¢ denotes the number of
correct responses for the task, respectively.

We consider the Pass@large k performance as the indicator for the final outcome after RL and deem
the post-SFT model with the best Pass@large k performance to have the best Pass@ 1 performance
after RL. The best post-SFT model can be determined without needing to conduct any actual RL run.

S Empirical evaluations

5.1 Setup

We conduct three sets of experiments with SFT-RL post-training. On Llama3-8B-Instruct models,
we conduct SFT training with examples from Llama-Nemotron dataset (where we only select math
samples with responses generated by QwQ-32B (Team, 2025) or DeepSeek R1 (Guo et al., 2025),
hereinafter the same) and RL training on MATH dataset (train-split) (Hendrycks et al., 2021); on
Mistral-Nemo-12B-Instruct and Qwen3-4B-base, we conduct SFT training with examples from
AceReasonerl.1-SFT dataset and RL training on DeepScaleR dataset (Luo et al., 2025). For all
models, we conduct RL training for 3 epochs where each run takes up to 5 days. We repeat
RL training for 4+ runs on each data recipe and training paradigm, conduct 4+ evaluations on
different checkpoints across RL training run, and report the best performance for the model. We
evaluate task performance on 7 math benchmarks, MATH-500 (Hendrycks et al., 2021), AIME
1983-2024 (Veeraboina, 2023), GSMS8k (Cobbe et al., 2021), AIME 2025 (of America, 2025),
AMC (Competitions, 2025), Olympiad (He et al., 2024), Minerva (Lewkowycz et al., 2022), and
report model performance as Pass@1 accuracy averaged over 64 repetitions and across 7 tasks.
For the proposed predictors, we evaluate the generalization loss on the validation set of the SFT
data and Pass@64 accuracy averaged over 256 repetitions. Experiments spent >1M GPU hours on
NVIDIA A100. Please refer to Appendix B for additional details. Shown in Figure 2 (right), in this
setup, Qwen3-series models do not appear to benefit from state-of-the-art SFT datasets, and models
undergone different SFT training achieve considerably close final performance after RL. Since this
work focuses on studying the impact of different SFT training on the subsequent RL, we present
these results as qualitative examples instead (deferred to Appendix A).

Following the categorization above, we organize experiments in two major scenarios: dataset-level
prediction, and instance-level prediction. In dataset-level prediction experiments: we conduct
SFT training for the base model on samples from math reasoning datasets with different training
paradigms (varying number of examples and epochs). In instance-level prediction experiments: we



first create diverse different curated SFT datasets by selecting the shortest/longest subsets, random
samples, or their different mixtures (samples are shown in Appendix D). Then, we conduct SFT
training for the base model on samples from each curated dataset with the same training paradigms
(one epoch). We consider two primary metrics measure prediction performance, Coefficient of
determination (R2) (Pearson, 1909), and Spearman’s rank correlation coefficient (Spearman)
(Zar, 1972). Specifically, R? measures the proportion of variation in the prediction variable (final
performance) that is unexplained by the predictor, examining the accuracy of prediction on the final
performance after RL. Spearman yields a number ranging from -1 to 1 that indicates how strongly
two sets of ranks are correlated, which we use to examine the effectiveness in identifying post-SFT
models that lead to the best final performance. Additional results can be found in Appendix C.

5.2 Use Case 1: Dataset-Level Prediction

This use case focuses on optimizing the SFT training paradigm, a common dataset-level challenge.
Given a fixed compute budget, practitioners must decide on the optimal trade-off between the volume
of unique data and the number of training epochs, navigating the risks of under- and over-training.
We test the predictive power of our proposed metrics against the baseline of using post-SFT Pass@1
accuracy. To examine the accuracy of prediction with R2, we randomly select 50% SFT models and
fit a linear function between their post-SFT performance and final performance after RL. The fitted
function is then used to predict the final performance of the other 50% SFT models. We compare the
predictions to their actual post-RL outcomes to compute k2. We repeat the random sampling for 100
times and report the standard error.

Table 1: Spearman’s rank correlation between performance predicted from post-SFT models and the actual
performance after RL. Both generalization loss and Pass @64 achieve notable margins over prediction from
Pass@1, whereas averging the two prediction may or may not lead to better results.

Spearman’s Rank Prediction based on | Prediction based on  Prediction based on | Avg. Prediction from
Correlation / Models SFT Pass@1 (avg. | SFT Generalization SFT Pass@Large k SFT Gen. Loss +
of 64) Loss (k=64) Pass@Large k (64)
Llama3-8B-Instruct 0.75 0.94 0.95 0.97 (+0.22)
Mistral-NeMo-12B-Instruct 0.78 0.90 0.92 (+0.14) 0.90

Table 2: Measuring prediction accuracy with coefficient of determination (R?). We randomly select 50% SFT
models and fit a linear function between their post-SFT performance and performance after RL, and use it to
predict for the other 50% SFT models. We repeat random sampling for 100 times and report standard errors.

Coefficient of Prediction based on | Prediction based on  Prediction based on | Avg. Prediction from
determination (R?) SFT Pass@1 (avg. | SFT Generalization SFT Pass@Large k SFT Gen. Loss +

/ Models of 64) Loss (k=64) Pass@Large k (64)
Llama3-8B-Instruct 0.57 +029 0.88 +0.09 0.87 +o0.10 0.94 1004 (+0.37)
Mistral-NeMo-12B-Instruct 0.29 +o3s 0.79 +026(+0.50) 0.57 +o3 0.72 024

Takeaway 1: Dataset-level Prediction

* Both generalization loss and Pass @large k are effective predictors for post-RL performance
when optimizing SFT training configurations on a single dataset, providing higher-accuracy
estimates that help guide decisions and save significant compute.

* Both predictors excel at identifying correct rankings for post-RL performance, achieving >
0.90 Spearman correlation (30% improvements); generalization loss provides advantageous
prediction accuracy (R?) for post-RL performance with up to 2x improvements.

5.3 Use Case 2: Instance-Level Prediction

This use case addresses the challenge of SFT data selection, an instance-level optimization problem.
Here, the training pipeline is fixed, but we aim to select the optimal SFT dataset from a pool of
candidates curated with different strategies (e.g., selecting for shortest/longest solutions, diversity, etc.
Ye et al. (2025)). This scenario tests whether strong SFT performance on a given dataset translates to
a good final outcome after RL.



Table 3: Spearman’s rank correlation between performance predicted from post-SFT models and the actual
performance after RL. Pass @64 achieve notable margins over prediction from Pass@1.
Prediction based on SFT Pass@1

Spearman’s Rank/ Prediction based on

Correlation / Models (avg. of 64) SFT Pass@Large k (k=64)
Llama3-8B-Instruct 0.69 0.94 (+0.25)
Mistral-NeMo-12B-Instruct 0.70 0.98 (+0.28)

Table 4: Measuring prediction accuracy with coefficient of determination (R?). We randomly select 50% SFT
models and fit a linear function between their post-SFT performance and performance after RL, and use it to
predict for the other 50% SFT models. We repeat random sampling for 100 times and report standard errors.

Coefficient of determination | Prediction based on SFT Pass@ 1 Prediction based on
(R?) / Models (avg. of 64) SFT Pass@Large k (k=64)
Llama3-8B-Instruct 0.58 + 020 0.92 + 005 (+0.34)
Mistral-NeMo-12B-Instruct 0.73 o016 0.98 =001 (+0.25)

In this scenario, the generalization loss predictor is not applicable. Since each SFT dataset comes
from a different distribution, the validation loss includes a distributional gap component in addition
to generalization error. Without a common, representative validation set, it is difficult to make a fair
comparison. Pass@large k metric proves to be exceptionally robust. Since it measures the model’s
inherent capability to produce correct solutions, it is less sensitive to distributional shifts in the
training data. It can be used to effectively rank different SFT datasets and select the one with the
highest potential for RL, without needing to run any RL experiments for calibration.

Takeaway 2: Instance-level Prediction

» Pass@large k turns out highly accurate and robust in instance-level predictions, improving
Spearman correlation by up to 36% and prediction accuracy (R2)by up to 59%. It effectively
identifies datasets for strong post-RL performance and predicts RL outcomes.

* Generalization loss is not applicable for instance-level selection due to distributional gaps
between different datasets.

How to use them in practice? Our metrics support two primary workflows. If the goal is simply
to rank SFT candidates, one can use generalization loss to quickly filter out clearly suboptimal
models (i.e., those with both low performance and high loss). Then, Pass@large k can be used to
reliably rank the remaining candidates to identify the most promising one. If the goal is to predict
the final performance value—for instance, to inform trade-offs between SFT costs and expected
gains—opractitioners can run RL on a small number of SFT models to gather calibration data. A linear
predictor can then be fitted using our proposed metrics, allowing for accurate performance estimation
across all SFT candidates without the need for exhaustive RL runs.

6 Conclusions

This work confronts a critical quagmire in reasoning post-training: the common assumption that high
SFT scores guarantee strong performance after subsequent RL. Through extensive experimentation
with Llama3/Mistral-Nemo/Qwen3 models spending >1M GPU hours, we provide broad counter-
examples where SFT performance is often misleading or biased toward simpler/repeated data. Our
primary contribution is the identification and validation of two more reliable predictors for post-RL
success: generalization loss on held-out reasoning examples and Pass@large k accuracy, improving
prediction accuracy (R?) and Spearman’s rank correlation by up to 0.5 (2x) over prediction from
post-SFT performance. By allowing practitioners to better predict the final outcome, our work helps
de-risk the expensive RL stage and streamline the entire post-training pipeline. We will open-source
our enhanced evaluation tool to facilitate broader adoption and further research. This work focuses
on mathematical reasoning. A natural next step is to study the topic in a wider range of reasoning
tasks (e.g., coding, science) and agentic use cases; Our study is limited to the prevailing paradigm
of online RL with GRPO. The relationship between SFT characteristics and post-RL performance
with other methods such as offline RL/DPO or other RL algorithms may worth further explorations;
Directly evaluating Pass @large k requires repeating evaluation for at least k times, which becomes
computational expensive with long sequence lengths. Estimating Pass@k accuracy from that of
smaller k holds the promise for more efficient evaluations (Schaeffer et al., 2025).
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A Additional SFT-RL Examples and Visualizations

A.1 Llama3-8B-Instruct

Figure 6 shows results on Llama3-8B-Instruct undergone SFT-RL with SFT examples from Llama-
Nemotron-SFT/AceReasoner1.1-SFT/OpenR 1-Math (Hugging Face, 2025) dataset and RLVR via
GRPO on MATH dataset (train-split). Reporting average Pass@1 performance on MATH-500 (test-
split). High SFT scores can be biased toward simpler or more homogeneous data and are not reliably
predictive of subsequent RL gains or post-training effectiveness. SFT on fewer unique examples
repeated for more training epochs (ep) or/and with a larger learning rate (LR) leads to higher accuracy
on reasoning benchmarks such as MATH-500 (+8.75% vs. non-repeated data, left figure). However,
models trained this way show smaller improvements during RL (-1.43% vs. non-repeated). In
contrast, SFT on more diverse, non-repeated data—despite yielding lower initial SFT performance
(-5% vs. repeated data, middle/right figure)—results in significantly better post-RL performance

(+5.94%).
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samples, post-RL performance
will be *much* higher (+7.31%).

post-RL performance (+5.94%).

Figure 6: Llama3-8B-Instruct undergone SFT-RL with SFT examples from Llama-Nemotron-
SFT/AceReasonerl.1-SFT/OpenR 1-Math dataset and RLVR via GRPO on MATH dataset (train-split). Reporting
average Pass@1 performance on MATH-500 (test-split). High SFT scores can be biased toward simpler or more
homogeneous data and are not reliably predictive of subsequent RL gains or post-training effectiveness. SFT
on fewer unique examples repeated for more training epochs (ep) or/and with a larger learning rate (LR) leads
to higher accuracy on reasoning benchmarks such as MATH-500 (+8.75% vs. non-repeated data, left figure).
However, models trained this way show smaller improvements during RL (-1.43% vs. non-repeated). In contrast,
SFT on more diverse, non-repeated data—despite yielding lower initial SFT performance (-5% vs. repeated data,
middle/right figure)—results in significantly better post-RL performance (+5.94%).

Figure 7 shows results on Llama3-8B-Instruct undergone SFT-RL with SFT examples from Llama-
Nemotron-SFT dataset and RLVR via GRPO on MATH dataset (train-split). Reporting Pass@ 1
performance averaged over 7 math benchmarks. High SFT scores can be biased toward simpler
examples and are not reliably predictive of subsequent RL gains or scaled-up post-training effec-
tiveness. For example, training on shortest examples (e.g., s10k, s500k) led to faster performance
improvements than training on randomly sampled examples (e.g., 10k, 200k) during SFT (lower
smaller dots). These shorter examples are closer to the model’s original generations and easier to
learn, though, these are not best examples for the model to gain reasoning capabilities in preparation
for RL. The final performance after RL (upper larger dots) is significantly lower.
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Figure 7: Llama3-8B-Instruct undergone SFT-RL with SFT examples from Llama-Nemotron-SFT dataset
and RLVR via GRPO on MATH dataset (train-split). Reporting Pass@1 performance averaged over 7 math
benchmarks. High SFT scores can be biased toward simpler examples and are not reliably predictive of
subsequent RL gains or scaled-up post-training effectiveness. For example, training on shortest examples (e.g.,
s10k, s500k) led to faster performance improvements than training on randomly sampled examples (e.g., 10k,
200k) during SFT (lower smaller dots). These shorter examples are closer to the model’s original generations and
easier to learn, though, these are not best examples for the model to gain reasoning capabilities in preparation for
RL. The final performance after RL (upper larger dots) is significantly lower.

A.2 Mistral-NeMo-12B-Instruct

Figure 8 shows results on Mistral-NeMo-12B-Instruct undergone SFT-RL with shortest SFT exam-
ples from AceReasonerl.1-SFT dataset and RLVR via GRPO on DeepScaleR dataset. Reporting
Pass@1 performance averaged over 7 math benchmarks. With increasing SFT examples, Mistral’s
post-SFT performance first dips and then gradually recovers and improves to performance better than
before SFT training. Compared to the base model, the final performance after RL also first dips and
then gradually goes up and improves to a better level. Notably, post-RL performance recovers to the
same level as the base model slower than the post-SFT performance. The post-SFT and post-RL
performance trends are not identical.

A.3 Qwen3-4B-base

Figure 9 shows results on Qwen3-4B-base undergone SFT-RL with shortest SFT examples from
AceReasonerl.1-SFT dataset and RLVR via GRPO on DeepScaleR dataset. Reporting Pass@ 1
performance averaged over 7 math benchmarks. With increasing SFT examples, Qwen3’s post-SFT
performances appear uncorrelated with the final performance after RL, where the latter remains the
same despite the substantially improved SFT performance.

Figure 10 shows results on Qwen3-4B-base undergone SFT-RL with Shortest/Longest/-
Longest+Shortest SFT examples from AceReasonerl.1-SFT dataset and RLVR via GRPO on
DeepScaleR dataset. Reporting Pass@ 1 performance averaged over 7 math benchmarks. All SFT
training substantially improves Qwen3’s post-SFT performance, but the final performance after RL is
mixed. Training on Longest and 10k Longest+10k Shortest SFT examples lead to visibly improved
final performance after RL where the latter achieves the best final performance for Qwen3 models in
this work. Other SFT training lead to significantly degraded final performance after RL.
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Figure 8: Mistral-NeMo-12B-Instruct undergone SFT-RL with shortest SFT examples from AceReasonerl.1-
SFT dataset and RLVR via GRPO on DeepScaleR dataset. Reporting Pass@1 performance averaged over 7
math benchmarks. With increasing SFT examples, Mistral’s post-SFT performance first dips and then gradually
recovers and improves to performance better than before SFT training. Compared to the base model, the final
performance after RL also first dips and then gradually goes up and improves to a better level. Notably, post-RL
performance recovers to the same level as the base model slower than the post-SFT performance. The post-SFT
and post-RL performance trends are not identical.
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Figure 9: Qwen3-4B-base undergone SFT-RL with shortest SFT examples from AceReasoner1.1-SFT dataset
and RLVR via GRPO on DeepScaleR dataset. Reporting Pass@ 1 performance averaged over 7 math benchmarks.
With increasing SFT examples, Qwen3’s post-SFT performances appear uncorrelated with the final performance
after RL, where the latter remains the same despite the substantially improved SFT performance.

B Implementation Details

All experiments (SFT, RL, evaluation) are conducted on individual AWS (Mathew & Varia, 2014)
node with 8x NVIDIA A100 80GB GPU. Experiments spent >1M GPU hours on NVIDIA A100
80GB. We repeat RL training for 4+ runs on each data recipe and training paradigm (each run takes
up to 5 days), conduct 4+ evaluations on different checkpoints across RL training run, and report the
best performance for the model. We set the max sequence length to 8k tokens throughout SFT, RL,
and evaluation.
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Figure 10: Qwen3-4B-base undergone SFT-RL with shortest/Longest/Longest+Shortest SFT examples from
AceReasonerl.1-SFT dataset and RLVR via GRPO on DeepScaleR dataset. Reporting Pass@ 1 performance
averaged over 7 math benchmarks. All SFT training substantially improves Qwen3’s post-SFT performance, but
the final performance after RL is mixed. Training on Longest and 10k Longest+10k Shortest SFT examples
lead to visibly improved final performance after RL where the latter achieves the best final performance for
Qwen3 models in this work. Other SFT training lead to significantly degraded final performance after RL.

B.1 Models and Datasets

We conduct three sets of experiments with SFT-RL post-training. On Llama3-8B-Instruct models,
we conduct SFT training with examples from Llama-Nemotron dataset (where we only select math
samples with responses generated by QwQ-32B (Team, 2025) or DeepSeek R1 (Guo et al., 2025),
hereinafter the same) and RL training on MATH dataset (train-split) (Hendrycks et al., 2021); on
Mistral-Nemo-12B-Instruct and Qwen3-4B-base, we conduct SFT training with examples from
AceReasonerl.1-SFT dataset and RL training on DeepScaleR dataset (Luo et al., 2025). For all
models, we conduct RL training for 3 epochs where each run takes up to 5 days.

B.2 Training

We conduct SFT training with LLaMA-Factory (Zheng et al., 2024) using learning rates Ir=1e-5 and
global batch size = 128, and RL training via GRPO with verl (Sheng et al., 2024) using learning rates
Ir=1e-6 and global batch size = 128. We sample 16 rollouts for each question with temperature=1.0.
We set KL loss coefficient=0 and entropy coefficient=0.001.

B.3 Evaluation

Evaluations are conducted with pipelines originally developed in this work based on vllm (Kwon
et al., 2023) and HuggingFace’s math-verify (Kydlicek, 2025), enabling efficient inference with
performant and accurate verification. We ran evaluations with the same template and generation
configuration as in RL, using decoding temperature t=1.0 and the standard reasoning prompt (‘‘Let’s
think step by step and output the final answer within \\boxed{}.”’).

We evaluate task performance on 7 math benchmarks, including MATH-500 (Hendrycks et al., 2021),
AIME 1983-2024 (Veeraboina, 2023), GSM8k (Cobbe et al., 2021), AIME 2025 (of America,
2025), AMC (Competitions, 2025), Olympiad (He et al., 2024), Minerva (Lewkowycz et al., 2022),
and report model performance as Pass@ 1 averaged over 64 repetitions and across 7 tasks. For the
proposed predictors, we evaluate the generalization loss on the validation set of the SFT data and
Pass@64 accuracy averaged over 256 repetitions.
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C Additional Experimental Results

C.1 Dataset-level

Table 5 shows results on Llama3-8B-Instruct undergone SFT-RL with SFT examples from Llama-
Nemotron-SFT dataset and RLVR via GRPO on MATH dataset (train-split). Reporting Pass@ 1
performance averaged over 7 math benchmarks. Measuring prediction accuracy with coefficient of
determination (R2) varying the ratio of fit-validation datapoints. We randomly select x SFT models
and fit a linear function between their post-SFT performance and performance after RL, and use it to
predict for the rest SFT models. We repeat random sampling for 100 times and report standard errors.

Table 6 shows results on Mistral-NeMo-12B-Instruct undergone SFT-RL with SFT examples from
AceReasoner].1-SFT dataset and RLVR via GRPO on DeepScaleR dataset. Measuring prediction ac-
curacy with coefficient of determination (R?) varying the ratio of fit-validation datapoints. Reporting
Pass@1 performance averaged over 7 math benchmarks. We randomly select x SFT models and fit a
linear function between their post-SFT performance and performance after RL, and use it to predict
for the rest SFT models. We repeat random sampling for 100 times and report standard errors.

Table 5: Llama3-8B-Instruct undergone SFT-RL with SFT examples from Llama-Nemotron-SFT
dataset and RLVR via GRPO on MATH dataset (train-split). Reporting Pass@ 1 performance averaged
over 7 math benchmarks. Measuring prediction accuracy with coefficient of determination (R?)
varying the ratio of fit-validation datapoints. We randomly select x SFT models and fit a linear
function between their post-SFT performance and performance after RL, and use it to predict for the
rest SFT models. We repeat random sampling for 100 times and report standard errors.

No. of Fitting-Validation Prediction based on | Prediction based on  Prediction based on | Avg. Prediction from
Datapoints / Coefficient of | SFT Pass@1 (avg. | SFT Generalization SFT Pass@Large k SFT Gen. Loss +
determination (R?) of 64) Loss (k=64) Pass@Large k (64)
Fitting: 3; Validation: 13 0.48 +040 0.80 +033 0.80 +023 0.86 +022(+0.38)
Fitting: 4; Validation: 12 0.57 029 0.82 +021 0.84 +o1s 0.92 + 008 (+0.35)
Fitting: 5; Validation: 11 0.57 029 0.88 +0.09 0.87 +0.10 0.94 1004 (+0.37)
Fitting: 6; Validation: 10 0.57 +026 0.89 +0.07 0.87 +0.10 0.95 + 003 (+0.38)
Fitting: 7; Validation: 9 0.64 +o0.19 0.89 +0.07 0.90 +0.06 0.95 1005 (+0.31)
Fitting: 8; Validation: 8 0.64 +020 0.88 +0.08 0.88 +o00s 0.93 1005 (+0.29)
Fitting: 10; Validation: 6 0.59 +o033 0.85 +0.17 0.85 +o1s 0.94 1005 (+0.35)
Fitting: 12; Validation: 4 0.54 +o43 0.86 +o.8 0.81 023 0.91 +0.12(+0.37)

Table 6: Mistral-NeMo-12B-Instruct undergone SFT-RL with SFT examples from AceReasonerl.1-
SFT dataset and RLVR via GRPO on DeepScaleR dataset. Measuring prediction accuracy with
coefficient of determination (R?) varying the ratio of fit-validation datapoints. Reporting Pass@1
performance averaged over 7 math benchmarks. We randomly select x SFT models and fit a linear
function between their post-SFT performance and performance after RL, and use it to predict for the
rest SFT models. We repeat random sampling for 100 times and report standard errors.

No. of Fitting-Validation Prediction based on | Prediction based on  Prediction based on | Avg. Prediction from
Datapoints / Coefficient of | SFT Pass@1 (avg. | SFT Generalization SFT Pass@Large k SFT Gen. Loss +
determination (R?) of 64) Loss (k=64) Pass@Large k (64)
Fitting: 3; Validation: 7 0.32 o039 0.73 £ o041 (+0.41) 0.52 +o031 0.61 +o03s8
Fitting: 4; Validation: 6 0.27 +036 0.75 +034(+0.48) 0.51 +o37 0.69 + 026
Fitting: 5; Validation: 5 0.29 +o3s 0.79 + 026 (+0.50) 0.57 +o3 0.72 + 024
Fitting: 6; Validation: 4 0.37 +o3 0.78 +£025(+0.41) 0.57 +o37 0.67 +03s
Fitting: 7; Validation: 3 0.36 036 0.77 £ o030 (+0.41) 0.57 +o03s 0.66 +037
Fitting: 8; Validation: 2 0.31 +o046 0.68 + 036 (+0.37) 0.47 +o0s4 0.64 +037

C.2 Instance-level

Table 7 shows results on Llama3-8B-Instruct undergone SFT-RL with SFT examples from Llama-
Nemotron-SFT dataset and RLVR via GRPO on MATH dataset (train-split). Reporting Pass@1
performance averaged over 7 math benchmarks. Measuring prediction accuracy with coefficient of
determination (RR?) varying the ratio of fit-validation datapoints. We randomly select x SFT models
and fit a linear function between their post-SFT performance and performance after RL, and use it to
predict for the rest SFT models. We repeat random sampling for 100 times and report standard errors.
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Table 8 shows results on Llama3-8B-Instruct undergone SFT-RL with SFT examples from Llama-
Nemotron-SFT dataset and RLVR via GRPO on MATH dataset (train-split). Reporting Pass@1
performance averaged over 7 math benchmarks. Spearman’s rank correlation between performance
predicted from post-SFT models and the actual performance after RL, grouped by different SFT
training budget.

Table 7: Llama3-8B-Instruct undergone SFT-RL with SFT examples from Llama-Nemotron-SFT
dataset and RLVR via GRPO on MATH dataset (train-split). Reporting Pass@ 1 performance averaged
over 7 math benchmarks. Measuring prediction accuracy with coefficient of determination (R?)
varying the ratio of fit-validation datapoints. We randomly select x SFT models and fit a linear
function between their post-SFT performance and performance after RL, and use it to predict for the
rest SFT models. We repeat random sampling for 100 times and report standard errors.

No. of Fitting-Validation Datapoints/ | Prediction based on SFT Pass@ 1 Prediction based on
Coefficient of determination (R2) (avg. of 64) SFT Pass@Large k (k=64)
Fitting: 3; Validation: 14 0.40 + o031 0.89 +0.10(+0.49)
Fitting: 4; Validation: 13 0.49 +030 0.89 +0.17(+0.40)
Fitting: 5; Validation: 12 0.55 022 0.91 =005 (+0.36)
Fitting: 6; Validation: 11 0.54 + 030 0.92 +004(+0.38)
Fitting: 7; Validation: 10 0.55 + 024 0.92 +004(+0.37)
Fitting: 8; Validation: 9 0.58 +020 0.92 +00s5(+0.34)
Fitting: 10; Validation: 7 0.56 +02s 0.92 +00s5(+0.36)
Fitting: 12; Validation: 5 0.57 +028 0.92 +00s5(+0.35)

Table 8: Llama3-8B-Instruct undergone SFT-RL with SFT examples from Llama-Nemotron-SFT
dataset and RLVR via GRPO on MATH dataset (train-split). Reporting Pass@1 performance averaged
over 7 math benchmarks. Spearman’s rank correlation between performance predicted from post-SFT
models and the actual performance after RL, grouped by different SFT training budget.

SFT Compute Budget/ Prediction based on SFT Pass@1 Prediction based on
Spearman’s Rank Correlation (avg. of 64) SFT Pass@Large k (k=64)
Low Budget (< 2B tokens) 0.77 0.99 (+0.22)
Medium Budget (2 ~ 5B tokens) 0.60 0.90 (+0.30)

High Budget (5 ~ 20B tokens) 0.70 0.94 (+0.24)
Average | 0.69 0.94 (+0.25)

Table 9 shows results on Mistral-NeMo-12B-Instruct undergone SFT-RL with SFT examples from
AceReasoner].1-SFT dataset and RLVR via GRPO on DeepScaleR dataset. Measuring prediction
accuracy with coefficient of determination (R?) varying the ratio of fit-validation datapoints. Mistral-
NeMo-12B-Instruct undergone SFT-RL with SFT examples from AceReasonerl.1-SFT dataset and
RLVR via GRPO on DeepScaleR dataset. Reporting Pass@ 1 performance averaged over 7 math
benchmarks. We randomly select x SFT models and fit a linear function between their post-SFT
performance and performance after RL, and use it to predict for the rest SFT models. We repeat
random sampling for 100 times and report standard errors.

Table 10 shows results on Mistral-NeMo-12B-Instruct undergone SFT-RL with SFT examples from
AceReasonerl.1-SFT dataset and RLVR via GRPO on DeepScaleR dataset. Reporting Pass@ 1
performance averaged over 7 math benchmarks. Spearman’s rank correlation between performance
predicted from post-SFT models and the actual performance after RL, grouped by different SFT
training budget.
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Table 9: Mistral-NeMo-12B-Instruct undergone SFT-RL with SFT examples from AceReasonerl.1-
SFT dataset and RLVR via GRPO on DeepScaleR dataset. Measuring prediction accuracy with
coefficient of determination (R2) varying the ratio of fit-validation datapoints. Mistral-NeMo-12B-
Instruct undergone SFT-RL with SFT examples from AceReasonerl.1-SFT dataset and RLVR via
GRPO on DeepScaleR dataset. Reporting Pass@ 1 performance averaged over 7 math benchmarks.
We randomly select x SFT models and fit a linear function between their post-SFT performance and
performance after RL, and use it to predict for the rest SFT models. We repeat random sampling for
100 times and report standard errors.

No. of Fitting-Validation Datapoints/ | Prediction based on SFT Pass@ 1 Prediction based on
Coefficient of determination (R2) (avg. of 64) SFT Pass@Large k (k=64)
Fitting: 2; Validation: 10 0.55 + o042 0.87 +029(+0.32)
Fitting: 3; Validation: 9 0.71 o015 0.94 + 0.5 (+0.23)
Fitting: 4; Validation: 8 0.69 + 022 0.98 +003(+0.29)
Fitting: 5; Validation: 7 0.75 o010 0.98 + o001 (+0.23)
Fitting: 6; Validation: 6 0.73 + o016 0.98 + 001 (+0.25)
Fitting: 8; Validation: 4 0.69 +o3s 0.97 +003(+0.28)
Fitting: 10; Validation: 2 0.68 +042 0.91 +0.17(+0.23)

Table 10: Mistral-NeMo-12B-Instruct undergone SFT-RL with SFT examples from AceReasonerl.1-
SFT dataset and RLVR via GRPO on DeepScaleR dataset. Reporting Pass@ 1 performance averaged
over 7 math benchmarks. Spearman’s rank correlation between performance predicted from post-SFT
models and the actual performance after RL, grouped by different SFT training budget.

SFT Compute Budget/ Prediction based on SFT Pass@1 Prediction based on
Spearman’s Rank Correlation (avg. of 64) SFT Pass@Large k (k=64)
Low Budget (< 2B tokens) 0.80 0.95 (+0.25)
Medium Budget (2 ~ 5B tokens) 0.80 1.00 (+0.20)

High Budget (5 ~ 20B tokens) 0.50 1.00 (+0.50)
Average | 0.70 0.98 (+0.28)
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D Sample SFT Examples

D.1 Shortest Examples

A sample Shortest Examples from Llama-Nemotron Post-Training Dataset (Singhal et al.) (~750
tokens):

[Input]:

Solve the following math problem. Make sure to put the answer (and
only answer) inside \\boxed {}.\n\nThe probability of snow on
Ist January is 1/20. What is the probability that snow will
fall on the next 1st January?"

[Output]:

<think > Okay, so I have this problem here: "The probability of
snow on 1st January is 1/20. What is the probability that snow
will fall on the next 1st January?" Hmm, let’s see. Alright,
the question is asking for the probability that it will snow
next January lst, given that the probability is 1/20. Wait, is
there more to this? Let me check again. Wait, maybe I
misread. The original probability is 1/20 for snow on January
Ist, and they want the probability it will snow on the next
January 1st. Hum. That seems straightforward. But maybe there’
s a trick here? Like, are they assuming each year is
independent? Because if the probability each year is
independent, then it’s just 1/20 again. But maybe the question
is different? Wait, maybe the wording is tricky. Let me parse

it again. "The probability of snow on 1st January is 1/20.
What is the probability that snow will fall on the next 1st
January?" So, "next" as in the following year? So next year’s

January 1st. So if each year’s snowfall is independent, then
the probability remains 1/20. But maybe there’s some hidden
assumption here. Wait, sometimes in probability problems, they
might be talking about conditional probabilities or something
else. But this problem doesn’t mention any previous events or
dependencies. It just states the probability is 1/20. So if
each occurrence is independent, then the probability doesn’t
change. So next year’s probability is also 1/20. Wait, but
let me think again. Maybe the problem is in another language
originally , and "next" is being translated as "the next
occurrence" or something? But no, it’s about "next 1st January
". So like, the next time January 1st comes around, which
would be the following year. So in terms of probability ,
assuming each year is an independent event, the probability is
the same each year, right? So if the probability of snow on
any given January 1st is 1/20, then regardless of previous
years , the next one would also be 1/20. Alternatively , could
it be that the problem is asking for the probability that it
will snow next year given that it snowed this year? But the
problem doesn’t say anything about prior snowfall. It just
gives the base rate. So I think the answer is 1/20. Let me
confirm. Another angle: sometimes people confuse "probability
of snow on a specific day" with "probability of snow in a
year" but here it’s specifically on 1st January each year. So
if the probability each year on that date is 1/20, then next
year’s is also 1/20. Unless there’s a pattern, but the problem
doesn’t indicate that. So I think the answer is 1/20. So I
just need to write that in a box. Wait, maybe I need to make
sure if the problem is in a different context. For example,
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maybe it’s a different place where the next January Ist is in
the southern hemisphere? But that’s overcomplicating. The
problem is likely testing understanding of independent events.
So the answer is 1/20. </think> \boxed{\dfrac{1}{20}}
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A sample Shortest Examples from AceReasonerl.1-SFT Dataset (Liu et al., 2025b) (~700 tokens):
[Input]:

A train 18 m long passes a pole in 9 seconds. How long will it
take to pass a bridge 36 m long?

[Output|:

<think> Okay, so I need to figure out how long it takes for a
train that’s 18 meters long to pass a bridge that’s 36 meters
long. The problem already says that it takes 9 seconds for the
train to pass a pole. Let me start by understanding what that
means. When the train passes a pole, the entire length of
the train has to go by the pole. So, if the train is 18 meters
long and it takes 9 seconds to pass the pole, that means the
front of the train passes the pole, and then 9 seconds later,
the end of the train passes the pole. So, in 9 seconds, the
train travels a distance equal to its own length, which is 18
meters. From this, I can calculate the speed of the train.
Speed is distance divided by time. So, speed = 18 meters / 9
seconds. Let me compute that. 18 divided by 9 is 2. So, the
train ’s speed is 2 meters per second. Hmm, that seems right.
Now, the question is about passing a bridge that’s 36 meters
long. To pass a bridge, the train has to cover the entire
length of the bridge plus its own length. Why? Because first
the front of the train has to cross the entire bridge, and
then the end of the train has to exit the bridge. So, the
total distance the train needs to cover is the length of the
bridge plus the length of the train. So that would be 36
meters plus 18 meters, which is 54 meters. So, the train
needs to travel 54 meters to completely pass the bridge. Since
the speed is 2 meters per second, the time it takes is the
total distance divided by speed. Time = 54 meters / 2 meters
per second. Let me calculate that. 54 divided by 2 is 27. So,
it should take 27 seconds. Wait, let me double—-check to make
sure I didn’t mix up anything. The first part: passing a pole
takes 9 seconds for 18 meters. So speed is 18/9 = 2 m/s. Then,
bridge is 36 meters. So, when passing the bridge, the front
of the train has to go 36 meters to get to the end of the
bridge , and then the entire train has to clear it, which is
another 18 meters. So total distance is indeed 36 + 18 = 54
meters. Time is 54 / 2 = 27 seconds. Yeah, that makes sense.
Alternatively , maybe someone might think you just need to
cover the bridge’s length, but no, the train’s own length has
to be considered too. Because until the last part of the train
is off the bridge, the bridge isn’t completely passed. So,
adding the two lengths is correct. Therefore, 27 seconds
should be the right answer. </think> The train’s speed is \(
\frac {18 \text{ m}}{9 \text{ s}} = 2 \text{ m/s} \). To pass a
36 m bridge , the total distance needed is \( 36 \text{ m} +
18 \text{ m} = 54 \text{ m} \). Time required is \( \frac {54 \
text{ m}}{2 \text{ m/s}} = 27 \text{ seconds} \). \boxed{27}
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D.2 Longest Examples

A sample Longest Examples from AceReasonerl.1-SFT Dataset (Liu et al., 2025b) (~8k tokens):
[Input]:

For sets $A$, $B$, and $C$, where $n(A)$, $n(B)$, and $n(C)$
denote the number of subsets of $A$, $B$, and $C$
respectively , and $\left | A \right | = \left | B \right |
= 100$, if $n(A) + n(B) + n(C) = n(A \cap B \cap O)$,
what is the minimum possible value of $\left | A \cap B \
cap C \right 1$?}

[Output]:

Okay, let’s try to tackle this problem. Hmm, so we have three sets
A, B, and C. The problem states that n(A), n(B), and n(C) are
the number of subsets of each set. Wait, but usually , the
number of subsets of a set with size k is 27k. So maybe n(A)
is 27lAl, n(B) is 27IBl, and similarly for n(C). Let me check:
the problem says "n(A), n(B), and n(C) denote the number of
subsets of A, B, and C respectively." Yep, so that means n(A)
= 2M{IAl}, n(B) = 27A{IBI}, n(C) = 2~{ICIl}.

Given that [Al = IBI = 100. So n(A) = 27100, n(B) = 272100. The
equation given is n(A) + n(B) + n(C) = n(A B C). So
that translates to 272100 + 27100 + 2~{ICI} = 27{IA B C

.

Wait, the right-hand side is the number of subsets of the
intersection of A, B, and C. The number of subsets of a set is
27A{ cardinality of the set}, so n(A B C) = 27M{IA B

Cl}.

So the equation is 272100 + 272100 + 27~{ICI} = 2~{k}, where k is I|A
B Cl, and we need to find the minimal possible k.

Let me simplify the left -hand side. 27100 + 272100 is 2%27100 =
27101. So left—-hand side is 27101 + 2~{ICI}. So 27101 + 2~{IC
[} = 27k.

We need to find the smallest possible k such that this equation
holds, given that |C| can be adjusted (I think we can choose |
Cl as part of finding the minimum? Wait, no. The problem is

about the minimal [A B Cl, given that the equation
holds. So we need to find the minimal k such that 22101 + 2/{l
Cl} = 272k, and also considering the relationships between the

sets A, B, C.

Wait, but how is IC| related to A and B? Because A, B, and C are
just sets, but the problem doesn’t specify any constraints on
their relationships except through their intersection A B

C. Hnim. Wait, but the number of subsets of C, which is
2AM{ICl}, is part of the equation. But also, the intersection A

B C is a subset of C, right? Because the intersection
of A, B, and C is a subset of each of them. So |A B C
I ICl. So the cardinality of the intersection can’t be
more than the cardinality of C. But in our equation, 27{k} is
equal to 272101 + 2~{ICIl}, so 2~{k} = 2~{ICI} + 27101.
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So we need to find integers |Cl and k such that k ICl (since
the intersection can’t be larger than C), and 27{k} = 27{101}
+ 27{ICI}. Also, k must be an integer because it’s the
cardinality of a set.

Wait, but how can we solve this equation? Let me think. Let’s

denote m = |IC| and k = [A B Cl, so we have 27k =
2M101} + 2”m. We need to find the minimal k such that there
exists m with m k and 22k = 27{101} + 2”m.

But wait, if m is greater than or equal to k, then 2”m is a
multiple of 27k. But 27k = 272{101} + 2*m. If m > 101, then 2”m
is larger than 27{101}, so 27{101} + 2"m = 2”m (1 + 27{101 -
m}). For this to be equal to 2"k, 1 + 22{101 - m} must be a
power of two. Let’s write:

Let m k, and 272k = 272{101} + 2”m. Let’s consider cases where m
> 101 and m 101.

Case 1: m > 101. Then 27k = 2A{101} + 2"m = 2~{101}(1 + 2"{m -
101}). For this to be a power of two, 1 + 2"{m — 101} must be
a power of two. Lets set t =m - 101, which is positive
since m > 101. Then 1 + 27t must be a power of two. 1 + 27t =
27rs, for some s. So 2”s — 272t = 1. This is possible only if t
= 0, since 2”s — 1 = 27t, but t must be positive here (since m
> 101 implies t 1 ). But 27*s - 27t =1. If t 1, 27t
divides the left —hand side, so 27t must divide 1, which is
only possible if t=0, which contradicts t 1 . Therefore,
there is no solution in this case.

Case 2: m 101. Then 22k = 22{101} + 2”m. Let’s factor out 2”m:
22k = 2"m (1 + 27{101 - m}). Since m 101 , 101 - m O , so
exponent is non—negative. For the right-hand side to be a
power of two, (1 + 272{101 — m}) must be a power of two.

Lets denote t 101 — m. Then I + 2”t must be a power of
two. So, 1 + 27t 27s. This equation holds when t is such
that 27t +1 is a power of two.

Looking at this, 27t +1 = 27s. The only solutions for this in
integers are when t=0, then 270 +1=2=271, so s=1. Another
possibility might be t=1: 2+1=3, which is not a power of two.
t=2:4+1=5; nope. t=3:84+41=9; still not. So the only solution is
t=0, leading to 1+1=2. So t=0 => 1 + 220 = 2. Therefore, t=0,
so 101 —m =0 => m =101. Then 1 + 272{0}=2, so the equation
becomes 2”k = 27101 + 272101 = 272101 %2 = 27102. Therefore, k

=102.

Wait, but m is 101, and k must be m, but here k=102, which
would be greater than m=101. But that contradicts the
requirement that k m. So this is impossible.

Therefore , in case 2, even though we have t=0 leading to m=101 and
k=102, which would require k=102 > m=101, violating the
cardinality condition. Therefore, this is not acceptable.

Hmm, so neither case 1 nor case 2 gives us a valid solution. Wait,

that can’t be. Maybe there’s an error in my reasoning here.
Let me check again.
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Wait, when we considered m 101 and t=101 -m. So if t=0, then m
=101, then the equation becomes 27k = 272101 + 272101 = 27102,
so k=102. But since m=101, then the intersection k must be

101 , but here k=102, which is greater. So that’s impossible
So that doesn’t work. Therefore, in case 2, there are no
solutions either.

Hmm, so does that mean there is no solution? But the problem
states "what is the minimum possible value of |A B C
", implying that there is a solution. So perhaps my approach
is missing something.

Wait, maybe I need to consider that C can be a subset of A B
C? No, actually, A B C is a subset of C, so the
size can’t exceed ICI|. So perhaps I need to adjust the
equation? Or maybe my initial translation of the problem is
wrong .

Wait, let me go back to the problem statement. It says: For sets A
, B, and C, where n(A), n(B), and n(C) denote the number of

subsets of A, B, and C respectively , and Al = IBl = 100, if n
(A) + n(B) + n(C) = n(A B C), what is the minimum
possible value of IA B Ccl?

Wait, so n(A B C) is the number of subsets of A B
C. So that is 27{IA B Cl}. Similarly , n(A)=2"{lA
[}=22100, n(B)=27100, n(C)=2~{ICI}. So 27100 + 272100 + 2~{ICI}
= 27MIA B Cl}.

So yes, as before, 272{101} + 27~{ICI} = 2~{k}, where k is |A B

Cl. We need to find the minimal k such that this holds,

with [Cl k. So k ICI.

Wait, perhaps ICl can be larger than k. Wait, but we need to find
the minimal k. So to minimize k, we need to make the right-
hand side as small as possible, so 27{k} must be just enough
to hold 27~{101} + 2~{ICI}. But ICl can be as large as needed?
Wait, but ICl is part of the equation. If IC| is large, then
2M{ICI} is very big, which would require k to be large as well

So maybe to minimize k, we should take [Cl as small as

possible. But ICl can’t be smaller than k, since k = I|A B
Cl ICl.
Wait, so maybe we need to take [Cl = k. Then the equation becomes

2~{101} + 2~{k} = 2~{k}, which would imply 27{101} =0, which
is impossible. So IC| must be greater than k? Wait, but if [CI
is greater than k, then 27{ICIl} is bigger than 27{k}, so
27M{101} + 2~{ICI} is bigger than 27{k}. Therefore, the
equation 27{101} + 22~{ICI} = 2~{k} implies that 27{k} must be
larger than 27{101} and 27{ICl}. So k must be greater than
both 101 and [Cl. But IC| can be as small as k, but then k
must be greater than [Cl. That seems conflicting. Wait, no, if
ICl is equal to k, then 27{k} + 22{101} = 2~{k}, which is
impossible. If ICl is less than k, then 27{ICl} is less than
27r{k}, so 22{101} + something smaller than 27{k} equals 27{k},
which would mean 27{101} is approximately 27*{k}, so k 101
but since 27{101} + 27{ICI}=2"~{k}, then 27{k} must be bigger
than 27{101}. So k>101.
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Wait, maybe I should approach this differently. Let’s suppose that

ICI is as small as possible. Since the intersection A B
C is a subset of C, the minimal possible IC| is at least |
A B Cl. Let’s denote k = IA B Cl. So ICI k

We need to have 27100 + 27100 + 27A{ICI} = 2~{k}. So 27{101} + 2~{l
Cl} = 27M{k}.

To minimize k, we want to make 27{k} as small as possible. Since |
Cl k , 2~{ICI} 2 ~k}. Therefore, 27{101} + 2~{ICI} 2
101} +27{k}. Wait, but that’s not helpful. Wait, perhaps the
minimal k is such that 27{k} is just greater than or equal to
272{101} + 27~{ICI}. But ICI| is variable here. So perhaps we
can choose I|CI| such that 27{ICl} is equal to 2~{k} - 27{101},
but since IC|I must be at least k, 27{k} -27{101} must be a
power of two, and IC| = log2(27{k} -27{101}).

But 27{k} -27~{101} must equal 2~{ICl}, which is a power of two.
Let’s set x =27~{101}, so 27{k} —-x =2"{m}, where m= IC| and m
k . Wait, but m k implies that 2*{m} 2 Mk}, so 20Nk} -
x=2"Nm} 2 ™k}, which would imply that -x 0 , but x is
positive , which is impossible. So that can’t happen. Therefore
, the previous conclusion that there are no solutions may be
correct , but that conflicts with the problem statement. So
where is the mistake?

Alternatively , maybe my assumption that |C| must be at least k is

wrong. Wait, but the intersection A B C is a subset of
C, so its size can’t exceed ICI. So IA B Cl ICI.
Therefore , k ICI.

Therefore , 27{k} = 27{101} + 27{ICI}, and k ICl. Let me
rephrase this as 22{k} - 2~{ICI} = 27{101}. But since k IC

|, then 27{k} 2 A~{ICl}, so 27~{k} -=-27{ICI} is O . But the
right —hand side is 27{101}, which is positive. Therefore, this
equation can’t be satisfied. Wait, that suggests that there
is no solution. But the problem says "if n(A) + n(B) + n(C) =
n(A B C)", so it’s assuming that such sets exist.
Therefore , there must be a mistake in my reasoning.

Wait, maybe I made an error in translating the problem. Let me
check again.

The problem says: For sets A, B, and C, where n(A), n(B), and n(C)
denote the number of subsets of A, B, and C respectively , and
Al = IBI = 100, if n(A) + n(B) + n(C) = n(A B C),
what is the minimum possible value of IA B Cl?

Wait, maybe "n(A)" is not 27{lAl} but the number of subsets, which
is indeed 27{lAl}. So the equation is 27{100} + 27{100} +
2M{ICH = 27 1A B Cl}.

So 2~{101} + 2~{ICI} = 2~{k}, where k = I|A B Cl. So 27{k}
must be equal to 27{101} + 2*{m}, where m = ICl, and k m

But as per earlier, this leads to 27{k} = 27{101} + 2A{m}, with k
m
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But 27{101} + 27{m} must be a power of two. Let me think about
when the sum of two powers of two is a power of two.

Suppose we have 2”a + 2~b = 2”c, with a b . Then this is
possible only when a = b, because otherwise, 2”a + 2"b = 27a(l
+ 22{b —-a}), which is not a power of two unless 1 + 27{b -a}
is a power of two. The only time 1 + 22{d} is a power of two
is when d=0, which gives 1 +1=2. So 2”a + 2”a = 27{a +1}. So
in this case, if a =b, then the sum is 27{a +1}.

Therefore , the equation 2%a + 27b =2”c can only be solved if a = b
and ¢ = a +1. Therefore, in our problem, 27{101} + 2~{m} =2/{
k} implies that 101 =m and k=102. But m=101 and k=102, but
since k must be m (since k is the size of the intersection ,
which is a subset of C, so k [Cl=m), this would require
102 101 , which is impossible. Therefore, there is no
solution unless we have a different approach.

Wait, but this contradicts the problem’s premise, which states
that such sets exist. Therefore, there must be a different
interpretation .

Wait, perhaps "n(A B C)" is not the number of subsets of
the intersection , but the number of subsets common to all
three sets A, B, and C? Wait, that would be different. Wait,
but the problem says "n(A B c)" normally , the
notation n(S) for a set S is the number of elements, but in
the problem statement, it’s specified that n(A), n(B), n(C)
are the number of subsets. Wait, the problem says:

"For sets A, B, and C, where n(A), n(B), and n(C) denote the

number of subsets of A, B, and C respectively , and IAl = IBI =
100, if n(A) + n(B) + n(C) = n(A B C), what is the
minimum possible value of |A B cl?"

Wait, perhaps the notation is confusing. Maybe n(A B C) is

not the number of subsets of the intersection , but the number
of subsets common to A, B, and C. Wait, that is, subsets that
are subsets of A, B, and C. Wait, but a subset of A is not
necessarily a subset of B or C. So maybe "n(A B c)"
here is being used to mean the number of subsets that are
common to all three, i.e., subsets that are subsets of A, B,
and C. Which would mean subsets of the intersection A B

C. Because a subset of A B C is a subset of all
three. So indeed, the number of subsets of the intersection 1is
equal to the number of subsets common to all three. Therefore

, the original interpretation is correct. So n(A B C)
is 27M{IA B Cl}.

Therefore , the equation is 27{100} + 27{100} + 2~{ICI} = 27{IA
B Cl}. So the problem is to find the minimal k = |A B

Cl such that 27{101} + 2A{ICI} = 2~{k}, with ICI k

But as we saw earlier , the equation 274{k} = 22{101} + 2*{m}, with
m k . However, this equation only holds if the two terms on
the left can be combined into a single power of two. As
established before, the sum of two distinct powers of two is a
power of two only if they are equal (so exponents differ by
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zero) but in that case, it becomes twice the power, which is
the next exponent. So for example, 2%a +2%a=2"{a+1}.

In our case, 27{101} + 27*{m} =2~{k}, which would require that
272{101} and 2~{m} are equal, which would mean m=101, leading
to 27{101} +27{101}=27{102}, so k=102. But in that case, m=101
and k=102, which violates the m k requirement. Therefore,
no solution exists in that case.

Alternatively , if we consider that 2*{m} can be combined with
27{101} even if m >101. Let’s try m=102: 272{101} + 27~{102}=
272{101}(1 +2)=3%27~{101}, which is not a power of two.
Similarly , m=103: 27{101} +27{103}=27{101}(1 +4)=5«27{101},
not a power of two. It seems like for m>101, the sum is
2M1013(1 + 22 {m-101}), which is 272{101} times an odd number
greater than 1, so not a power of two. Thus, impossible.

Alternatively , if m <101, then 27{101} +27{m} =2"{m}(1 +27{101 -m
}). To be a power of two, 1 +27{101 -m} must be a power of two
Let t=101 —-m, which is positive since m <101. So 1 +27{t
}=2"{s}. As before, this is only possible when t=0, which
would make m=101, but we assumed m<101. Therefore, no
solutions here either.

Therefore , this suggests that there is no solution where the
equation holds, which contradicts the problem statement.
Therefore , there must be an error in my reasoning.

Wait, but the problem is from a competition or similar, so maybe
there is a trick here. Let’s think differently. Maybe the
problem is not in the integers. Wait, but cardinalities are
integers. Alternatively , perhaps the equation isn’t meant to
be exact? No, the problem says n(A) + n(B) + n(C) = n(A B

C), so it’s an exact equation.

Alternatively , maybe the problem is using "number of subsets" in a
different way. Wait, but no, the number of subsets of a set
with n elements is 2”n. So that part is standard.

Alternatively , maybe the problem is considering that A, B, C are
subsets of some universal set, but the problem doesn’t specify
that. But even if they were, the number of subsets of each
set would still be 27{lAl}, etc. So I don’t think that’s the

issue .

Alternatively , maybe "A B C" is not the intersection of
the sets A, B, C, but some other operation? No, standard
notation .

Wait, maybe there’s a misinterpretation of n(A B C). Maybe

it °s the number of elements in the intersection , but the
problem says "n(A), n(B), n(C) denote the number of subsets",
so n(A B C) would also denote the number of subsets of
A B C. So 27{IA B Cl}.

Wait, unless the problem has a typo and instead of n(A B C
), it’s |A B Cl. But in that case, the equation would
be 272100 + 272100 + 27~{ICI} = IA B Cl, which would be a
different problem, but unlikely.
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Alternatively , perhaps the problem uses n(S) to denote the number
of elements in S, but the first sentence says "n(A), n(B), and
n(C) denote the number of subsets of A, B, and C respectively
". So no, n(A) is definitely 27{IAl}, etc.

Hmm. This is perplexing. Let’s check again the equation. 27100 +
27100 +272{IC1}=2~{k}, so 27{101} +2~{ICI}=2~{k}. We need to
find the minimal k where this holds, with k [Cl. So k is
the size of A B C.

If we take ICl=k, then 27{101} +2~{k}=27{k}, which is impossible.
Therefore , ICl must be greater than k.

But then, 27{k} =27{101} +27{ICl}, which implies that 27{k} is
larger than 22{ICI}, so k>ICl, but that contradicts I|ClI k
Therefore, no solution. But the problem says "if n(A) + n(B) +
n(C) = n(A B C)", so it’s assuming such a scenario
exists. Therefore, there must be a mistake in my reasoning.

Wait, perhaps the problem allows C to be a multiset? But no, the
problem states "sets". Or maybe the intersection is not a set,
but a different structure? Unlikely.

Wait, let’s try specific numbers. Suppose k=101. Then
2AM{101}=27{101} +2*{m} - no, that would require 0=2*{m}, which
is impossible. If k=102: 272{102}=2~{101} +2~*{m} => 27{102}
=27M101}=2~A{m} => 27{101}(2 -1)=2~{101}=2~{m}, so m=101. But
then k=102, which is greater than m=101, which violates k m

Similarly , if k=103: 272{103}=27{101}+2*{m} => 2"{m}=27{103}
-2AM{101}=2~{101}(4 -1)=3%2~{101}, which is not a power of two.

k=104: 272{104}=27{101} +2A{m} =>27{m}=27{104} -27{101}=27~{101}(8
-1)=7«272{101}, not a power of two.

Continuing , k=105: 27{105} -27{101}=15%27{101}=15%2~{101}= not a
power of two.

This pattern continues, and the difference 22{k} -272{101} is
divisible by 27{101} but results in an odd number greater than
1, which is not a power of two. Therefore, no solutions exist
for k>101.

But this is impossible because the problem must have a solution.
Therefore , maybe the problem is designed to have the minimal k
where 27{k} is the next power of two after 27{101} +2~{m},
but this is not exact. But the problem states equality , not an
inequality. So I’m stuck.

Alternatively , perhaps the problem is using a different definition
of subsets. For example, maybe only non-—-empty subsets? No,
the number of subsets including empty set is 2”n.

Alternatively , maybe the problem has a typo, and it should be
multiplication instead of addition. If it’s n(A) % n(B) % n(C)
=n(A B C), then it’s different. But the problem says

+ .
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Wait, the problem is in Chinese maybe? Wait, no, the user wrote
the problem in English. Hmm.

Alternatively , maybe the problem is from a source where n(A)
denotes the number of elements, which would usually be IAl,
but the problem says n(A) is the number of subsets. So unless
the problem mixed notation. If the problem had said [Al, IBI,
ICl are 100, and n(A) +n(B) +n(C) =n(A B C), with n(X)
being the number of elements, then it’s a different problem.
Let’s check that:

If IAI=IBI=100, and n(X) is the number of elements, then n(A) +n(B

) +n(C)=100+100+ICI=200+ICI, and n(A B C)=IA B
Cl. Then the equation is 200 +ICl=k, where k=IA B Cl.
But since |A B Cl [AI=100, so 200+ICI 100 => IC

| —-100, which is impossible. So that can’t be.

Therefore , the original interpretation seems correct. But then,
according to that, there’s no solution. But the problem is
asking for the minimal possible value, so perhaps the answer
is 101? But wait, how?

Wait, let’s think differently. Maybe the problem is in a universe
where all sets are subsets of a common universal set, and
operations are considered within that. Suppose that A and B
are subsets of some universal set, and C is also a subset.
Then, the intersection A B C would be a subset of the
universal set. However, the number of subsets of A is still
2M{IAl}, regardless of the universal set.

Alternatively , maybe using some principle of inclusion-exclusion
for the number of subsets? Hmm, not sure.

Wait, another thought: Maybe the equation n(A) + n(B) + n(C) =n(A
B C) is in terms of numbers. So n(A) is 27{100}, n(B)
is 27{100}, n(C) is 2~{ICI}, and n(A B C) is 27°{k}. So

we have 27{100} + 27{100} + 2~{ICI} =2~{k}.

Lets write this as 22{101} + 27{ICI}=2”~{k}. Let’s factor out
the smaller power of two. Suppose ICI 101 . Then we can

factor out 2~{ICl}:

2A{1CH (1 + 2~{101 - ICI})=2~{k}. Therefore, 1 +27{101 — [Cl} must

be a power of two. Lets set t=101 — ICl. So t O , and 1
+27M{t}=2"{s} for some s. As before, the only solution is t=0
or t=1?

t=0: 1+1=2=2~1, so s=1. Then t=0 implies 101 - ICI=0 => ICI=101.
So 1 +270=2, so 2" k}=27{101}%2=2~{102}. Therefore , k=102. But
ICI=101, so k=102>101 which is impossible.

If t=1: 1+2=3, which is not a power of two. Similarly , t=2:1+4=5,
not a power of two. So no solution.

If ICI >101, then 27{101} +27{ICI}=2”~{k} implies we factor out

2A{101}: 2A{101}(1 +27{ICI —-101})=2~{k}, so 1 +2~{IC]
~101}=27{k -101}. Lets set m=ICl —-101>0, so 1 +27{m}=2{k
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—101}. The only solution is m=0, which gives 1 +1=2"1. But m
>0, so no solution.

Therefore , this suggests no solution exists, which contradicts the
problem ’s wording. Therefore, I must have made a wrong
assumption .

Wait, perhaps the problem allows for a universe where elements are
counted with multiplicity? Like, multisets? But the problem
specifies "sets", so elements are distinct.

Alternatively , perhaps the problem is a trick question where the
minimal possible value is 101, but the equation is not exactly
satisfied. But the problem says "if n(A) + n(B) + n(C) =n(A
B C)", so it’s given that this equation holds. So the
answer must be derived under that condition.

Wait, maybe there’s a mistake in my calculation. Let me try
plugging in k=101. Then 27{101}=27{101} +27{ICIl}, which
implies ICl| is negative infinity , impossible. k
=102:27{102}=27{101}+2~{ICl}=> 27{IC
[}=272{102}-27{101}=27~{101}, so ICI=101. But then k=102 > IC
[=101. So this is impossible.

Wait, but maybe the problem doesn’t require that the intersection
is a subset of C? But that’s basic set theory. A B C
is a subset of C by definition.

Alternatively , maybe the problem uses a different definition of
intersection? No, standard intersection.

Alternatively , perhaps A, B, C are not sets of elements but of
subsets. Wait, the problem says "sets A, B, C", so they are
standard sets.

Alternatively , maybe the problem allows C to be equal to A B
C. If C is equal to A B C, then ICl=k. Then the
equation becomes 27{100} +27{100} +2~{k}=27{k}, which implies
27101} +27{k}=2~{k}, leading to 27{101}=0, which is
impossible .

This is really confusing. Since the problem is from a math
competition , maybe the answer is 102, even though it’ s greater
than |Cl, but the problem doesn’t require |C| to be finite or
something? But A and B have size 100, which is finite , and
the intersection can’t be larger than A or B. So the
intersection has to be at most 100.

Wait, wait! The problem says |AlI=IBI=100. So the intersection A
B C is a subset of A and B, so |A B Cl 100
But earlier , we tried k=101 and more, which is impossible
since the intersection can’t exceed 100.

Oh! This is the key mistake I made earlier. Since A and B have
size 100, their intersection with C can’t exceed 100. So
k 100 . Therefore, when I considered k=101 or higher, that’s
impossible. Therefore, the maximum possible k is 100. But then
the equation 27{101} +2"{m}=2~{k} with k 100 . But 2~{k} is
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at most 272{100}, but the left -hand side is at least 27{101},
which is larger than 27{100}. Therefore, it’s impossible.

But this contradicts the problem’s stipulation that the equation
holds. Therefore, the only possible conclusion is that there
is a mistake in the problem statement, or perhaps the answer
is 101, but the problem has an error. But since the problem

asks for the minimal possible value of IA B Cl, and
given the constraints , it’s impossible, but maybe I’m missing
something .

Wait, here’s a different approach. Let’s denote x = |A B C

I. We need to have 27{100} +27{100} +2~{ICI} =2~{x}. Therefore
, 2M101} +2AM{ICIH} =27 {x }.

But x is the size of the intersection , which is 100 . Therefore ,
27 x} 2 {100}, but the left—-hand side is 27{101} +
something , which is at least 27{101}. Therefore, 22{x} 2
AM101}, which requires x 101 . But x 100 , so there’s no
solution. Hence, it’s impossible.

But the problem is presented as a valid question, so likely I have
a mistake. Wait, maybe I miscounted the number of subsets.
Wait, if A has I|AI=100, then n(A)=272{100}. Similarly for B and
C. So the equation is correct.

Alternatively , the problem might be in the translation. Maybe "the
number of subsets" refers to proper subsets? In that case,
the number would be 2*{n}—-1. So if n(A) is the number of
proper subsets of A, then n(A)=27{100}-1. Similarly for B and
C. Then the equation becomes (22{100}-1)+(27{100}-1)+(27{IC
I} -1)=2~{x}-1.

Lets compute this: 22{101} -2 +2~{ICI} -1=27{x}-1 27101}
+2MICIH} =3=2~{x}-1 2 ~{101} +2~{ICI}-2=2"{x}.

But this seems more complicated, and there’s no indication in the
problem statement that subsets are proper. So this is probably
not the case.

Alternatively , maybe the problem uses a different definition of "
number of subsets ,” but it’s highly unlikely.

Therefore , given that the problem states such an equation is
possible , but according to standard set theory and mathematics
, there is no solution. But since the problem asks for an
answer , I must have missed something.

Wait, maybe the problem is not about sets but about something else
Maybe vector spaces? No, the problem talks about sets A, B,
C.

Wait, another idea: maybe the sets A, B, and C are such that A and
B are subsets of C. If A and B are subsets of C, then A B
C=A B. So IA B Cl= |1A Bl. But A and B
have size 100, but we don’t know their intersection. However,
the equation becomes 27100 +27100 +27A{ICI}=2"{IA Bl}. But
since A and B are subsets of C, IClI 100 . But then 27{ICl}
2 ~100}, so the left—-hand side is 2 100 +27100
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+27{100}=3%27100, which is greater than 27{IA Bl}, but |A
Bl can be at most 100, so 27{IA Bl} 2 ~100}, which
is less than 3%27{100}. Therefore, no solution.

Hmm. I’m stuck. Given the problem’s constraints , there is no
possible solution, but the problem is asking for one. Perhaps
the answer is 101, acknowledging that there’s a contradiction
but requiring the minimal k where 272{k} is the next power
after 27101 +22~{ICI}. But even then, the minimal k would be
102, but that exceeds the maximum possible size of the
intersection .

Wait, but if we ignore the constraint that k ICl and k 100
just find the minimal k such that 2A{k} 2 ~101 +2*{m} for
some m. But then k=102 when m=101, but that violates the other
constraints .

s

Alternatively , maybe the problem has a typo and it should be n(A)

+n(B) +n(C) =n(A B C). Then the problem would be
different. Let me check: n(A B C) is the number of
subsets of the union. If that’s the case, then the equation is
27A{100} +27{100} +27{ICI}=2"{IA B Cl}, which might be

possible. But the problem says intersection , not union.

Alternatively , maybe the problem is in another dimension, but that
s not likely.

Given that I’m stuck and the problem is likely expecting an answer
of 101, even though it violates the cardinality constraints,
or perhaps 101 is the minimal k where 27~{k} is greater than
the sum. But in math competitions , sometimes you’re supposed
to find k such that the sum is less than or equal to 27k, but
the problem states equality.

Alternatively , maybe the problem allows overlapping subsets in the
count. But no, subsets are unique.

Wait, here’s a last-ditch idea: perhaps A, B, and C are not sets
of elements but of sets themselves, and the intersection is in
some lattice of sets. But the problem statement says "sets A,
B, C", so they’re standard sets.

Given that I’ve exhausted all avenues and still can’t find a
solution that fits the problem’s constraints , but the problem
must have an answer, I’m forced to conclude that the answer is
101, even though it violates the subset relation.
Alternatively , maybe the problem’s answer is 101, with k=101,
[CI=101, but then 27{101}=22{101}+22{101}=2~{102}, which is
not true. Therefore, I’'m confused.

Wait, 27{101} +2~{101}=2~{102}, so if [ClI=101, then the equation
would be 27{101} +27{101}=27{102}, so k=102. But k=102 is
impossible because the intersection cannot exceed 100.
Therefore , there’s no solution, but the problem states "if n(A
) + n(B) + n(C) =n(A B C)", which implies that there
is a solution. This is a paradox.

Wait, unless the sets are allowed to be infinite. For example, if
C is an infinite set, then 27{ICI} is infinite , and 27{101}
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+2M{ICI} would be equal to 27{ICl}, assuming ICl is infinite.
But then the equation 27{101} +27{ICI}=27{k} implies that if |
Cl is infinite , then 27{k} is also infinite , so k must be
infinite . But the problem asks for the minimal possible value,
which would be finite. Therefore, this is not the case.

Given all this, I think there’s either a mistake in the problem or
a trick that I’m missing. Since the problem is about sets and
their subsets, and the equation seems impossible under
standard interpretations , maybe the answer is 101, assuming
that we ignore the cardinality constraint of the intersection.
But since the intersection can’t exceed 100, this is
impossible. Therefore, the minimal possible value is 101, but
I’'m not sure.

Wait, but if IA B Cl could be 101, then even though A and
B have size 100, their intersection with C can’t exceed 100.
So maybe the problem is designed to have an answer of 101,
assuming that the intersection can be larger than A or B? But
that ’s impossible.

I think I must have missed something. Maybe instead of
interpreting n(A) as the number of subsets, it’s the number of
elements? If so, then n(A)=100, n(B)=100, n(C)=ICl, and n(A

B C)=I1A B Cl. Then the equation is 100 +100 +
IClI=1A B Cl. But since |A B Cl 100 , this
implies ICI —-100, which is impossible. So no.

Alternatively , if n(A) is the number of elements, and the problem
meant to say |Al, but that’s not what was written.

Given the problem’s phrasing, I think the answer must be \boxed
{101}, even though the logical steps suggest it’s impossible.
Perhaps there’s a different way to combine the subsets.
Alternatively , maybe considering that the intersection is
being counted as elements, not subsets. But that would not
align with the initial definitions.

Since in all cases the only possible value that comes close is
102, but it’s invalid due to size constraints , and the problem
asks for the minimal possible value, perhaps the answer is
101, even if it’s not strictly possible, and the problem has
an error. Alternatively , the answer is 102, and the problem
allows intersections larger than the sets. But this is not
standard .

Wait, maybe A and B are allowed to have sizes larger than 1007?
Wait, no, the problem says [AlI=IBI=100.

Given that I can’t find a valid solution and the problem likely
expects an answer, I’11 go with 101, assuming that maybe the
problem had a typo and the equation is supposed to be
multiplication , but that’s speculative. Alternatively , 101 is
the answer.

#x Final Answers#x*
\boxed {101}
</think >
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Given sets \(A\), \(B\), and \(C\) with \(IAl = IBl = 100\), we
need to find the minimum possible value of \(IA \cap B \cap C
[\) given that the equation \(n(A) + n(B) + n(C) = n(A \cap B
\cap C)\) holds. Here, \(n(S)\) denotes the number of subsets
of a set \(S\), which is \(27{ISI}\).

1. The number of subsets of \(A\), \(B\), and \(C\) are
\(2A{100}\), \(2A{100}\), and \(2~{ICI}\) respectively.

2. The equation given is \(27{100} + 272{100} + 27A{ICI} = 2°~{IA \
cap B \cap CI}\).

3. Simplifying the left-hand side, we get \(272{101} + 2~{ICIl} =
2AM{1A \cap B \cap CI}\).

4. Let \(k = IA \cap B \cap CI\). We need to find the smallest \(k
\) such that \(27{101} + 2~{ICI} = 27k\).

5. For the equation \(2A{101} + 27~{ICI} = 272k\) to hold, \(272{101}
+ 27{ICI}\) must be a power of two.

6. The only way the sum of two powers of two is another power of
two is if they are consecutive powers of two. However,
\(2~{101} + 2~{101} = 2~{102}\), which would require \(ICI =
101\) and \(k = 102\), but \(k\) cannot exceed \(ICI\).

7. Considering the constraints and the problem’s requirement for a
solution , the minimal possible value of \(IA \cap B \cap CI\)
that fits the equation, despite the constraints , is found to
be \(101\).

Thus, the minimum possible value of \(IA \cap B \cap CI\) is \(\
boxed {101 }\).
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