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Abstract

In post-training for reasoning Large Language Models (LLMs), the current state of
practice trains LLMs in two independent stages: Supervised Fine-Tuning (SFT)
and Reinforcement Learning with Verifiable Rewards (RLVR, shortened as “RL”
below). In this work, we challenge whether high SFT scores translate to improved
performance after RL. We provide extensive counter-examples where this is not
true. We find high SFT scores can be biased toward simpler or more homoge-
neous data and are not reliably predictive of subsequent RL gains or scaled-up
post-training effectiveness. In some cases, RL training on models with improved
SFT performance could lead to substantially worse outcome compared to RL on
the base model without SFT. We study alternative metrics and identify general-
ization loss on held-out reasoning examples and Pass@large k performance to
provide strong proxies for the RL outcome. We trained hundreds of models up
to 12B-parameter with SFT and RLVR via GRPO and ran extensive evaluations
on 7 math benchmarks with up to 256 repetitions, spending >1M GPU hours.
Experiments include models from Llama3, Mistral-Nemo, Qwen3 and multiple
state-of-the-art SFT/RL datasets. Compared to directly predicting from pre-RL
performance, prediction based on generalization loss and Pass@large k achieves
substantial higher precision, improving R2 coefficient and Spearman’s rank corre-
lation coefficient by up to 0.5 (2x). This provides strong utility for broad use cases.
For example, in most experiments, we find SFT training on unique examples for
a one epoch underperforms training on half examples for two epochs, either after
SFT or SFT-then-RL; With the same SFT budget, training only on short examples
may lead to better SFT performance, though, it often leads to worse outcome after
RL compared to training on examples with varying lengths. This work develops an
enhanced evaluation tool that will be open-sourced.

1 Introduction

The evolution of Large Language Models (LLMs) has seen a significant focus on enhancing their
reasoning abilities, a process heavily reliant on post-training (Wen et al., 2025). This phase refines
pre-trained models, adapting them for complex, multi-step tasks like mathematics, logic, and code
generation, leading to the emergence of Large Reasoning Models (LRMs) (Kumar et al., 2025). The
open-sourced DeepSeek R1 achieved phenomenal success in pushing forward the frontier of LLM’s
reasoning capabilities (Guo et al., 2025). Its new post-training paradigm, Reinforcement Learning
with Verifiable Rewards (RLVR) via Group Relative Policy Optimization (GRPO) (Liu et al., 2024;
Shao et al., 2024), has shown substantial improvements on top of previous post-training methods.
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Figure 1: Mistral-NeMo-12B-Instruct undergone SFT-RL with SFT examples from AceReasoner1.1-SFT
dataset and RLVR via GRPO on DeepScaleR dataset. Reporting Pass@1 performance averaged over 7 math
benchmarks. When training on Random/Longest/Shortest SFT examples, the final performance after RL
increases at different rates than the SFT performance. Model with the best SFT performance is not the one with
the best final performance after RL. Post-SFT and SFT+RL performance correlate, though, optimizing post-SFT
performance might not optimize the final performance after RL.

Following DeepSeek R1’s practice, current works typically conduct SFT before RL, assuming models
with better performance after SFT will ultimately be better after RL (Liu et al., 2025b; Wen et al.,
2025). In industrial practice, these post-training stages are often distributed among different teams,
with SFT and RL handled by separate groups, each optimizing for their own performance metrics
(Chen et al., 2025b; Meta, 2025). This process relies on the intuition that a model with stronger SFT
performance will yield better outcomes after RLVR (Liu et al., 2025b). With efforts and resources
being poured in improving post-training paradigms and data recipes, also escalating are the debates
on whether SFT helps or hurts the subsequent RL training.

In this setup, post-training strategies and data are often designed either for SFT or RL, but not jointly.
In practice, SFT and RL are often conducted sequentially (e.g., Rastogi et al. (2025)). SFT data is
usually selected to maximize evaluation performance after SFT (Zhang et al., 2025; Ye et al., 2025),
and the best-performing SFT models are believed to also yield stronger performance after subsequent
RL. However, this assumption is often flawed. Over-training during SFT, for instance, can constrain
the model’s behavior and limit the exploration crucial for effective RL (Chen et al., 2025a; Wang
et al., 2025). For example, we find training on repeated examples for up to 8 epochs leads to better
SFT performance than training on the same data for 2 epochs (4x compute) but yields visibly worse
outcome after RL (Figure 4, left). On the contrary, Cen et al. (2025) shows SFT training on manually
crafted “exploratory” examples, despite leading to a lower performance after SFT, helps achieve
better final outcome after RL. This leads to a critical gap in the current practice:

An SFT-trained model with the best evaluation performance may not be the best candidate for
subsequent training with RLVR (e.g., Figure 1).

When the final RLVR performance is unsatisfactory, it becomes challenging to attribute the failure
to either the RL stage or a non-ideal SFT starting point. This misalignment can cause friction and
overhead between teams. Furthermore, the high computational cost of RL training and long pipelines,
especially in agentic use cases, makes end-to-end tuning across the SFT-RL stages prohibitively
expensive (Toledo et al., 2025). Early stopping during RL is also generally ineffective, as the model
with the fastest initial improvement may not achieve the highest final performance (Liu et al., 2025b).
Even with identical post-training procedures, different models may respond vastly different (Figure
2). Consequently, a significant gap remains in our ability to reliably predict RLVR outcomes.

This work centers on addressing this predictability problem. We ask the following research questions:

RQ1: Do models with better pre-RL performance always lead to better outcomes after RLVR? If
not, what are the failure modes? (Section 3)

RQ2: What are effective SFT paradigms and data recipes when considering subsequent RLVR
training? Can we determine the suitability of an SFT model before committing to the
expensive RL stage? (Section 4)

To tackle these questions, we first examine the relationship between pre-RL performance and post-RL
outcomes across various SFT training paradigms and data recipes. While we often observe some
extents of correlation between post-SFT performance and final outcome after RL, we identify cases
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(a) Mistral-NeMo-12B-Instruct (b) Qwen3-4B-base

Figure 2: Both models undergone SFT-RL with SFT examples from AceReasoner1.1-SFT dataset and RLVR
via GRPO on DeepScaleR dataset. Reporting Pass@1 performance averaged over 7 math benchmarks. Even
with identical post-training procedures, different models may respond vastly different. With increasing SFT
examples, Mistral’s (left) post-SFT performance and final performance after RL both increase. Yet, for Qwen3
models (right), the post-SFT performances appear uncorrelated with the final performance after RL, where the
latter remains the same despite the substantially improved SFT performance.

where the trends visibly diverge. For instance, training on the same dataset for more epochs may
significantly boost post-SFT performance but diminishes the potential for improvement during RL,
sometimes resulting in lower final performance (e.g., Figure 4). Similarly, training on simpler, shorter
reasoning examples improves pre-RL performance quickly, but these models gain much less from the
subsequent RL stage. These findings are particularly concerning given that many SFT data selection
methods favor simpler or more homogeneous examples (Zhang et al., 2025; Yu et al., 2025).

Next, we identify more reliable predictors for RL success. We find that as SFT proceeds, an eventual
increase in validation loss is strongly correlated with performance improvements in the later RL
stage. Furthermore, since the RL objective is to compress Pass@k performance into Pass@1 (i.e.,
maximize expected reward), we investigate using Pass@k at a large k as a predictor. We conduct
extensive empirical validation using Llama3-8B (Grattafiori et al., 2024), Mistral-Nemo-12B (team,
2024), and Qwen3-4B-base (Yang et al., 2025) models on state-of-the-art SFT datasets like Llama-
Nemotron (Singhal et al.) and AceReasoner1.1 (Liu et al., 2025b) and different RL datasets. Our
results demonstrate that these new metrics can reliably predict the outcome of RLVR, improving R2

coefficient and Spearman’s rank correlation coefficient by up to 0.5 (2x), providing strong utility for
broad use cases. For example, in most experiments, we find SFT training on unique examples for a
one epoch underperforms training on half examples for two epochs, either after SFT or SFT-then-RL;
With the same SFT budget, training only on short examples may lead to better SFT performance,
though, it often leads to worse outcome after RL compared to training on examples with varying
lengths. These can be captured by the proposed predictors, but not from the post-SFT performance.

To address the limitations in available tools, we developed an enhanced tool for more convenient and
reliable evaluation of reasoning models, which will be open-sourced in contribution to the community.

2 Related Works

The research landscape for reasoning post-training and data strategies is fast evolving and in its
early days. In a typical setup, post-training for reasoning LMs conducts SFT and RL sequentially,
which has been reported to work better than only conducting SFT or RL (Rastogi et al., 2025).
Viewpoints in many impactful works can be inconsistent or even contradicting: “Initial ‘cold-start’
SFT is necessary for subsequent RL” (DeepSeek-R1 technical report, Guo et al. (2025)); “over-SFT
may constrain subsequent RL” (Llama-4 technical report, Meta (2025)); “SFT generalizes poorly
and RL without SFT does better” (Chen et al., 2025a), showing prominent gaps in characterizing
post-training dynamics and the role of each stage. The lack of predictability in the post-training
outcome poses a major blocker for optimizing training paradigms or data recipes.

2.1 Post-training for Reasoning: SFT-then-RLVR paradigm

Post-training for reasoning LLMs typically consists of two or three stages: a) Supervised Fine-
Tuning (SFT), b) an optional Direct Preference Optimization (DPO) stage, and c) Reinforcement
Learning with Verifiable Rewards (RLVR) (Lambert et al., 2024). SFT serves as the “cold-start”
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phase, providing the model with a strong initial policy by exposing it to high-quality reasoning chains
(Guo et al., 2025). The model is trained on problems with high-quality solutions sourced from the
frontier models. DPO fixes/strengthens targeted behaviors (e.g., precise instruction following in
math/logic derivations) assessed important for effective reasoning, which is more subjective and
often optional (Lambert et al., 2024). RL further improves the model’s reasoning and problem-
solving capability. This allows the model to explore the solution space more broadly than SFT alone,
discovering novel and more robust reasoning paths.

While the sequential SFT-then-RL pipeline is dominant, researchers have explored alternative
paradigms to more tightly integrate or unify these learning stages. Efforts include iterate or in-
terleave SFT and RL (Meta, 2025), gradually shift from SFT to RL while increasing task difficulty
(Yang et al., 2025), or directly unify the objectives of SFT and RL (Xu et al., 2025). Though these are
promising research directions, they come with their own complexities and have not yet universally
replaced the SFT-then-RL paradigm, which remains a robust and widely-adopted industry standard.
Many important issues regarding the stability, data requirements, and effectiveness of these unified
methods remain to be solved. Our work, therefore, focuses on improving the predictability and
efficiency of the prevailing SFT-then-RL pipeline, providing practical tools that are immediately
applicable to current state-of-the-art workflows.

2.2 Recent Advancements and Current Challenges

In post-training for reasoning, SFT data is usually selected to maximize evaluation performance
after SFT (Li et al., 2025; Ye et al., 2025), and the best-performing SFT models are believed to also
yield stronger performance after subsequent RL. Significant research effort is now focused on more
sophisticated selection and curation strategies for SFT data. Techniques range from filtering for
complexity and diversity to generating synthetic data that covers a wider range of reasoning structures
(Rastogi et al., 2025; Yuan et al., 2025; Ye et al., 2025; Abdin et al., 2024). Some methods propose
selecting data points based on their difficulty and influence, aiming to find a subset of examples that
provides the strongest learning signal (Muennighoff et al., 2025). Current efforts prioritize scaling up
SFT training on existing models, leading to new SOTA performance on reasoning tasks for those
models (Guha et al., 2025). A significant challenge is that standard SFT performance metrics, such
as average accuracy on benchmarks, are not always predictive of post-RL success. This creates a
critical gap between the optimization target of the SFT stage and the final performance of the model.

Several issues contribute to this gap. First, models can overfit to the specific patterns and artifacts
present in the SFT dataset, leading to poor generalization during the exploration phase of RL (Chen
et al., 2025a). Furthermore, naively collecting or generating data can lead to datasets that lack
diversity in reasoning strategies or are skewed toward simpler problems, causing the SFT-trained
model to develop biases that stifle exploration in the subsequent RL stage (Guha et al., 2025). The
landscape is further fogged by the recently reported data contamination issues (Wu et al., 2025). The
results from these models have served as the basis for many research findings.

The (lack of) predictability for final performance after RL from pre-RL models leads to quagmires
for post-training. SFT teams may provide suboptimal RL learners. It creates frictions between post-
training teams owning different SFT and RL stages and chaos in optimizing the training paradigm/data
recipes, adding overheads on the model development and hindering productivity. It calls for new
tools that better characterize the post-training dynamics and predictive of the RL outcome. This will
have profound impact on broad downstream fields–research and applications alike–from improving
SFT data curation, search for the next post-training paradigm, to RL for non-verifiable tasks, etc.

3 The SFT Metric Trap

Previous works, from SFT data selection to RL training methodologies, have often operated under
a common assumption. They implicitly assume or explicitly argue that models exhibiting better
post-SFT performance will consistently yield superior final outcomes after subsequent reinforcement
learning (Rastogi et al., 2025; Liu et al., 2025b). This assumption has justified the widespread practice
of optimizing the SFT and RL stages in isolation, with teams or processes focusing on maximizing
SFT evaluation metrics as a primary goal. However, the separation of SFT and RL optimization can
lead to a widening gap in reasoning post-training, where improvements in the initial stage do not
translate to the final stage. This motivates us to ask two fundamental questions:
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• Do models with better pre-RL performance always lead to better outcomes after RLVR?

• If not, what are the failure modes?

To investigate these questions, we design experiments across two representative scenarios that reflect
common practices and research directions in the field: a “dataset-level” analysis and an “instance-
level” analysis. In Dataset-Level Scenarios, SFT examples are drawn from the same data distribution,
but we vary the amount of unique samples and the training paradigm (e.g., learning rate, number of
epochs); In Instance-Level Scenarios, we consider training on different datasets while keeping the
training pipeline fixed (i.e., using the same model and training paradigm). This setup is primarily
concerned with SFT data selection and curation, examining whether strong SFT performance on a
given dataset transfers to the final outcome after RL.

3.1 Dataset-Level Scenarios
In this scenario, we draw SFT examples from the same underlying data distribution but vary the
training configuration, such as the number of unique samples/training epochs/learning rate. This
setup is highly relevant to industrial practices where SFT and RL are often handled by different teams.
In current practices, the number of training epochs is a design choice often determined by practical
factors such as data availability or compute budget. Specifically, when the amount of training samples
is a more prominent constraint (such as domains with limited high-quality examples), repeating for
more epochs on the data may be preferred to improve post-SFT performance. On the contrary, if data
is abundant relative to the allocated compute budget (for this domain/capability), current practices
(such as Singhal et al.) may prefer to train for just a single epoch on unique examples.

Figure 3: Llama3-8B-Instruct undergone SFT-RL
with SFT examples from Llama-Nemotron-SFT dataset
and RLVR via GRPO on MATH dataset (train-split).
Reporting Pass@1 performance averaged over 7 math
benchmarks. Linear fit between post-SFT performance
and final outcome after RL. The two performance cor-
relates with R2 = 0.43, indicating post-SFT perfor-
mance explains only 43% of variation in the final out-
come after RL and the remaining gaps are prominent.

In these cases, the training paradigm is determined
heuristically where the only optimizable target
is the post-SFT performance. Surprisingly, we
identified both practices to be suboptimal. We
found that post-SFT performance often improves
stably when training for more epochs–even with
excessive overtraining. But models overtrained
during SFT show decreasing potentials for the
subsequent RL. Typically, the model with the best
final performance after RL is not the one with
the best post-SFT performance. Further, with the
same compute budget for SFT, training on more
data for one epoch typically leads to visibly lower
post-SFT performance compared to training on
less data for a few more epochs, and the final
performance after RL remains underperforming.
A concrete example is provided in Figure 4. High
SFT scores can be biased toward homogeneous or
repeated examples and are not reliably predictive
of subsequent RL gains.

This mismatch between post-SFT and post-RL
performance is not directly visible from post-SFT
models. As shown in Figure 3 where we fit a linear function between post-SFT and post-RL
performance, these two performance correlates with R2 = 0.43, indicating post-SFT performance
only explains 43% of variation in the final outcome after RL whereas the gaps remain evident.

3.2 Instance-Level Scenarios
In this scenario, we fix the model and the training configurations but vary the SFT datasets. This
setup is primarily concerned with SFT data selection and curation, examining whether the strong
SFT performance promised by a particular dataset transfers to strong final performance after RL.
For instance, state-of-the-art data selection methods are often prone to selecting examples that are
more “natural” or easier for the model to learn (Zhang et al., 2025; Yu et al., 2025). While this
simpler data may allow the model to achieve high SFT metrics more quickly, we question whether
this comes at the cost of learning more difficult or advanced reasoning capabilities that are crucial for
downstream success. We identified similar gaps between post-SFT performance and final outcome
after RL. Visualizing representative examples in Figure 1, high SFT scores can be biased toward
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(a) Mistral-NeMo-12B-Instruct (b) Qwen3-4B-base
Figure 4: Both models undergone SFT-RL with SFT examples from AceReasoner1.1-SFT dataset and RLVR
via GRPO on DeepScaleR dataset. Reporting Pass@1 performance averaged over 7 math benchmarks. When
repeating SFT for more epochs on the same data, Mistral’s (left) SFT continues to improve with up to 4 epochs
where the final performance after RL saturates after 2 epochs. Qwen3’s (right) final performance after RL
degrades with SFT training, though, these models’ post-SFT performance is substantially higher than the base
model. Both cases show clear divergence between post-SFT performance and final performance after RL. Here,
optimizing post-SFT performance will be suboptimal or ineffective for improving the final model.

simpler examples and are not reliably predictive of subsequent RL gains or scaled-up post-training
effectiveness. For example, training on shortest examples led to faster performance improvements
than training on randomly sampled examples during SFT. These shorter examples are closer to the
model’s original generations and easier to learn, though, these are not best examples for the model
to gain reasoning capabilities in preparation for RL. The final performance after RL is significantly
lower. These gaps are not directly captured in the post-SFT performance.

4 Proposed Metrics towards More Reliable Predictions

4.1 Generalization Loss on Validation Examples

During the investigation above, we identified a counterintuitive pattern in which post-SFT perfor-
mance improves stably when training for more epochs whereas the overtrained models show decreased
potentials during the subsequent RL. The best final performance after RL is not usually achieved on
models with the best post-SFT performance. To be able to optimize the final outcome on the given
training examples, one needs to optimize the SFT training paradigm based on the predicted final
outcome after RL. We materialize this insight and identify generalization loss after SFT to be a viable
indicator of the model’s potential during the subsequent RL. While repeating training for more epochs,
together with the improving post-SFT performance, we observe the generalization loss on validation
examples to elevate and eventually flare up, indicating strong over-fitting. This generalization loss
shows strong correlation with further performance gains during subsequent RL, allowing prediction
for the final outcome after RL (Figure 5). When using it in practice, after conducting SFT training
with different numbers of examples and epochs, we can immediately rule out post-SFT models with
both lower performance and higher generalization loss as they will likely remain underperforming
after the subsequent RL, facilitating determination of the best SFT training paradigm.

4.2 Pass@k Accuracy Evaluated at Large k

The objective of RLVR via GRPO is to maximize expected reward, which explicitly optimizes the
Pass@1 accuracy on the RL tasks. GRPO only progresses when at least one of the responses for the
RL task is correct. Recent works argue that GRPO compresses Pass@k accuracy into Pass@1 (Yue
et al., 2025), and empirical evidence appears to support the argument showing GRPO mostly improves
average Pass@1 accuracy on tasks where the original model achieves an above-zero accuracy (Liu
et al., 2025b). Though it remains debatable whether GRPO discovers new solution traces beyond the
capabilities of the original model (Liu et al., 2025a), all these analyses and findings suggest RLVR
dynamics during GRPO training to be strongly coupled with the original models Pass@k accuracy.
Hu et al. (2023) pioneers in using the Pass@high metric to study the scaling of task performance.
The authors argue that Pass@k provides finer resolution to the Pass@1 metric and better captures
the underlying dynamics. Acting on this intuition, we consider Pass@k performance of the post-
SFT model, especially with large k, as a candidate metric for predicting its final outcome after the
subsequent RL. When using it in practice, after SFT training, we evaluate Pass@k performance on the
post-SFT models with different values of k. For efficient implementation, we leverage the following
formula which provides unbiased estimations for Pass@k accuracies for all k ≤ n (Brown et al.,
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Figure 5: Llama3-8B-Instruct undergone SFT-RL with SFT examples from Llama-Nemotron-SFT dataset
and RLVR via GRPO on MATH dataset (train-split). Reporting Pass@1 performance averaged over 7 math
benchmarks and generalization loss on the validation set of SFT data. We identify generalization loss after SFT
to be a viable indicator for the model’s RL potential. While repeating training for more epochs, together with
the improving post-SFT performance, we observe the generalization loss on validation examples to elevate and
eventually flare up, indicating strong over-fitting. This generalization loss shows strong correlation with the
further performance gain during the subsequent RL, allowing prediction for the final outcome after RL.

2024), Pass@k = E
(
1− (n−c

k )
(nk)

)
where integer n denotes the total number of responses generated

for the task, integer k denotes the target value for k Pass@k, and integer c denotes the number of
correct responses for the task, respectively.

We consider the Pass@large k performance as the indicator for the final outcome after RL and deem
the post-SFT model with the best Pass@large k performance to have the best Pass@1 performance
after RL. The best post-SFT model can be determined without needing to conduct any actual RL run.

5 Empirical evaluations

5.1 Setup
We conduct three sets of experiments with SFT-RL post-training. On Llama3-8B-Instruct models,
we conduct SFT training with examples from Llama-Nemotron dataset (where we only select math
samples with responses generated by QwQ-32B (Team, 2025) or DeepSeek R1 (Guo et al., 2025),
hereinafter the same) and RL training on MATH dataset (train-split) (Hendrycks et al., 2021); on
Mistral-Nemo-12B-Instruct and Qwen3-4B-base, we conduct SFT training with examples from
AceReasoner1.1-SFT dataset and RL training on DeepScaleR dataset (Luo et al., 2025). For all
models, we conduct RL training for 3 epochs where each run takes up to 5 days. We repeat
RL training for 4+ runs on each data recipe and training paradigm, conduct 4+ evaluations on
different checkpoints across RL training run, and report the best performance for the model. We
evaluate task performance on 7 math benchmarks, MATH-500 (Hendrycks et al., 2021), AIME
1983-2024 (Veeraboina, 2023), GSM8k (Cobbe et al., 2021), AIME 2025 (of America, 2025),
AMC (Competitions, 2025), Olympiad (He et al., 2024), Minerva (Lewkowycz et al., 2022), and
report model performance as Pass@1 accuracy averaged over 64 repetitions and across 7 tasks.
For the proposed predictors, we evaluate the generalization loss on the validation set of the SFT
data and Pass@64 accuracy averaged over 256 repetitions. Experiments spent >1M GPU hours on
NVIDIA A100. Please refer to Appendix B for additional details. Shown in Figure 2 (right), in this
setup, Qwen3-series models do not appear to benefit from state-of-the-art SFT datasets, and models
undergone different SFT training achieve considerably close final performance after RL. Since this
work focuses on studying the impact of different SFT training on the subsequent RL, we present
these results as qualitative examples instead (deferred to Appendix A).

Following the categorization above, we organize experiments in two major scenarios: dataset-level
prediction, and instance-level prediction. In dataset-level prediction experiments: we conduct
SFT training for the base model on samples from math reasoning datasets with different training
paradigms (varying number of examples and epochs). In instance-level prediction experiments: we
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first create diverse different curated SFT datasets by selecting the shortest/longest subsets, random
samples, or their different mixtures (samples are shown in Appendix D). Then, we conduct SFT
training for the base model on samples from each curated dataset with the same training paradigms
(one epoch). We consider two primary metrics measure prediction performance, Coefficient of
determination (R2) (Pearson, 1909), and Spearman’s rank correlation coefficient (Spearman)
(Zar, 1972). Specifically, R2 measures the proportion of variation in the prediction variable (final
performance) that is unexplained by the predictor, examining the accuracy of prediction on the final
performance after RL. Spearman yields a number ranging from -1 to 1 that indicates how strongly
two sets of ranks are correlated, which we use to examine the effectiveness in identifying post-SFT
models that lead to the best final performance. Additional results can be found in Appendix C.

5.2 Use Case 1: Dataset-Level Prediction

This use case focuses on optimizing the SFT training paradigm, a common dataset-level challenge.
Given a fixed compute budget, practitioners must decide on the optimal trade-off between the volume
of unique data and the number of training epochs, navigating the risks of under- and over-training.
We test the predictive power of our proposed metrics against the baseline of using post-SFT Pass@1
accuracy. To examine the accuracy of prediction with R2, we randomly select 50% SFT models and
fit a linear function between their post-SFT performance and final performance after RL. The fitted
function is then used to predict the final performance of the other 50% SFT models. We compare the
predictions to their actual post-RL outcomes to compute R2. We repeat the random sampling for 100
times and report the standard error.

Table 1: Spearman’s rank correlation between performance predicted from post-SFT models and the actual
performance after RL. Both generalization loss and Pass@64 achieve notable margins over prediction from
Pass@1, whereas averging the two prediction may or may not lead to better results.

Spearman’s Rank Prediction based on Prediction based on Prediction based on Avg. Prediction from
Correlation / Models SFT Pass@1 (avg. SFT Generalization SFT Pass@Large k SFT Gen. Loss +

of 64) baseline Loss (k=64) Pass@Large k (64)

Llama3-8B-Instruct 0.75 0.94 0.95 0.97 (+0.22)
Mistral-NeMo-12B-Instruct 0.78 0.90 0.92 (+0.14) 0.90

Table 2: Measuring prediction accuracy with coefficient of determination (R2). We randomly select 50% SFT
models and fit a linear function between their post-SFT performance and performance after RL, and use it to
predict for the other 50% SFT models. We repeat random sampling for 100 times and report standard errors.

Coefficient of Prediction based on Prediction based on Prediction based on Avg. Prediction from
determination (R2) SFT Pass@1 (avg. SFT Generalization SFT Pass@Large k SFT Gen. Loss +
/ Models of 64) baseline Loss (k=64) Pass@Large k (64)

Llama3-8B-Instruct 0.57 ± 0.29 0.88 ± 0.09 0.87 ± 0.10 0.94 ± 0.04 (+0.37)
Mistral-NeMo-12B-Instruct 0.29 ± 0.38 0.79 ± 0.26 (+0.50) 0.57 ± 0.32 0.72 ± 0.24

Takeaway 1: Dataset-level Prediction

• Both generalization loss and Pass@large k are effective predictors for post-RL performance
when optimizing SFT training configurations on a single dataset, providing higher-accuracy
estimates that help guide decisions and save significant compute.

• Both predictors excel at identifying correct rankings for post-RL performance, achieving ≥
0.90 Spearman correlation (30% improvements); generalization loss provides advantageous
prediction accuracy (R2) for post-RL performance with up to 2x improvements.

5.3 Use Case 2: Instance-Level Prediction

This use case addresses the challenge of SFT data selection, an instance-level optimization problem.
Here, the training pipeline is fixed, but we aim to select the optimal SFT dataset from a pool of
candidates curated with different strategies (e.g., selecting for shortest/longest solutions, diversity, etc.
Ye et al. (2025)). This scenario tests whether strong SFT performance on a given dataset translates to
a good final outcome after RL.
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Table 3: Spearman’s rank correlation between performance predicted from post-SFT models and the actual
performance after RL. Pass@64 achieve notable margins over prediction from Pass@1.

Spearman’s Rank/ Prediction based on SFT Pass@1 Prediction based on
Correlation / Models (avg. of 64) baseline SFT Pass@Large k (k=64)

Llama3-8B-Instruct 0.69 0.94 (+0.25)
Mistral-NeMo-12B-Instruct 0.70 0.98 (+0.28)

Table 4: Measuring prediction accuracy with coefficient of determination (R2). We randomly select 50% SFT
models and fit a linear function between their post-SFT performance and performance after RL, and use it to
predict for the other 50% SFT models. We repeat random sampling for 100 times and report standard errors.

Coefficient of determination Prediction based on SFT Pass@1 Prediction based on
(R2) / Models (avg. of 64) baseline SFT Pass@Large k (k=64)

Llama3-8B-Instruct 0.58 ± 0.20 0.92 ± 0.05 (+0.34)
Mistral-NeMo-12B-Instruct 0.73 ± 0.16 0.98 ± 0.01 (+0.25)

In this scenario, the generalization loss predictor is not applicable. Since each SFT dataset comes
from a different distribution, the validation loss includes a distributional gap component in addition
to generalization error. Without a common, representative validation set, it is difficult to make a fair
comparison. Pass@large k metric proves to be exceptionally robust. Since it measures the model’s
inherent capability to produce correct solutions, it is less sensitive to distributional shifts in the
training data. It can be used to effectively rank different SFT datasets and select the one with the
highest potential for RL, without needing to run any RL experiments for calibration.

Takeaway 2: Instance-level Prediction

• Pass@large k turns out highly accurate and robust in instance-level predictions, improving
Spearman correlation by up to 36% and prediction accuracy (R2)by up to 59%. It effectively
identifies datasets for strong post-RL performance and predicts RL outcomes.

• Generalization loss is not applicable for instance-level selection due to distributional gaps
between different datasets.

How to use them in practice? Our metrics support two primary workflows. If the goal is simply
to rank SFT candidates, one can use generalization loss to quickly filter out clearly suboptimal
models (i.e., those with both low performance and high loss). Then, Pass@large k can be used to
reliably rank the remaining candidates to identify the most promising one. If the goal is to predict
the final performance value—for instance, to inform trade-offs between SFT costs and expected
gains—practitioners can run RL on a small number of SFT models to gather calibration data. A linear
predictor can then be fitted using our proposed metrics, allowing for accurate performance estimation
across all SFT candidates without the need for exhaustive RL runs.

6 Conclusions
This work confronts a critical quagmire in reasoning post-training: the common assumption that high
SFT scores guarantee strong performance after subsequent RL. Through extensive experimentation
with Llama3/Mistral-Nemo/Qwen3 models spending >1M GPU hours, we provide broad counter-
examples where SFT performance is often misleading or biased toward simpler/repeated data. Our
primary contribution is the identification and validation of two more reliable predictors for post-RL
success: generalization loss on held-out reasoning examples and Pass@large k accuracy, improving
prediction accuracy (R2) and Spearman’s rank correlation by up to 0.5 (2x) over prediction from
post-SFT performance. By allowing practitioners to better predict the final outcome, our work helps
de-risk the expensive RL stage and streamline the entire post-training pipeline. We will open-source
our enhanced evaluation tool to facilitate broader adoption and further research. This work focuses
on mathematical reasoning. A natural next step is to study the topic in a wider range of reasoning
tasks (e.g., coding, science) and agentic use cases; Our study is limited to the prevailing paradigm
of online RL with GRPO. The relationship between SFT characteristics and post-RL performance
with other methods such as offline RL/DPO or other RL algorithms may worth further explorations;
Directly evaluating Pass@large k requires repeating evaluation for at least k times, which becomes
computational expensive with long sequence lengths. Estimating Pass@k accuracy from that of
smaller k holds the promise for more efficient evaluations (Schaeffer et al., 2025).
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A Additional SFT-RL Examples and Visualizations

A.1 Llama3-8B-Instruct

Figure 6 shows results on Llama3-8B-Instruct undergone SFT-RL with SFT examples from Llama-
Nemotron-SFT/AceReasoner1.1-SFT/OpenR1-Math (Hugging Face, 2025) dataset and RLVR via
GRPO on MATH dataset (train-split). Reporting average Pass@1 performance on MATH-500 (test-
split). High SFT scores can be biased toward simpler or more homogeneous data and are not reliably
predictive of subsequent RL gains or post-training effectiveness. SFT on fewer unique examples
repeated for more training epochs (ep) or/and with a larger learning rate (LR) leads to higher accuracy
on reasoning benchmarks such as MATH-500 (+8.75% vs. non-repeated data, left figure). However,
models trained this way show smaller improvements during RL (-1.43% vs. non-repeated). In
contrast, SFT on more diverse, non-repeated data—despite yielding lower initial SFT performance
(-5% vs. repeated data, middle/right figure)—results in significantly better post-RL performance
(+5.94%).

Figure 6: Llama3-8B-Instruct undergone SFT-RL with SFT examples from Llama-Nemotron-
SFT/AceReasoner1.1-SFT/OpenR1-Math dataset and RLVR via GRPO on MATH dataset (train-split). Reporting
average Pass@1 performance on MATH-500 (test-split). High SFT scores can be biased toward simpler or more
homogeneous data and are not reliably predictive of subsequent RL gains or post-training effectiveness. SFT
on fewer unique examples repeated for more training epochs (ep) or/and with a larger learning rate (LR) leads
to higher accuracy on reasoning benchmarks such as MATH-500 (+8.75% vs. non-repeated data, left figure).
However, models trained this way show smaller improvements during RL (-1.43% vs. non-repeated). In contrast,
SFT on more diverse, non-repeated data—despite yielding lower initial SFT performance (-5% vs. repeated data,
middle/right figure)—results in significantly better post-RL performance (+5.94%).

Figure 7 shows results on Llama3-8B-Instruct undergone SFT-RL with SFT examples from Llama-
Nemotron-SFT dataset and RLVR via GRPO on MATH dataset (train-split). Reporting Pass@1
performance averaged over 7 math benchmarks. High SFT scores can be biased toward simpler
examples and are not reliably predictive of subsequent RL gains or scaled-up post-training effec-
tiveness. For example, training on shortest examples (e.g., s10k, s500k) led to faster performance
improvements than training on randomly sampled examples (e.g., 10k, 200k) during SFT (lower
smaller dots). These shorter examples are closer to the model’s original generations and easier to
learn, though, these are not best examples for the model to gain reasoning capabilities in preparation
for RL. The final performance after RL (upper larger dots) is significantly lower.
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Figure 7: Llama3-8B-Instruct undergone SFT-RL with SFT examples from Llama-Nemotron-SFT dataset
and RLVR via GRPO on MATH dataset (train-split). Reporting Pass@1 performance averaged over 7 math
benchmarks. High SFT scores can be biased toward simpler examples and are not reliably predictive of
subsequent RL gains or scaled-up post-training effectiveness. For example, training on shortest examples (e.g.,
s10k, s500k) led to faster performance improvements than training on randomly sampled examples (e.g., 10k,
200k) during SFT (lower smaller dots). These shorter examples are closer to the model’s original generations and
easier to learn, though, these are not best examples for the model to gain reasoning capabilities in preparation for
RL. The final performance after RL (upper larger dots) is significantly lower.

A.2 Mistral-NeMo-12B-Instruct

Figure 8 shows results on Mistral-NeMo-12B-Instruct undergone SFT-RL with shortest SFT exam-
ples from AceReasoner1.1-SFT dataset and RLVR via GRPO on DeepScaleR dataset. Reporting
Pass@1 performance averaged over 7 math benchmarks. With increasing SFT examples, Mistral’s
post-SFT performance first dips and then gradually recovers and improves to performance better than
before SFT training. Compared to the base model, the final performance after RL also first dips and
then gradually goes up and improves to a better level. Notably, post-RL performance recovers to the
same level as the base model slower than the post-SFT performance. The post-SFT and post-RL
performance trends are not identical.

A.3 Qwen3-4B-base

Figure 9 shows results on Qwen3-4B-base undergone SFT-RL with shortest SFT examples from
AceReasoner1.1-SFT dataset and RLVR via GRPO on DeepScaleR dataset. Reporting Pass@1
performance averaged over 7 math benchmarks. With increasing SFT examples, Qwen3’s post-SFT
performances appear uncorrelated with the final performance after RL, where the latter remains the
same despite the substantially improved SFT performance.

Figure 10 shows results on Qwen3-4B-base undergone SFT-RL with Shortest/Longest/-
Longest+Shortest SFT examples from AceReasoner1.1-SFT dataset and RLVR via GRPO on
DeepScaleR dataset. Reporting Pass@1 performance averaged over 7 math benchmarks. All SFT
training substantially improves Qwen3’s post-SFT performance, but the final performance after RL is
mixed. Training on Longest and 10k Longest+10k Shortest SFT examples lead to visibly improved
final performance after RL where the latter achieves the best final performance for Qwen3 models in
this work. Other SFT training lead to significantly degraded final performance after RL.
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Figure 8: Mistral-NeMo-12B-Instruct undergone SFT-RL with shortest SFT examples from AceReasoner1.1-
SFT dataset and RLVR via GRPO on DeepScaleR dataset. Reporting Pass@1 performance averaged over 7
math benchmarks. With increasing SFT examples, Mistral’s post-SFT performance first dips and then gradually
recovers and improves to performance better than before SFT training. Compared to the base model, the final
performance after RL also first dips and then gradually goes up and improves to a better level. Notably, post-RL
performance recovers to the same level as the base model slower than the post-SFT performance. The post-SFT
and post-RL performance trends are not identical.

Figure 9: Qwen3-4B-base undergone SFT-RL with shortest SFT examples from AceReasoner1.1-SFT dataset
and RLVR via GRPO on DeepScaleR dataset. Reporting Pass@1 performance averaged over 7 math benchmarks.
With increasing SFT examples, Qwen3’s post-SFT performances appear uncorrelated with the final performance
after RL, where the latter remains the same despite the substantially improved SFT performance.

B Implementation Details

All experiments (SFT, RL, evaluation) are conducted on individual AWS (Mathew & Varia, 2014)
node with 8x NVIDIA A100 80GB GPU. Experiments spent >1M GPU hours on NVIDIA A100
80GB. We repeat RL training for 4+ runs on each data recipe and training paradigm (each run takes
up to 5 days), conduct 4+ evaluations on different checkpoints across RL training run, and report the
best performance for the model. We set the max sequence length to 8k tokens throughout SFT, RL,
and evaluation.

17



Figure 10: Qwen3-4B-base undergone SFT-RL with shortest/Longest/Longest+Shortest SFT examples from
AceReasoner1.1-SFT dataset and RLVR via GRPO on DeepScaleR dataset. Reporting Pass@1 performance
averaged over 7 math benchmarks. All SFT training substantially improves Qwen3’s post-SFT performance, but
the final performance after RL is mixed. Training on Longest and 10k Longest+10k Shortest SFT examples
lead to visibly improved final performance after RL where the latter achieves the best final performance for
Qwen3 models in this work. Other SFT training lead to significantly degraded final performance after RL.

B.1 Models and Datasets

We conduct three sets of experiments with SFT-RL post-training. On Llama3-8B-Instruct models,
we conduct SFT training with examples from Llama-Nemotron dataset (where we only select math
samples with responses generated by QwQ-32B (Team, 2025) or DeepSeek R1 (Guo et al., 2025),
hereinafter the same) and RL training on MATH dataset (train-split) (Hendrycks et al., 2021); on
Mistral-Nemo-12B-Instruct and Qwen3-4B-base, we conduct SFT training with examples from
AceReasoner1.1-SFT dataset and RL training on DeepScaleR dataset (Luo et al., 2025). For all
models, we conduct RL training for 3 epochs where each run takes up to 5 days.

B.2 Training

We conduct SFT training with LLaMA-Factory (Zheng et al., 2024) using learning rates lr=1e-5 and
global batch size = 128, and RL training via GRPO with verl (Sheng et al., 2024) using learning rates
lr=1e-6 and global batch size = 128. We sample 16 rollouts for each question with temperature=1.0.
We set KL loss coefficient=0 and entropy coefficient=0.001.

B.3 Evaluation

Evaluations are conducted with pipelines originally developed in this work based on vllm (Kwon
et al., 2023) and HuggingFace’s math-verify (Kydlíček, 2025), enabling efficient inference with
performant and accurate verification. We ran evaluations with the same template and generation
configuration as in RL, using decoding temperature t=1.0 and the standard reasoning prompt (“Let’s
think step by step and output the final answer within \\boxed{}.”).

We evaluate task performance on 7 math benchmarks, including MATH-500 (Hendrycks et al., 2021),
AIME 1983-2024 (Veeraboina, 2023), GSM8k (Cobbe et al., 2021), AIME 2025 (of America,
2025), AMC (Competitions, 2025), Olympiad (He et al., 2024), Minerva (Lewkowycz et al., 2022),
and report model performance as Pass@1 averaged over 64 repetitions and across 7 tasks. For the
proposed predictors, we evaluate the generalization loss on the validation set of the SFT data and
Pass@64 accuracy averaged over 256 repetitions.
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C Additional Experimental Results

C.1 Dataset-level

Table 5 shows results on Llama3-8B-Instruct undergone SFT-RL with SFT examples from Llama-
Nemotron-SFT dataset and RLVR via GRPO on MATH dataset (train-split). Reporting Pass@1
performance averaged over 7 math benchmarks. Measuring prediction accuracy with coefficient of
determination (R2) varying the ratio of fit-validation datapoints. We randomly select x SFT models
and fit a linear function between their post-SFT performance and performance after RL, and use it to
predict for the rest SFT models. We repeat random sampling for 100 times and report standard errors.

Table 6 shows results on Mistral-NeMo-12B-Instruct undergone SFT-RL with SFT examples from
AceReasoner1.1-SFT dataset and RLVR via GRPO on DeepScaleR dataset. Measuring prediction ac-
curacy with coefficient of determination (R2) varying the ratio of fit-validation datapoints. Reporting
Pass@1 performance averaged over 7 math benchmarks. We randomly select x SFT models and fit a
linear function between their post-SFT performance and performance after RL, and use it to predict
for the rest SFT models. We repeat random sampling for 100 times and report standard errors.

Table 5: Llama3-8B-Instruct undergone SFT-RL with SFT examples from Llama-Nemotron-SFT
dataset and RLVR via GRPO on MATH dataset (train-split). Reporting Pass@1 performance averaged
over 7 math benchmarks. Measuring prediction accuracy with coefficient of determination (R2)
varying the ratio of fit-validation datapoints. We randomly select x SFT models and fit a linear
function between their post-SFT performance and performance after RL, and use it to predict for the
rest SFT models. We repeat random sampling for 100 times and report standard errors.

No. of Fitting-Validation Prediction based on Prediction based on Prediction based on Avg. Prediction from
Datapoints / Coefficient of SFT Pass@1 (avg. SFT Generalization SFT Pass@Large k SFT Gen. Loss +
determination (R2) of 64) baseline Loss (k=64) Pass@Large k (64)

Fitting: 3; Validation: 13 0.48 ± 0.40 0.80 ± 0.33 0.80 ± 0.23 0.86 ± 0.22 (+0.38)
Fitting: 4; Validation: 12 0.57 ± 0.29 0.82 ± 0.21 0.84 ± 0.15 0.92 ± 0.08 (+0.35)
Fitting: 5; Validation: 11 0.57 ± 0.29 0.88 ± 0.09 0.87 ± 0.10 0.94 ± 0.04 (+0.37)
Fitting: 6; Validation: 10 0.57 ± 0.26 0.89 ± 0.07 0.87 ± 0.10 0.95 ± 0.03 (+0.38)
Fitting: 7; Validation: 9 0.64 ± 0.19 0.89 ± 0.07 0.90 ± 0.06 0.95 ± 0.05 (+0.31)
Fitting: 8; Validation: 8 0.64 ± 0.20 0.88 ± 0.08 0.88 ± 0.08 0.93 ± 0.05 (+0.29)
Fitting: 10; Validation: 6 0.59 ± 0.33 0.85 ± 0.17 0.85 ± 0.15 0.94 ± 0.05 (+0.35)
Fitting: 12; Validation: 4 0.54 ± 0.43 0.86 ± 0.18 0.81 ± 0.23 0.91 ± 0.12 (+0.37)

Table 6: Mistral-NeMo-12B-Instruct undergone SFT-RL with SFT examples from AceReasoner1.1-
SFT dataset and RLVR via GRPO on DeepScaleR dataset. Measuring prediction accuracy with
coefficient of determination (R2) varying the ratio of fit-validation datapoints. Reporting Pass@1
performance averaged over 7 math benchmarks. We randomly select x SFT models and fit a linear
function between their post-SFT performance and performance after RL, and use it to predict for the
rest SFT models. We repeat random sampling for 100 times and report standard errors.

No. of Fitting-Validation Prediction based on Prediction based on Prediction based on Avg. Prediction from
Datapoints / Coefficient of SFT Pass@1 (avg. SFT Generalization SFT Pass@Large k SFT Gen. Loss +
determination (R2) of 64) baseline Loss (k=64) Pass@Large k (64)

Fitting: 3; Validation: 7 0.32 ± 0.39 0.73 ± 0.41 (+0.41) 0.52 ± 0.31 0.61 ± 0.38

Fitting: 4; Validation: 6 0.27 ± 0.36 0.75 ± 0.34 (+0.48) 0.51 ± 0.37 0.69 ± 0.26

Fitting: 5; Validation: 5 0.29 ± 0.38 0.79 ± 0.26 (+0.50) 0.57 ± 0.32 0.72 ± 0.24

Fitting: 6; Validation: 4 0.37 ± 0.37 0.78 ± 0.25 (+0.41) 0.57 ± 0.37 0.67 ± 0.35

Fitting: 7; Validation: 3 0.36 ± 0.36 0.77 ± 0.30 (+0.41) 0.57 ± 0.35 0.66 ± 0.37

Fitting: 8; Validation: 2 0.31 ± 0.46 0.68 ± 0.36 (+0.37) 0.47 ± 0.54 0.64 ± 0.37

C.2 Instance-level

Table 7 shows results on Llama3-8B-Instruct undergone SFT-RL with SFT examples from Llama-
Nemotron-SFT dataset and RLVR via GRPO on MATH dataset (train-split). Reporting Pass@1
performance averaged over 7 math benchmarks. Measuring prediction accuracy with coefficient of
determination (R2) varying the ratio of fit-validation datapoints. We randomly select x SFT models
and fit a linear function between their post-SFT performance and performance after RL, and use it to
predict for the rest SFT models. We repeat random sampling for 100 times and report standard errors.
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Table 8 shows results on Llama3-8B-Instruct undergone SFT-RL with SFT examples from Llama-
Nemotron-SFT dataset and RLVR via GRPO on MATH dataset (train-split). Reporting Pass@1
performance averaged over 7 math benchmarks. Spearman’s rank correlation between performance
predicted from post-SFT models and the actual performance after RL, grouped by different SFT
training budget.

Table 7: Llama3-8B-Instruct undergone SFT-RL with SFT examples from Llama-Nemotron-SFT
dataset and RLVR via GRPO on MATH dataset (train-split). Reporting Pass@1 performance averaged
over 7 math benchmarks. Measuring prediction accuracy with coefficient of determination (R2)
varying the ratio of fit-validation datapoints. We randomly select x SFT models and fit a linear
function between their post-SFT performance and performance after RL, and use it to predict for the
rest SFT models. We repeat random sampling for 100 times and report standard errors.

No. of Fitting-Validation Datapoints/ Prediction based on SFT Pass@1 Prediction based on
Coefficient of determination (R2) (avg. of 64) baseline SFT Pass@Large k (k=64)

Fitting: 3; Validation: 14 0.40 ± 0.31 0.89 ± 0.10 (+0.49)
Fitting: 4; Validation: 13 0.49 ± 0.30 0.89 ± 0.17 (+0.40)
Fitting: 5; Validation: 12 0.55 ± 0.22 0.91 ± 0.05 (+0.36)
Fitting: 6; Validation: 11 0.54 ± 0.30 0.92 ± 0.04 (+0.38)
Fitting: 7; Validation: 10 0.55 ± 0.24 0.92 ± 0.04 (+0.37)
Fitting: 8; Validation: 9 0.58 ± 0.20 0.92 ± 0.05 (+0.34)
Fitting: 10; Validation: 7 0.56 ± 0.25 0.92 ± 0.05 (+0.36)
Fitting: 12; Validation: 5 0.57 ± 0.28 0.92 ± 0.05 (+0.35)

Table 8: Llama3-8B-Instruct undergone SFT-RL with SFT examples from Llama-Nemotron-SFT
dataset and RLVR via GRPO on MATH dataset (train-split). Reporting Pass@1 performance averaged
over 7 math benchmarks. Spearman’s rank correlation between performance predicted from post-SFT
models and the actual performance after RL, grouped by different SFT training budget.

SFT Compute Budget/ Prediction based on SFT Pass@1 Prediction based on
Spearman’s Rank Correlation (avg. of 64) baseline SFT Pass@Large k (k=64)

Low Budget (< 2B tokens) 0.77 0.99 (+0.22)
Medium Budget (2 ∼ 5B tokens) 0.60 0.90 (+0.30)
High Budget (5 ∼ 20B tokens) 0.70 0.94 (+0.24)

Average 0.69 0.94 (+0.25)

Table 9 shows results on Mistral-NeMo-12B-Instruct undergone SFT-RL with SFT examples from
AceReasoner1.1-SFT dataset and RLVR via GRPO on DeepScaleR dataset. Measuring prediction
accuracy with coefficient of determination (R2) varying the ratio of fit-validation datapoints. Mistral-
NeMo-12B-Instruct undergone SFT-RL with SFT examples from AceReasoner1.1-SFT dataset and
RLVR via GRPO on DeepScaleR dataset. Reporting Pass@1 performance averaged over 7 math
benchmarks. We randomly select x SFT models and fit a linear function between their post-SFT
performance and performance after RL, and use it to predict for the rest SFT models. We repeat
random sampling for 100 times and report standard errors.

Table 10 shows results on Mistral-NeMo-12B-Instruct undergone SFT-RL with SFT examples from
AceReasoner1.1-SFT dataset and RLVR via GRPO on DeepScaleR dataset. Reporting Pass@1
performance averaged over 7 math benchmarks. Spearman’s rank correlation between performance
predicted from post-SFT models and the actual performance after RL, grouped by different SFT
training budget.
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Table 9: Mistral-NeMo-12B-Instruct undergone SFT-RL with SFT examples from AceReasoner1.1-
SFT dataset and RLVR via GRPO on DeepScaleR dataset. Measuring prediction accuracy with
coefficient of determination (R2) varying the ratio of fit-validation datapoints. Mistral-NeMo-12B-
Instruct undergone SFT-RL with SFT examples from AceReasoner1.1-SFT dataset and RLVR via
GRPO on DeepScaleR dataset. Reporting Pass@1 performance averaged over 7 math benchmarks.
We randomly select x SFT models and fit a linear function between their post-SFT performance and
performance after RL, and use it to predict for the rest SFT models. We repeat random sampling for
100 times and report standard errors.

No. of Fitting-Validation Datapoints/ Prediction based on SFT Pass@1 Prediction based on
Coefficient of determination (R2) (avg. of 64) baseline SFT Pass@Large k (k=64)

Fitting: 2; Validation: 10 0.55 ± 0.42 0.87 ± 0.29 (+0.32)
Fitting: 3; Validation: 9 0.71 ± 0.15 0.94 ± 0.18 (+0.23)
Fitting: 4; Validation: 8 0.69 ± 0.22 0.98 ± 0.03 (+0.29)
Fitting: 5; Validation: 7 0.75 ± 0.10 0.98 ± 0.01 (+0.23)
Fitting: 6; Validation: 6 0.73 ± 0.16 0.98 ± 0.01 (+0.25)
Fitting: 8; Validation: 4 0.69 ± 0.35 0.97 ± 0.03 (+0.28)
Fitting: 10; Validation: 2 0.68 ± 0.42 0.91 ± 0.17 (+0.23)

Table 10: Mistral-NeMo-12B-Instruct undergone SFT-RL with SFT examples from AceReasoner1.1-
SFT dataset and RLVR via GRPO on DeepScaleR dataset. Reporting Pass@1 performance averaged
over 7 math benchmarks. Spearman’s rank correlation between performance predicted from post-SFT
models and the actual performance after RL, grouped by different SFT training budget.

SFT Compute Budget/ Prediction based on SFT Pass@1 Prediction based on
Spearman’s Rank Correlation (avg. of 64) baseline SFT Pass@Large k (k=64)

Low Budget (< 2B tokens) 0.80 0.95 (+0.25)
Medium Budget (2 ∼ 5B tokens) 0.80 1.00 (+0.20)
High Budget (5 ∼ 20B tokens) 0.50 1.00 (+0.50)

Average 0.70 0.98 (+0.28)
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D Sample SFT Examples

D.1 Shortest Examples

A sample Shortest Examples from Llama-Nemotron Post-Training Dataset (Singhal et al.) (∼750
tokens):

[Input]:

So lve t h e f o l l o w i n g math problem . Make s u r e t o p u t t h e answer ( and
on ly answer ) i n s i d e \ \ boxed { } . \ n \ nThe p r o b a b i l i t y o f snow on

1 s t J a n u a r y i s 1 / 2 0 . What i s t h e p r o b a b i l i t y t h a t snow w i l l
f a l l on t h e n e x t 1 s t J a n u a r y ?"

[Output]:

< t h i n k > Okay , so I have t h i s problem h e r e : " The p r o b a b i l i t y o f
snow on 1 s t J a n u a r y i s 1 / 2 0 . What i s t h e p r o b a b i l i t y t h a t snow

w i l l f a l l on t h e n e x t 1 s t J a n u a r y ?" Hmm, l e t ’ s s e e . A l r i g h t ,
t h e q u e s t i o n i s a s k i n g f o r t h e p r o b a b i l i t y t h a t i t w i l l snow
n e x t J a n u a r y 1 s t , g i v e n t h a t t h e p r o b a b i l i t y i s 1 / 2 0 . Wait , i s

t h e r e more t o t h i s ? Le t me check a g a i n . Wait , maybe I
m i s r e a d . The o r i g i n a l p r o b a b i l i t y i s 1 /20 f o r snow on J a n u a r y
1 s t , and t h e y want t h e p r o b a b i l i t y i t w i l l snow on t h e n e x t
J a n u a r y 1 s t . Hmm. That seems s t r a i g h t f o r w a r d . But maybe t h e r e ’
s a t r i c k h e r e ? Like , a r e t h e y assuming each y e a r i s
i n d e p e n d e n t ? Because i f t h e p r o b a b i l i t y each y e a r i s
i n d e p e n d e n t , t h e n i t ’ s j u s t 1 /20 a g a i n . But maybe t h e q u e s t i o n

i s d i f f e r e n t ? Wait , maybe t h e wording i s t r i c k y . Le t me p a r s e
i t a g a i n . " The p r o b a b i l i t y o f snow on 1 s t J a n u a r y i s 1 / 2 0 .

What i s t h e p r o b a b i l i t y t h a t snow w i l l f a l l on t h e n e x t 1 s t
J a n u a r y ?" So , " n e x t " a s i n t h e f o l l o w i n g y e a r ? So n e x t year ’ s
J a n u a r y 1 s t . So i f each year ’ s s n o w f a l l i s i n d e p e n d e n t , t h e n
t h e p r o b a b i l i t y r e m a i n s 1 / 2 0 . But maybe t h e r e ’ s some h id de n
a s s u m p t i o n h e r e . Wait , somet imes i n p r o b a b i l i t y problems , t h e y

might be t a l k i n g a b o u t c o n d i t i o n a l p r o b a b i l i t i e s o r some th ing
e l s e . But t h i s problem doesn ’ t ment ion any p r e v i o u s e v e n t s o r
d e p e n d e n c i e s . I t j u s t s t a t e s t h e p r o b a b i l i t y i s 1 / 2 0 . So i f

each o c c u r r e n c e i s i n d e p e n d e n t , t h e n t h e p r o b a b i l i t y doesn ’ t
change . So n e x t year ’ s p r o b a b i l i t y i s a l s o 1 / 2 0 . Wait , b u t
l e t me t h i n k a g a i n . Maybe t h e problem i s i n a n o t h e r l a n g u a g e
o r i g i n a l l y , and " n e x t " i s b e i n g t r a n s l a t e d as " t h e n e x t
o c c u r r e n c e " o r some th ing ? But no , i t ’ s a b o u t " n e x t 1 s t J a n u a r y
" . So l i k e , t h e n e x t t ime J a n u a r y 1 s t comes around , which
would be t h e f o l l o w i n g y e a r . So i n t e r m s of p r o b a b i l i t y ,
assuming each y e a r i s an i n d e p e n d e n t even t , t h e p r o b a b i l i t y i s

t h e same each year , r i g h t ? So i f t h e p r o b a b i l i t y o f snow on
any g i v e n J a n u a r y 1 s t i s 1 / 2 0 , t h e n r e g a r d l e s s o f p r e v i o u s
y e a r s , t h e n e x t one would a l s o be 1 / 2 0 . A l t e r n a t i v e l y , c o u l d

i t be t h a t t h e problem i s a s k i n g f o r t h e p r o b a b i l i t y t h a t i t
w i l l snow n e x t y e a r g i v e n t h a t i t snowed t h i s y e a r ? But t h e
problem doesn ’ t say a n y t h i n g a b o u t p r i o r s n o w f a l l . I t j u s t
g i v e s t h e base r a t e . So I t h i n k t h e answer i s 1 / 2 0 . Le t me
c o n f i r m . Another a n g l e : somet imes p e o p l e c o n f u s e " p r o b a b i l i t y

o f snow on a s p e c i f i c day " wi th " p r o b a b i l i t y o f snow i n a
y e a r " b u t h e r e i t ’ s s p e c i f i c a l l y on 1 s t J a n u a r y each y e a r . So
i f t h e p r o b a b i l i t y each y e a r on t h a t d a t e i s 1 / 2 0 , t h e n n e x t
year ’ s i s a l s o 1 / 2 0 . U n l e s s t h e r e ’ s a p a t t e r n , b u t t h e problem

doesn ’ t i n d i c a t e t h a t . So I t h i n k t h e answer i s 1 / 2 0 . So I
j u s t need t o w r i t e t h a t i n a box . Wait , maybe I need t o make
s u r e i f t h e problem i s i n a d i f f e r e n t c o n t e x t . For example ,
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maybe i t ’ s a d i f f e r e n t p l a c e where t h e n e x t J a n u a r y 1 s t i s i n
t h e s o u t h e r n h e m i s p h e r e ? But t h a t ’ s o v e r c o m p l i c a t i n g . The
problem i s l i k e l y t e s t i n g u n d e r s t a n d i n g o f i n d e p e n d e n t e v e n t s .

So t h e answer i s 1 / 2 0 . </ t h i n k > \ boxed { \ d f r a c {1}{20}}
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A sample Shortest Examples from AceReasoner1.1-SFT Dataset (Liu et al., 2025b) (∼700 tokens):

[Input]:

A t r a i n 18 m long p a s s e s a p o l e i n 9 s e c o n d s . How long w i l l i t
t a k e t o p a s s a b r i d g e 36 m long ?

[Output]:

< t h i n k > Okay , so I need t o f i g u r e o u t how long i t t a k e s f o r a
t r a i n t h a t ’ s 18 m e t e r s l ong t o p a s s a b r i d g e t h a t ’ s 36 m e t e r s
long . The problem a l r e a d y s a y s t h a t i t t a k e s 9 s e c o n d s f o r t h e

t r a i n t o p a s s a p o l e . Le t me s t a r t by u n d e r s t a n d i n g what t h a t
means . When t h e t r a i n p a s s e s a pole , t h e e n t i r e l e n g t h o f

t h e t r a i n has t o go by t h e p o l e . So , i f t h e t r a i n i s 18 m e t e r s
long and i t t a k e s 9 s e c o n d s t o p a s s t h e pole , t h a t means t h e

f r o n t o f t h e t r a i n p a s s e s t h e pole , and t h e n 9 s e c o n d s l a t e r ,
t h e end of t h e t r a i n p a s s e s t h e p o l e . So , i n 9 seconds , t h e
t r a i n t r a v e l s a d i s t a n c e e q u a l t o i t s own l e n g t h , which i s 18
m e t e r s . From t h i s , I can c a l c u l a t e t h e speed o f t h e t r a i n .
Speed i s d i s t a n c e d i v i d e d by t ime . So , speed = 18 m e t e r s / 9
s e c o n d s . Le t me compute t h a t . 18 d i v i d e d by 9 i s 2 . So , t h e
t r a i n ’ s speed i s 2 m e t e r s p e r second . Hmm, t h a t seems r i g h t .
Now, t h e q u e s t i o n i s a b o u t p a s s i n g a b r i d g e t h a t ’ s 36 m e t e r s
long . To p a s s a b r i d g e , t h e t r a i n has t o c o v e r t h e e n t i r e
l e n g t h o f t h e b r i d g e p l u s i t s own l e n g t h . Why? Because f i r s t
t h e f r o n t o f t h e t r a i n has t o c r o s s t h e e n t i r e b r i d g e , and
t h e n t h e end of t h e t r a i n has t o e x i t t h e b r i d g e . So , t h e
t o t a l d i s t a n c e t h e t r a i n needs t o c o v e r i s t h e l e n g t h o f t h e
b r i d g e p l u s t h e l e n g t h o f t h e t r a i n . So t h a t would be 36
m e t e r s p l u s 18 mete r s , which i s 54 m e t e r s . So , t h e t r a i n
needs t o t r a v e l 54 m e t e r s t o c o m p l e t e l y p a s s t h e b r i d g e . S i n c e

t h e speed i s 2 m e t e r s p e r second , t h e t ime i t t a k e s i s t h e
t o t a l d i s t a n c e d i v i d e d by speed . Time = 54 m e t e r s / 2 m e t e r s
p e r second . Le t me c a l c u l a t e t h a t . 54 d i v i d e d by 2 i s 2 7 . So ,
i t s h o u l d t a k e 27 s e c o n d s . Wait , l e t me double − check t o make
s u r e I didn ’ t mix up a n y t h i n g . The f i r s t p a r t : p a s s i n g a p o l e
t a k e s 9 s e c o n d s f o r 18 m e t e r s . So speed i s 18 /9 = 2 m/ s . Then ,

b r i d g e i s 36 m e t e r s . So , when p a s s i n g t h e b r i d g e , t h e f r o n t
o f t h e t r a i n has t o go 36 m e t e r s t o g e t t o t h e end of t h e
b r i d g e , and t h e n t h e e n t i r e t r a i n has t o c l e a r i t , which i s
a n o t h e r 18 m e t e r s . So t o t a l d i s t a n c e i s i n d e e d 36 + 18 = 54
m e t e r s . Time i s 54 / 2 = 27 s e c o n d s . Yeah , t h a t makes s e n s e .
A l t e r n a t i v e l y , maybe someone might t h i n k you j u s t need t o
c o v e r t h e b r i d g e ’ s l e n g t h , b u t no , t h e t r a i n ’ s own l e n g t h has
t o be c o n s i d e r e d t o o . Because u n t i l t h e l a s t p a r t o f t h e t r a i n

i s o f f t h e b r i d g e , t h e b r i d g e i s n ’ t c o m p l e t e l y p a s s e d . So ,
ad d i ng t h e two l e n g t h s i s c o r r e c t . T h e r e f o r e , 27 s e c o n d s
s h o u l d be t h e r i g h t answer . </ t h i n k > The t r a i n ’ s speed i s \ (
\ f r a c {18 \ t e x t { m}}{9 \ t e x t { s }} = 2 \ t e x t { m/ s } \ ) . To p a s s a

36 m b r i d g e , t h e t o t a l d i s t a n c e needed i s \ ( 36 \ t e x t { m} +
18 \ t e x t { m} = 54 \ t e x t { m} \ ) . Time r e q u i r e d i s \ ( \ f r a c {54 \
t e x t { m}}{2 \ t e x t { m/ s }} = 27 \ t e x t { s e c o n d s } \ ) . \ boxed {27}
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D.2 Longest Examples

A sample Longest Examples from AceReasoner1.1-SFT Dataset (Liu et al., 2025b) (∼8k tokens):

[Input]:

For s e t s $A$ , $B$ , and $C$ , where $n (A) $ , $n (B) $ , and $n (C) $
d e n o t e t h e number o f s u b s e t s o f $A$ , $B$ , and $C$
r e s p e c t i v e l y , and $ \ l e f t | A \ r i g h t | = \ l e f t | B \ r i g h t |
= 100$ , i f $n (A) + n (B) + n (C) = n (A \ cap B \ cap C) $ ,

what i s t h e minimum p o s s i b l e v a l u e o f $ \ l e f t | A \ cap B \
cap C \ r i g h t | $ ?}

[Output]:

Okay , l e t ’ s t r y t o t a c k l e t h i s problem . Hmm, so we have t h r e e s e t s
A, B , and C . The problem s t a t e s t h a t n (A) , n (B) , and n (C) a r e
t h e number o f s u b s e t s o f each s e t . Wait , b u t u s u a l l y , t h e

number o f s u b s e t s o f a s e t w i th s i z e k i s 2^ k . So maybe n (A)
i s 2 ^ |A | , n (B) i s 2 ^ |B | , and s i m i l a r l y f o r n (C) . Le t me check :

t h e problem s a y s " n (A) , n (B) , and n (C) d e n o t e t h e number o f
s u b s e t s o f A, B , and C r e s p e c t i v e l y . " Yep , so t h a t means n (A)
= 2 ^ { |A | } , n (B) = 2 ^ { |B | } , n (C) = 2 ^ { |C | } .

Given t h a t | A | = | B | = 1 0 0 . So n (A) = 2^100 , n (B) = 2 ^1 0 0 . The
e q u a t i o n g i v e n i s n (A) + n (B) + n (C) = n (A B C) . So
t h a t t r a n s l a t e s t o 2^100 + 2^100 + 2 ^ { |C | } = 2 ^ { |A B C
| } .

Wait , t h e r i g h t −hand s i d e i s t h e number o f s u b s e t s o f t h e
i n t e r s e c t i o n o f A, B , and C . The number o f s u b s e t s o f a s e t i s
2^{ c a r d i n a l i t y o f t h e s e t } , so n (A B C) = 2 ^ { |A B

C | } .

So t h e e q u a t i o n i s 2^100 + 2^100 + 2 ^ { |C | } = 2^{ k } , where k i s | A
B C | , and we need t o f i n d t h e minimal p o s s i b l e k .

Le t me s i m p l i f y t h e l e f t −hand s i d e . 2^100 + 2^100 i s 2*2^100 =
2 ^ 1 01 . So l e f t −hand s i d e i s 2^101 + 2 ^ { |C | } . So 2^101 + 2 ^ { |C
| } = 2^ k .

We need t o f i n d t h e s m a l l e s t p o s s i b l e k such t h a t t h i s e q u a t i o n
ho lds , g i v e n t h a t | C | can be a d j u s t e d ( I t h i n k we can choose |
C | a s p a r t o f f i n d i n g t h e minimum? Wait , no . The problem i s
a b o u t t h e minimal | A B C | , g i v e n t h a t t h e e q u a t i o n
h o l d s . So we need t o f i n d t h e minimal k such t h a t 2^101 + 2 ^ { |
C | } = 2^k , and a l s o c o n s i d e r i n g t h e r e l a t i o n s h i p s between t h e
s e t s A, B , C .

Wait , b u t how i s | C | r e l a t e d t o A and B? Because A, B , and C a r e
j u s t s e t s , b u t t h e problem doesn ’ t s p e c i f y any c o n s t r a i n t s on
t h e i r r e l a t i o n s h i p s e x c e p t t h r o u g h t h e i r i n t e r s e c t i o n A B

C . Hmm. Wait , b u t t h e number o f s u b s e t s o f C , which i s
2 ^ { |C | } , i s p a r t o f t h e e q u a t i o n . But a l s o , t h e i n t e r s e c t i o n A

B C i s a s u b s e t o f C , r i g h t ? Because t h e i n t e r s e c t i o n
o f A, B , and C i s a s u b s e t o f each o f them . So | A B C

| | C | . So t h e c a r d i n a l i t y o f t h e i n t e r s e c t i o n can ’ t be
more t h a n t h e c a r d i n a l i t y o f C . But i n our e q u a t i o n , 2^{ k} i s
e q u a l t o 2^101 + 2 ^ { |C | } , so 2^{ k} = 2 ^ { |C | } + 2 ^ 1 0 1 .
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So we need t o f i n d i n t e g e r s | C | and k such t h a t k | C | ( s i n c e
t h e i n t e r s e c t i o n can ’ t be l a r g e r t h a n C) , and 2^{ k} = 2^{101}
+ 2 ^ { |C | } . Also , k must be an i n t e g e r b e c a u s e i t ’ s t h e
c a r d i n a l i t y o f a s e t .

Wait , b u t how can we s o l v e t h i s e q u a t i o n ? Le t me t h i n k . Let ’ s
d e n o t e m = | C | and k = | A B C | , so we have 2^ k =
2^{101} + 2^m. We need t o f i n d t h e minimal k such t h a t t h e r e
e x i s t s m wi th m k and 2^ k = 2^{101} + 2^m.

But wai t , i f m i s g r e a t e r t h a n or e q u a l t o k , t h e n 2^m i s a
m u l t i p l e o f 2^ k . But 2^ k = 2^{101} + 2^m. I f m > 101 , t h e n 2^m

i s l a r g e r t h a n 2^{101} , so 2^{101} + 2^m = 2^m (1 + 2^{101 −
m} ) . For t h i s t o be e q u a l t o 2^k , 1 + 2^{101 − m} must be a
power o f two . Let ’ s w r i t e :

Le t m k , and 2^ k = 2^{101} + 2^m. Let ’ s c o n s i d e r c a s e s where m
> 101 and m 1 0 1 .

Case 1 : m > 1 0 1 . Then 2^ k = 2^{101} + 2^m = 2^{101}(1 + 2^{m −
101}) . For t h i s t o be a power o f two , 1 + 2^{m − 101} must be
a power o f two . L e t s s e t t = m − 101 , which i s p o s i t i v e
s i n c e m > 1 0 1 . Then 1 + 2^ t must be a power o f two . 1 + 2^ t =
2^ s , f o r some s . So 2^ s − 2^ t = 1 . Th i s i s p o s s i b l e on ly i f t
= 0 , s i n c e 2^ s − 1 = 2^ t , b u t t must be p o s i t i v e h e r e ( s i n c e m

> 101 i m p l i e s t 1 ) . But 2^ s − 2^ t =1 . I f t 1 , 2^ t
d i v i d e s t h e l e f t −hand s i d e , so 2^ t must d i v i d e 1 , which i s
on ly p o s s i b l e i f t =0 , which c o n t r a d i c t s t 1 . T h e r e f o r e ,
t h e r e i s no s o l u t i o n i n t h i s c a s e .

Case 2 : m 1 0 1 . Then 2^ k = 2^{101} + 2^m. Let ’ s f a c t o r o u t 2^m:
2^ k = 2^m (1 + 2^{101 − m} ) . S i n c e m 101 , 101 − m 0 , so
e x p o n e n t i s non − n e g a t i v e . For t h e r i g h t −hand s i d e t o be a

power o f two , (1 + 2^{101 − m} ) must be a power o f two .
L e t s d e n o t e t = 101 − m. Then 1 + 2^ t must be a power o f

two . So , 1 + 2^ t = 2^ s . Th i s e q u a t i o n h o l d s when t i s such
t h a t 2^ t +1 i s a power o f two .

Looking a t t h i s , 2^ t +1 = 2^ s . The on ly s o l u t i o n s f o r t h i s i n
i n t e g e r s a r e when t =0 , t h e n 2^0 +1=2=2^1 , so s =1 . Another
p o s s i b i l i t y might be t =1 : 2+1=3 , which i s n o t a power o f two .
t =2 :4+1=5; nope . t =3 :8+1=9; s t i l l n o t . So t h e on ly s o l u t i o n i s

t =0 , l e a d i n g t o 1+1=2. So t =0 => 1 + 2^0 = 2 . T h e r e f o r e , t =0 ,
so 101 − m = 0 => m =101. Then 1 + 2^{0}=2 , so t h e e q u a t i o n

becomes 2^ k = 2^101 + 2^101 = 2^101 *2 = 2^ 1 0 2 . T h e r e f o r e , k
=102 .

Wait , b u t m i s 101 , and k must be m, b u t h e r e k =102 , which
would be g r e a t e r t h a n m=101 . But t h a t c o n t r a d i c t s t h e
r e q u i r e m e n t t h a t k m. So t h i s i s i m p o s s i b l e .

T h e r e f o r e , i n c a s e 2 , even though we have t =0 l e a d i n g t o m=101 and
k =102 , which would r e q u i r e k=102 > m=101 , v i o l a t i n g t h e

c a r d i n a l i t y c o n d i t i o n . T h e r e f o r e , t h i s i s n o t a c c e p t a b l e .

Hmm, so n e i t h e r c a s e 1 nor c a s e 2 g i v e s us a v a l i d s o l u t i o n . Wait ,
t h a t can ’ t be . Maybe t h e r e ’ s an e r r o r i n my r e a s o n i n g h e r e .

Le t me check a g a i n .
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Wait , when we c o n s i d e r e d m 101 and t =101 −m. So i f t =0 , t h e n m
=101 , t h e n t h e e q u a t i o n becomes 2^ k = 2^101 + 2^101 = 2^102 ,
so k =102 . But s i n c e m=101 , t h e n t h e i n t e r s e c t i o n k must be

101 , b u t h e r e k =102 , which i s g r e a t e r . So t h a t ’ s i m p o s s i b l e
. So t h a t doesn ’ t work . T h e r e f o r e , i n c a s e 2 , t h e r e a r e no
s o l u t i o n s e i t h e r .

Hmm, so does t h a t mean t h e r e i s no s o l u t i o n ? But t h e problem
s t a t e s " what i s t h e minimum p o s s i b l e v a l u e o f | A B C
| " , i m p l y i n g t h a t t h e r e i s a s o l u t i o n . So p e r h a p s my a p p r o a c h
i s m i s s i n g some th ing .

Wait , maybe I need t o c o n s i d e r t h a t C can be a s u b s e t o f A B
C? No , a c t u a l l y , A B C i s a s u b s e t o f C , so t h e

s i z e can ’ t exceed | C | . So p e r h a p s I need t o a d j u s t t h e
e q u a t i o n ? Or maybe my i n i t i a l t r a n s l a t i o n o f t h e problem i s
wrong .

Wait , l e t me go back t o t h e problem s t a t e m e n t . I t s a y s : For s e t s A
, B , and C , where n (A) , n (B) , and n (C) d e n o t e t h e number o f
s u b s e t s o f A, B , and C r e s p e c t i v e l y , and | A | = | B | = 100 , i f n
(A) + n (B) + n (C) = n (A B C) , what i s t h e minimum
p o s s i b l e v a l u e o f | A B C | ?

Wait , so n (A B C) i s t h e number o f s u b s e t s o f A B
C . So t h a t i s 2 ^ { |A B C | } . S i m i l a r l y , n (A) = 2 ^ { |A
| } = 2 ^ 1 0 0 , n (B) =2^100 , n (C) = 2 ^ { |C | } . So 2^100 + 2^100 + 2 ^ { |C | }
= 2 ^ { |A B C | } .

So yes , a s b e f o r e , 2^{101} + 2 ^ { |C | } = 2^{ k } , where k i s | A B
C | . We need t o f i n d t h e minimal k such t h a t t h i s ho lds ,

w i th | C | k . So k | C | .

Wait , p e r h a p s | C | can be l a r g e r t h a n k . Wait , b u t we need t o f i n d
t h e minimal k . So t o min imize k , we need t o make t h e r i g h t −
hand s i d e as s m a l l a s p o s s i b l e , so 2^{ k} must be j u s t enough
t o ho ld 2^{101} + 2 ^ { |C | } . But | C | can be as l a r g e as needed ?
Wait , b u t | C | i s p a r t o f t h e e q u a t i o n . I f | C | i s l a r g e , t h e n
2 ^ { |C | } i s ve ry big , which would r e q u i r e k t o be l a r g e as w e l l
. So maybe t o min imize k , we s h o u l d t a k e | C | a s s m a l l a s
p o s s i b l e . But | C | can ’ t be s m a l l e r t h a n k , s i n c e k = | A B

C | | C | .

Wait , so maybe we need t o t a k e | C | = k . Then t h e e q u a t i o n becomes
2^{101} + 2^{ k} = 2^{ k } , which would imply 2^{101} =0 , which
i s i m p o s s i b l e . So | C | must be g r e a t e r t h a n k ? Wait , b u t i f | C |

i s g r e a t e r t h a n k , t h e n 2 ^ { |C | } i s b i g g e r t h a n 2^{ k } , so
2^{101} + 2 ^ { |C | } i s b i g g e r t h a n 2^{ k } . T h e r e f o r e , t h e
e q u a t i o n 2^{101} + 2 ^ { |C | } = 2^{ k} i m p l i e s t h a t 2^{ k} must be
l a r g e r t h a n 2^{101} and 2 ^ { |C | } . So k must be g r e a t e r t h a n
bo th 101 and | C | . But | C | can be as s m a l l a s k , b u t t h e n k
must be g r e a t e r t h a n | C | . Tha t seems c o n f l i c t i n g . Wait , no , i f

| C | i s e q u a l t o k , t h e n 2^{ k} + 2^{101} = 2^{ k } , which i s
i m p o s s i b l e . I f | C | i s l e s s t h a n k , t h e n 2 ^ { |C | } i s l e s s t h a n
2^{ k } , so 2^{101} + some th ing s m a l l e r t h a n 2^{ k} e q u a l s 2^{ k } ,

which would mean 2^{101} i s a p p r o x i m a t e l y 2^{ k } , so k 101 ,
b u t s i n c e 2^{101} + 2 ^ { |C| } = 2 ^ { k } , t h e n 2^{ k} must be b i g g e r

t h a n 2^{101} . So k >101 .
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Wait , maybe I s h o u l d a p p r o a c h t h i s d i f f e r e n t l y . Let ’ s suppose t h a t
| C | i s a s s m a l l a s p o s s i b l e . S i n c e t h e i n t e r s e c t i o n A B

C i s a s u b s e t o f C , t h e minimal p o s s i b l e | C | i s a t l e a s t |
A B C | . Let ’ s d e n o t e k = | A B C | . So | C | k
.

We need t o have 2^100 + 2^100 + 2 ^ { |C | } = 2^{ k } . So 2^{101} + 2 ^ { |
C | } = 2^{ k } .

To min imize k , we want t o make 2^{ k} as s m a l l a s p o s s i b l e . S i n c e |
C | k , 2 ^ { |C | } 2 ^{ k } . T h e r e f o r e , 2^{101} + 2 ^ { |C | } 2
^{101} +2^{ k } . Wait , b u t t h a t ’ s n o t h e l p f u l . Wait , p e r h a p s t h e

minimal k i s such t h a t 2^{ k} i s j u s t g r e a t e r t h a n o r e q u a l t o
2^{101} + 2 ^ { |C | } . But | C | i s v a r i a b l e h e r e . So p e r h a p s we

can choose | C | such t h a t 2 ^ { |C | } i s e q u a l t o 2^{ k} − 2^{101} ,
b u t s i n c e | C | must be a t l e a s t k , 2^{ k} −2^{101} must be a
power o f two , and | C | = log2 (2^{ k} −2^{101}) .

But 2^{ k} −2^{101} must e q u a l 2 ^ { |C | } , which i s a power o f two .
Let ’ s s e t x =2^{101} , so 2^{ k} −x =2^{m} , where m= | C | and m

k . Wait , b u t m k i m p l i e s t h a t 2^{m} 2 ^{ k } , so 2^{ k} −
x =2^{m} 2 ^{ k } , which would imply t h a t −x 0 , b u t x i s
p o s i t i v e , which i s i m p o s s i b l e . So t h a t can ’ t happen . T h e r e f o r e
, t h e p r e v i o u s c o n c l u s i o n t h a t t h e r e a r e no s o l u t i o n s may be
c o r r e c t , b u t t h a t c o n f l i c t s w i th t h e problem s t a t e m e n t . So
where i s t h e m i s t a k e ?

A l t e r n a t i v e l y , maybe my a s s u m p t i o n t h a t | C | must be a t l e a s t k i s
wrong . Wait , b u t t h e i n t e r s e c t i o n A B C i s a s u b s e t o f

C , so i t s s i z e can ’ t exceed | C | . So | A B C | | C | .
T h e r e f o r e , k | C | .

T h e r e f o r e , 2^{ k} = 2^{101} + 2 ^ { |C | } , and k | C | . Le t me
r e p h r a s e t h i s a s 2^{ k} − 2 ^ { |C | } = 2^{101} . But s i n c e k | C
| , t h e n 2^{ k} 2 ^ { | C | } , so 2^{ k} −2^{ |C | } i s 0 . But t h e
r i g h t −hand s i d e i s 2^{101} , which i s p o s i t i v e . T h e r e f o r e , t h i s

e q u a t i o n can ’ t be s a t i s f i e d . Wait , t h a t s u g g e s t s t h a t t h e r e
i s no s o l u t i o n . But t h e problem s a y s " i f n (A) + n (B) + n (C) =
n (A B C) " , so i t ’ s assuming t h a t such s e t s e x i s t .
T h e r e f o r e , t h e r e must be a m i s t a k e i n my r e a s o n i n g .

Wait , maybe I made an e r r o r i n t r a n s l a t i n g t h e problem . Le t me
check a g a i n .

The problem s a y s : For s e t s A, B , and C , where n (A) , n (B) , and n (C)
d e n o t e t h e number o f s u b s e t s o f A, B , and C r e s p e c t i v e l y , and
| A | = | B | = 100 , i f n (A) + n (B) + n (C) = n (A B C) ,

what i s t h e minimum p o s s i b l e v a l u e o f | A B C | ?

Wait , maybe " n (A) " i s n o t 2 ^ { |A | } b u t t h e number o f s u b s e t s , which
i s i n d e e d 2 ^ { |A | } . So t h e e q u a t i o n i s 2^{100} + 2^{100} +

2 ^ { |C | } = 2 ^ { |A B C | } .

So 2^{101} + 2 ^ { |C | } = 2^{ k } , where k = | A B C | . So 2^{ k}
must be e q u a l t o 2^{101} + 2^{m} , where m = | C | , and k m .

But a s p e r e a r l i e r , t h i s l e a d s t o 2^{ k} = 2^{101} + 2^{m} , wi th k
m .
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But 2^{101} + 2^{m} must be a power o f two . Le t me t h i n k a b o u t
when t h e sum of two powers o f two i s a power o f two .

Suppose we have 2^ a + 2^ b = 2^ c , w i th a b . Then t h i s i s
p o s s i b l e on ly when a = b , b e c a u s e o t h e r w i s e , 2^ a + 2^ b = 2^ a (1
+ 2^{ b −a } ) , which i s n o t a power o f two u n l e s s 1 + 2^{ b −a }

i s a power o f two . The on ly t ime 1 + 2^{ d} i s a power o f two
i s when d =0 , which g i v e s 1 +1=2. So 2^ a + 2^ a = 2^{ a +1} . So
i n t h i s case , i f a =b , t h e n t h e sum i s 2^{ a +1} .

T h e r e f o r e , t h e e q u a t i o n 2^ a + 2^ b =2^ c can on ly be s o l v e d i f a = b
and c = a +1 . T h e r e f o r e , i n our problem , 2^{101} + 2^{m} =2^{

k} i m p l i e s t h a t 101 =m and k =102 . But m=101 and k =102 , b u t
s i n c e k must be m ( s i n c e k i s t h e s i z e o f t h e i n t e r s e c t i o n ,

which i s a s u b s e t o f C , so k | C | =m) , t h i s would r e q u i r e
102 101 , which i s i m p o s s i b l e . T h e r e f o r e , t h e r e i s no
s o l u t i o n u n l e s s we have a d i f f e r e n t a p p r o a c h .

Wait , b u t t h i s c o n t r a d i c t s t h e problem ’ s premise , which s t a t e s
t h a t such s e t s e x i s t . T h e r e f o r e , t h e r e must be a d i f f e r e n t
i n t e r p r e t a t i o n .

Wait , p e r h a p s " n (A B C) " i s n o t t h e number o f s u b s e t s o f
t h e i n t e r s e c t i o n , b u t t h e number o f s u b s e t s common t o a l l
t h r e e s e t s A, B , and C? Wait , t h a t would be d i f f e r e n t . Wait ,
b u t t h e problem s a y s " n (A B C) " normal ly , t h e
n o t a t i o n n ( S ) f o r a s e t S i s t h e number o f e l emen t s , b u t i n
t h e problem s t a t e m e n t , i t ’ s s p e c i f i e d t h a t n (A) , n (B) , n (C)
a r e t h e number o f s u b s e t s . Wait , t h e problem s a y s :

" For s e t s A, B , and C , where n (A) , n (B) , and n (C) d e n o t e t h e
number o f s u b s e t s o f A, B , and C r e s p e c t i v e l y , and | A | = | B | =

100 , i f n (A) + n (B) + n (C) = n (A B C) , what i s t h e
minimum p o s s i b l e v a l u e o f | A B C | ? "

Wait , p e r h a p s t h e n o t a t i o n i s c o n f u s i n g . Maybe n (A B C) i s
n o t t h e number o f s u b s e t s o f t h e i n t e r s e c t i o n , b u t t h e number
o f s u b s e t s common t o A, B , and C . Wait , t h a t i s , s u b s e t s t h a t
a r e s u b s e t s o f A, B , and C . Wait , b u t a s u b s e t o f A i s n o t

n e c e s s a r i l y a s u b s e t o f B or C . So maybe " n (A B C) "
h e r e i s b e i n g used t o mean t h e number o f s u b s e t s t h a t a r e
common t o a l l t h r e e , i . e . , s u b s e t s t h a t a r e s u b s e t s o f A, B ,
and C . Which would mean s u b s e t s o f t h e i n t e r s e c t i o n A B

C . Because a s u b s e t o f A B C i s a s u b s e t o f a l l
t h r e e . So indeed , t h e number o f s u b s e t s o f t h e i n t e r s e c t i o n i s

e q u a l t o t h e number o f s u b s e t s common t o a l l t h r e e . T h e r e f o r e
, t h e o r i g i n a l i n t e r p r e t a t i o n i s c o r r e c t . So n (A B C)
i s 2 ^ { |A B C | } .

T h e r e f o r e , t h e e q u a t i o n i s 2^{100} + 2^{100} + 2 ^ { |C | } = 2 ^ { |A
B C | } . So t h e problem i s t o f i n d t h e minimal k = | A B

C | such t h a t 2^{101} + 2 ^ { |C | } = 2^{ k } , w i th | C | k .

But a s we saw e a r l i e r , t h e e q u a t i o n 2^{ k} = 2^{101} + 2^{m} , wi th
m k . However , t h i s e q u a t i o n on ly h o l d s i f t h e two t e r m s on
t h e l e f t can be combined i n t o a s i n g l e power o f two . As
e s t a b l i s h e d b e f o r e , t h e sum of two d i s t i n c t powers o f two i s a

power o f two on ly i f t h e y a r e e q u a l ( so e x p o n e n t s d i f f e r by
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z e r o ) b u t i n t h a t case , i t becomes t w i c e t h e power , which i s
t h e n e x t e x p o n e n t . So f o r example , 2^ a +2^ a =2^{ a +1} .

In our case , 2^{101} + 2^{m} =2^{ k } , which would r e q u i r e t h a t
2^{101} and 2^{m} a r e equa l , which would mean m=101 , l e a d i n g
t o 2^{101} +2^{101}=2^{102} , so k =102 . But i n t h a t case , m=101

and k =102 , which v i o l a t e s t h e m k r e q u i r e m e n t . T h e r e f o r e ,
no s o l u t i o n e x i s t s i n t h a t c a s e .

A l t e r n a t i v e l y , i f we c o n s i d e r t h a t 2^{m} can be combined wi th
2^{101} even i f m >101. Let ’ s t r y m=102: 2^{101} + 2^{102}=
2^{101}(1 +2) =3*2^{101} , which i s n o t a power o f two .
S i m i l a r l y , m=103: 2^{101} +2^{103}=2^{101}(1 +4) =5*2^{101} ,
n o t a power o f two . I t seems l i k e f o r m>101 , t h e sum i s
2^{101}(1 + 2^{m−101}) , which i s 2^{101} t i m e s an odd number
g r e a t e r t h a n 1 , so n o t a power o f two . Thus , i m p o s s i b l e .

A l t e r n a t i v e l y , i f m <101 , t h e n 2^{101} +2^{m} =2^{m}(1 +2^{101 −m
} ) . To be a power o f two , 1 +2^{101 −m} must be a power o f two
. Le t t =101 −m, which i s p o s i t i v e s i n c e m <101. So 1 +2^{ t
}=2^{ s } . As b e f o r e , t h i s i s on ly p o s s i b l e when t =0 , which
would make m=101 , b u t we assumed m<101 . T h e r e f o r e , no
s o l u t i o n s h e r e e i t h e r .

T h e r e f o r e , t h i s s u g g e s t s t h a t t h e r e i s no s o l u t i o n where t h e
e q u a t i o n ho lds , which c o n t r a d i c t s t h e problem s t a t e m e n t .
T h e r e f o r e , t h e r e must be an e r r o r i n my r e a s o n i n g .

Wait , b u t t h e problem i s from a c o m p e t i t i o n o r s i m i l a r , so maybe
t h e r e i s a t r i c k h e r e . Let ’ s t h i n k d i f f e r e n t l y . Maybe t h e
problem i s n o t i n t h e i n t e g e r s . Wait , b u t c a r d i n a l i t i e s a r e
i n t e g e r s . A l t e r n a t i v e l y , p e r h a p s t h e e q u a t i o n i s n ’ t meant t o
be e x a c t ? No , t h e problem s a y s n (A) + n (B) + n (C) = n (A B

C) , so i t ’ s an e x a c t e q u a t i o n .

A l t e r n a t i v e l y , maybe t h e problem i s u s i n g " number o f s u b s e t s " i n a
d i f f e r e n t way . Wait , b u t no , t h e number o f s u b s e t s o f a s e t

w i th n e l e m e n t s i s 2^ n . So t h a t p a r t i s s t a n d a r d .

A l t e r n a t i v e l y , maybe t h e problem i s c o n s i d e r i n g t h a t A, B , C a r e
s u b s e t s o f some u n i v e r s a l s e t , b u t t h e problem doesn ’ t s p e c i f y

t h a t . But even i f t h e y were , t h e number o f s u b s e t s o f each
s e t would s t i l l be 2 ^ { |A | } , e t c . So I don ’ t t h i n k t h a t ’ s t h e
i s s u e .

A l t e r n a t i v e l y , maybe "A B C" i s n o t t h e i n t e r s e c t i o n o f
t h e s e t s A, B , C , b u t some o t h e r o p e r a t i o n ? No , s t a n d a r d
n o t a t i o n .

Wait , maybe t h e r e ’ s a m i s i n t e r p r e t a t i o n o f n (A B C) . Maybe
i t ’ s t h e number o f e l e m e n t s i n t h e i n t e r s e c t i o n , b u t t h e

problem s a y s " n (A) , n (B) , n (C) d e n o t e t h e number o f s u b s e t s " ,
so n (A B C) would a l s o d e n o t e t h e number o f s u b s e t s o f
A B C . So 2 ^ { |A B C | } .

Wait , u n l e s s t h e problem has a typo and i n s t e a d o f n (A B C
) , i t ’ s | A B C | . But i n t h a t case , t h e e q u a t i o n would
be 2^100 + 2^100 + 2 ^ { |C | } = | A B C | , which would be a

d i f f e r e n t problem , b u t u n l i k e l y .
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A l t e r n a t i v e l y , p e r h a p s t h e problem u s e s n ( S ) t o d e n o t e t h e number
o f e l e m e n t s i n S , b u t t h e f i r s t s e n t e n c e s a y s " n (A) , n (B) , and

n (C) d e n o t e t h e number o f s u b s e t s o f A, B , and C r e s p e c t i v e l y
" . So no , n (A) i s d e f i n i t e l y 2 ^ { |A | } , e t c .

Hmm. Th i s i s p e r p l e x i n g . Let ’ s check a g a i n t h e e q u a t i o n . 2^100 +
2^100 + 2 ^ { |C| } = 2 ^ { k } , so 2^{101} + 2 ^ { |C| } = 2 ^ { k } . We need t o
f i n d t h e minimal k where t h i s ho lds , w i th k | C | . So k i s
t h e s i z e o f A B C .

I f we t a k e | C | = k , t h e n 2^{101} +2^{ k }=2^{ k } , which i s i m p o s s i b l e .
T h e r e f o r e , | C | must be g r e a t e r t h a n k .

But then , 2^{ k} =2^{101} + 2 ^ { |C | } , which i m p l i e s t h a t 2^{ k} i s
l a r g e r t h a n 2 ^ { |C | } , so k > |C | , b u t t h a t c o n t r a d i c t s | C | k .
T h e r e f o r e , no s o l u t i o n . But t h e problem s a y s " i f n (A) + n (B) +

n (C) = n (A B C) " , so i t ’ s assuming such a s c e n a r i o
e x i s t s . T h e r e f o r e , t h e r e must be a m i s t a k e i n my r e a s o n i n g .

Wait , p e r h a p s t h e problem a l l o w s C t o be a m u l t i s e t ? But no , t h e
problem s t a t e s " s e t s " . Or maybe t h e i n t e r s e c t i o n i s n o t a s e t ,

b u t a d i f f e r e n t s t r u c t u r e ? U n l i k e l y .

Wait , l e t ’ s t r y s p e c i f i c numbers . Suppose k =101 . Then
2^{101}=2^{101} +2^{m} − no , t h a t would r e q u i r e 0=2^{m} , which

i s i m p o s s i b l e . I f k =102: 2^{102}=2^{101} +2^{m} => 2^{102}
−2^{101}=2^{m} => 2^{101}(2 −1) =2^{101}=2^{m} , so m=101 . But
t h e n k =102 , which i s g r e a t e r t h a n m=101 , which v i o l a t e s k m
.

S i m i l a r l y , i f k =103: 2^{103}=2^{101}+2^{m} => 2^{m}=2^{103}
−2^{101}=2^{101}(4 −1) =3*2^{101} , which i s n o t a power o f two .

k =104: 2^{104}=2^{101} +2^{m} =>2^{m}=2^{104} −2^{101}=2^{101}(8
−1) =7*2^{101} , n o t a power o f two .

Con t inu ing , k =105: 2^{105} −2^{101}=15*2^{101}=15*2^{101}= n o t a
power o f two .

Th i s p a t t e r n c o n t i n u e s , and t h e d i f f e r e n c e 2^{ k} −2^{101} i s
d i v i s i b l e by 2^{101} b u t r e s u l t s i n an odd number g r e a t e r t h a n

1 , which i s n o t a power o f two . T h e r e f o r e , no s o l u t i o n s e x i s t
f o r k >101 .

But t h i s i s i m p o s s i b l e b e c a u s e t h e problem must have a s o l u t i o n .
T h e r e f o r e , maybe t h e problem i s d e s i g n e d t o have t h e minimal k

where 2^{ k} i s t h e n e x t power o f two a f t e r 2^{101} +2^{m} ,
b u t t h i s i s n o t e x a c t . But t h e problem s t a t e s e q u a l i t y , n o t an

i n e q u a l i t y . So I ’m s t u c k .

A l t e r n a t i v e l y , p e r h a p s t h e problem i s u s i n g a d i f f e r e n t d e f i n i t i o n
o f s u b s e t s . For example , maybe on ly non −empty s u b s e t s ? No ,

t h e number o f s u b s e t s i n c l u d i n g empty s e t i s 2^ n .

A l t e r n a t i v e l y , maybe t h e problem has a typo , and i t s h o u l d be
m u l t i p l i c a t i o n i n s t e a d o f a d d i t i o n . I f i t ’ s n (A) * n (B) * n (C)
=n (A B C) , t h e n i t ’ s d i f f e r e n t . But t h e problem s a y s

" + " .
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Wait , t h e problem i s i n Ch inese maybe ? Wait , no , t h e u s e r wro te
t h e problem i n E n g l i s h . Hmm.

A l t e r n a t i v e l y , maybe t h e problem i s from a s o u r c e where n (A)
d e n o t e s t h e number o f e l emen t s , which would u s u a l l y be | A | ,
b u t t h e problem s a y s n (A) i s t h e number o f s u b s e t s . So u n l e s s
t h e problem mixed n o t a t i o n . I f t h e problem had s a i d | A | , | B | ,
| C | a r e 100 , and n (A) +n (B) +n (C) =n (A B C) , w i th n (X)

b e i n g t h e number o f e l emen t s , t h e n i t ’ s a d i f f e r e n t problem .
Let ’ s check t h a t :

I f | A | = | B| = 1 0 0 , and n (X) i s t h e number o f e l emen t s , t h e n n (A) +n (B
) +n (C) =100+100+|C | = 2 0 0 + |C | , and n (A B C) = |A B
C | . Then t h e e q u a t i o n i s 200 + |C | = k , where k = |A B C | .
But s i n c e | A B C | | A| = 1 0 0 , so 200+ |C | 100 => | C

| −100 , which i s i m p o s s i b l e . So t h a t can ’ t be .

T h e r e f o r e , t h e o r i g i n a l i n t e r p r e t a t i o n seems c o r r e c t . But then ,
a c c o r d i n g t o t h a t , t h e r e ’ s no s o l u t i o n . But t h e problem i s
a s k i n g f o r t h e minimal p o s s i b l e va lue , so p e r h a p s t h e answer
i s 101? But wai t , how?

Wait , l e t ’ s t h i n k d i f f e r e n t l y . Maybe t h e problem i s i n a u n i v e r s e
where a l l s e t s a r e s u b s e t s o f a common u n i v e r s a l s e t , and
o p e r a t i o n s a r e c o n s i d e r e d w i t h i n t h a t . Suppose t h a t A and B
a r e s u b s e t s o f some u n i v e r s a l s e t , and C i s a l s o a s u b s e t .
Then , t h e i n t e r s e c t i o n A B C would be a s u b s e t o f t h e
u n i v e r s a l s e t . However , t h e number o f s u b s e t s o f A i s s t i l l
2 ^ { |A | } , r e g a r d l e s s o f t h e u n i v e r s a l s e t .

A l t e r n a t i v e l y , maybe u s i n g some p r i n c i p l e o f i n c l u s i o n − e x c l u s i o n
f o r t h e number o f s u b s e t s ? Hmm, n o t s u r e .

Wait , a n o t h e r t h o u g h t : Maybe t h e e q u a t i o n n (A) + n (B) + n (C) =n (A
B C) i s i n t e r m s of numbers . So n (A) i s 2^{100} , n (B)

i s 2^{100} , n (C) i s 2 ^ { |C | } , and n (A B C) i s 2^{ k } . So
we have 2^{100} + 2^{100} + 2 ^ { |C | } =2^{ k } .

L e t s w r i t e t h i s a s 2^{101} + 2 ^ { |C| } = 2 ^ { k } . Let ’ s f a c t o r o u t
t h e s m a l l e r power o f two . Suppose | C | 101 . Then we can
f a c t o r o u t 2 ^ { |C | } :

2 ^ { |C | } ( 1 + 2^{101 − | C | } ) =2^{ k } . T h e r e f o r e , 1 +2^{101 − | C | } must
be a power o f two . L e t s s e t t =101 − | C | . So t 0 , and 1

+2^{ t }=2^{ s } f o r some s . As b e f o r e , t h e on ly s o l u t i o n i s t =0
or t =1?

t =0 : 1+1=2=2^1 , so s =1 . Then t =0 i m p l i e s 101 − | C| = 0 => | C | = 1 0 1 .
So 1 +2^0=2 , so 2^{ k }=2^{101}*2=2^{102}. T h e r e f o r e , k =102 . But

| C| = 1 0 1 , so k=102 >101 which i s i m p o s s i b l e .

I f t =1 : 1+2=3 , which i s n o t a power o f two . S i m i l a r l y , t =2:1+4=5 ,
n o t a power o f two . So no s o l u t i o n .

I f | C | >101 , t h e n 2^{101} + 2 ^ { |C| } = 2 ^ { k} i m p l i e s we f a c t o r o u t
2^{101} : 2^{101}(1 + 2 ^ { |C | −101}) =2^{ k } , so 1 + 2 ^ { |C |
−101}=2^{ k −101}. L e t s s e t m= |C | −101 >0 , so 1 +2^{m}=2^{ k
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−101}. The on ly s o l u t i o n i s m=0 , which g i v e s 1 +1=2^1. But m
>0 , so no s o l u t i o n .

T h e r e f o r e , t h i s s u g g e s t s no s o l u t i o n e x i s t s , which c o n t r a d i c t s t h e
problem ’ s wording . T h e r e f o r e , I must have made a wrong

a s s u m p t i o n .

Wait , p e r h a p s t h e problem a l l o w s f o r a u n i v e r s e where e l e m e n t s a r e
c o u n t e d wi th m u l t i p l i c i t y ? Like , m u l t i s e t s ? But t h e problem

s p e c i f i e s " s e t s " , so e l e m e n t s a r e d i s t i n c t .

A l t e r n a t i v e l y , p e r h a p s t h e problem i s a t r i c k q u e s t i o n where t h e
minimal p o s s i b l e v a l u e i s 101 , b u t t h e e q u a t i o n i s n o t e x a c t l y

s a t i s f i e d . But t h e problem s a y s " i f n (A) + n (B) + n (C) =n (A
B C) " , so i t ’ s g i v e n t h a t t h i s e q u a t i o n h o l d s . So t h e

answer must be d e r i v e d under t h a t c o n d i t i o n .

Wait , maybe t h e r e ’ s a m i s t a k e i n my c a l c u l a t i o n . Le t me t r y
p l u g g i n g i n k =101 . Then 2^{101}=2^{101} + 2 ^ { |C | } , which
i m p l i e s | C | i s n e g a t i v e i n f i n i t y , i m p o s s i b l e . k
=102:2^{102}=2^{101}+2^{ |C|}= > 2 ^ { |C
|}=2^{102} −2^{101}=2^{101} , so | C | = 1 0 1 . But t h e n k=102 > | C
| = 1 0 1 . So t h i s i s i m p o s s i b l e .

Wait , b u t maybe t h e problem doesn ’ t r e q u i r e t h a t t h e i n t e r s e c t i o n
i s a s u b s e t o f C? But t h a t ’ s b a s i c s e t t h e o r y . A B C
i s a s u b s e t o f C by d e f i n i t i o n .

A l t e r n a t i v e l y , maybe t h e problem u s e s a d i f f e r e n t d e f i n i t i o n o f
i n t e r s e c t i o n ? No , s t a n d a r d i n t e r s e c t i o n .

A l t e r n a t i v e l y , p e r h a p s A, B , C a r e n o t s e t s o f e l e m e n t s b u t o f
s u b s e t s . Wait , t h e problem s a y s " s e t s A, B , C" , so t h e y a r e
s t a n d a r d s e t s .

A l t e r n a t i v e l y , maybe t h e problem a l l o w s C t o be e q u a l t o A B
C . I f C i s e q u a l t o A B C , t h e n | C | = k . Then t h e

e q u a t i o n becomes 2^{100} +2^{100} +2^{ k }=2^{ k } , which i m p l i e s
2^{101} +2^{ k }=2^{ k } , l e a d i n g t o 2^{101}=0 , which i s
i m p o s s i b l e .

Th i s i s r e a l l y c o n f u s i n g . S i n c e t h e problem i s from a math
c o m p e t i t i o n , maybe t h e answer i s 102 , even though i t ’ s g r e a t e r

t h a n | C | , b u t t h e problem doesn ’ t r e q u i r e | C | t o be f i n i t e o r
some th ing ? But A and B have s i z e 100 , which i s f i n i t e , and

t h e i n t e r s e c t i o n can ’ t be l a r g e r t h a n A or B . So t h e
i n t e r s e c t i o n has t o be a t most 1 0 0 .

Wait , w a i t ! The problem s a y s | A | = | B | = 1 0 0 . So t h e i n t e r s e c t i o n A
B C i s a s u b s e t o f A and B , so | A B C | 100 .

But e a r l i e r , we t r i e d k=101 and more , which i s i m p o s s i b l e
s i n c e t h e i n t e r s e c t i o n can ’ t exceed 1 0 0 .

Oh ! Th i s i s t h e key m i s t a k e I made e a r l i e r . S i n c e A and B have
s i z e 100 , t h e i r i n t e r s e c t i o n wi th C can ’ t exceed 1 0 0 . So

k 100 . T h e r e f o r e , when I c o n s i d e r e d k=101 or h i g h e r , t h a t ’ s
i m p o s s i b l e . T h e r e f o r e , t h e maximum p o s s i b l e k i s 1 0 0 . But t h e n

t h e e q u a t i o n 2^{101} +2^{m}=2^{ k} wi th k 100 . But 2^{ k} i s
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a t most 2^{100} , b u t t h e l e f t −hand s i d e i s a t l e a s t 2^{101} ,
which i s l a r g e r t h a n 2^{100} . T h e r e f o r e , i t ’ s i m p o s s i b l e .

But t h i s c o n t r a d i c t s t h e problem ’ s s t i p u l a t i o n t h a t t h e e q u a t i o n
h o l d s . T h e r e f o r e , t h e on ly p o s s i b l e c o n c l u s i o n i s t h a t t h e r e
i s a m i s t a k e i n t h e problem s t a t e m e n t , o r p e r h a p s t h e answer
i s 101 , b u t t h e problem has an e r r o r . But s i n c e t h e problem
a s k s f o r t h e minimal p o s s i b l e v a l u e o f | A B C | , and
g i v e n t h e c o n s t r a i n t s , i t ’ s i m p o s s i b l e , b u t maybe I ’m m i s s i n g
some th ing .

Wait , he re ’ s a d i f f e r e n t a p p r o a c h . Let ’ s d e n o t e x = | A B C
| . We need t o have 2^{100} +2^{100} + 2 ^ { |C | } =2^{ x } . T h e r e f o r e
, 2^{101} + 2 ^ { |C| } = 2 ^ { x } .

But x i s t h e s i z e o f t h e i n t e r s e c t i o n , which i s 100 . T h e r e f o r e ,
2^{ x} 2 ^{100} , b u t t h e l e f t −hand s i d e i s 2^{101} +

someth ing , which i s a t l e a s t 2^{101} . T h e r e f o r e , 2^{ x} 2
^{101} , which r e q u i r e s x 101 . But x 100 , so t h e r e ’ s no
s o l u t i o n . Hence , i t ’ s i m p o s s i b l e .

But t h e problem i s p r e s e n t e d as a v a l i d q u e s t i o n , so l i k e l y I have
a m i s t a k e . Wait , maybe I m i s c o u n t e d t h e number o f s u b s e t s .

Wait , i f A has | A| = 1 0 0 , t h e n n (A) =2^{100} . S i m i l a r l y f o r B and
C . So t h e e q u a t i o n i s c o r r e c t .

A l t e r n a t i v e l y , t h e problem might be i n t h e t r a n s l a t i o n . Maybe " t h e
number o f s u b s e t s " r e f e r s t o p r o p e r s u b s e t s ? In t h a t case ,

t h e number would be 2^{ n } −1. So i f n (A) i s t h e number o f
p r o p e r s u b s e t s o f A, t h e n n (A) =2^{100} −1. S i m i l a r l y f o r B and
C . Then t h e e q u a t i o n becomes (2^{100} −1) +(2^{100} −1) + ( 2 ^ { |C
| } − 1 ) =2^{ x } −1.

L e t s compute t h i s : 2^{101} −2 + 2 ^ { |C | } −1=2^{x}−1 2^{101}
+ 2 ^ { |C|} −3=2^{ x}−1 2 ^{101} + 2 ^ { |C|} −2=2^{ x } .

But t h i s seems more c o m p l i c a t e d , and t h e r e ’ s no i n d i c a t i o n i n t h e
problem s t a t e m e n t t h a t s u b s e t s a r e p r o p e r . So t h i s i s p r o b a b l y

n o t t h e c a s e .

A l t e r n a t i v e l y , maybe t h e problem u s e s a d i f f e r e n t d e f i n i t i o n o f "
number o f s u b s e t s , " b u t i t ’ s h i g h l y u n l i k e l y .

T h e r e f o r e , g i v e n t h a t t h e problem s t a t e s such an e q u a t i o n i s
p o s s i b l e , b u t a c c o r d i n g t o s t a n d a r d s e t t h e o r y and mathemat i c s
, t h e r e i s no s o l u t i o n . But s i n c e t h e problem a s k s f o r an
answer , I must have missed some th ing .

Wait , maybe t h e problem i s n o t a b o u t s e t s b u t a b o u t some th ing e l s e
. Maybe v e c t o r s p a c e s ? No , t h e problem t a l k s a b o u t s e t s A, B ,
C .

Wait , a n o t h e r i d e a : maybe t h e s e t s A, B , and C a r e such t h a t A and
B a r e s u b s e t s o f C . I f A and B a r e s u b s e t s o f C , t h e n A B

C = A B . So | A B C| = | A B | . But A and B
have s i z e 100 , b u t we don ’ t know t h e i r i n t e r s e c t i o n . However ,
t h e e q u a t i o n becomes 2^100 +2^100 + 2 ^ { |C | } = 2 ^ { |A B | } . But
s i n c e A and B a r e s u b s e t s o f C , | C | 100 . But t h e n 2 ^ { |C | }

2 ^{100} , so t h e l e f t −hand s i d e i s 2 ^100 +2^100
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+2^{100}=3*2^100 , which i s g r e a t e r t h a n 2 ^ { |A B | } , b u t | A
B | can be a t most 100 , so 2 ^ { |A B | } 2 ^{100} , which

i s l e s s t h a n 3*2^{100} . T h e r e f o r e , no s o l u t i o n .

Hmm. I ’m s t u c k . Given t h e problem ’ s c o n s t r a i n t s , t h e r e i s no
p o s s i b l e s o l u t i o n , b u t t h e problem i s a s k i n g f o r one . P e r h a p s
t h e answer i s 101 , acknowledg ing t h a t t h e r e ’ s a c o n t r a d i c t i o n
b u t r e q u i r i n g t h e minimal k where 2^{ k} i s t h e n e x t power
a f t e r 2^101 + 2 ^ { |C | } . But even then , t h e minimal k would be
102 , b u t t h a t e x c e e d s t h e maximum p o s s i b l e s i z e o f t h e
i n t e r s e c t i o n .

Wait , b u t i f we i g n o r e t h e c o n s t r a i n t t h a t k | C | and k 100 ,
j u s t f i n d t h e minimal k such t h a t 2^{ k} 2 ^101 +2^{m} f o r

some m. But t h e n k=102 when m=101 , b u t t h a t v i o l a t e s t h e o t h e r
c o n s t r a i n t s .

A l t e r n a t i v e l y , maybe t h e problem has a typo and i t s h o u l d be n (A)
+n (B) +n (C) =n (A B C) . Then t h e problem would be
d i f f e r e n t . Le t me check : n (A B C) i s t h e number o f
s u b s e t s o f t h e un ion . I f t h a t ’ s t h e case , t h e n t h e e q u a t i o n i s

2^{100} +2^{100} + 2 ^ { |C | } = 2 ^ { |A B C | } , which might be
p o s s i b l e . But t h e problem s a y s i n t e r s e c t i o n , n o t un ion .

A l t e r n a t i v e l y , maybe t h e problem i s i n a n o t h e r d imens ion , b u t t h a t
’ s n o t l i k e l y .

Given t h a t I ’m s t u c k and t h e problem i s l i k e l y e x p e c t i n g an answer
o f 101 , even though i t v i o l a t e s t h e c a r d i n a l i t y c o n s t r a i n t s ,

o r p e r h a p s 101 i s t h e minimal k where 2^{ k} i s g r e a t e r t h a n
t h e sum . But i n math c o m p e t i t i o n s , somet imes you ’ r e supposed
t o f i n d k such t h a t t h e sum i s l e s s t h a n or e q u a l t o 2^k , b u t
t h e problem s t a t e s e q u a l i t y .

A l t e r n a t i v e l y , maybe t h e problem a l l o w s o v e r l a p p i n g s u b s e t s i n t h e
c o u n t . But no , s u b s e t s a r e un iq ue .

Wait , he re ’ s a l a s t − d i t c h i d e a : p e r h a p s A, B , and C a r e n o t s e t s
o f e l e m e n t s b u t o f s e t s t h e m s e l v e s , and t h e i n t e r s e c t i o n i s i n

some l a t t i c e o f s e t s . But t h e problem s t a t e m e n t s a y s " s e t s A,
B , C" , so they ’ r e s t a n d a r d s e t s .

Given t h a t I ’ ve e x h a u s t e d a l l avenues and s t i l l can ’ t f i n d a
s o l u t i o n t h a t f i t s t h e problem ’ s c o n s t r a i n t s , b u t t h e problem
must have an answer , I ’m f o r c e d t o c o n c l u d e t h a t t h e answer i s

101 , even though i t v i o l a t e s t h e s u b s e t r e l a t i o n .
A l t e r n a t i v e l y , maybe t h e problem ’ s answer i s 101 , w i th k =101 ,
| C | = 1 0 1 , b u t t h e n 2^{101}=2^{101}+2^{101}=2^{102} , which i s
n o t t r u e . T h e r e f o r e , I ’m c o n f u s e d .

Wait , 2^{101} +2^{101}=2^{102} , so i f | C | = 1 0 1 , t h e n t h e e q u a t i o n
would be 2^{101} +2^{101}=2^{102} , so k =102 . But k=102 i s
i m p o s s i b l e b e c a u s e t h e i n t e r s e c t i o n c a n n o t exceed 1 0 0 .
T h e r e f o r e , t h e r e ’ s no s o l u t i o n , b u t t h e problem s t a t e s " i f n (A
) + n (B) + n (C) =n (A B C) " , which i m p l i e s t h a t t h e r e
i s a s o l u t i o n . Th i s i s a pa radox .

Wait , u n l e s s t h e s e t s a r e a l l o w e d t o be i n f i n i t e . For example , i f
C i s an i n f i n i t e s e t , t h e n 2 ^ { |C | } i s i n f i n i t e , and 2^{101}
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+ 2 ^ { |C | } would be e q u a l t o 2 ^ { |C | } , assuming | C | i s i n f i n i t e .
But t h e n t h e e q u a t i o n 2^{101} + 2 ^ { |C| } = 2 ^ { k} i m p l i e s t h a t i f |
C | i s i n f i n i t e , t h e n 2^{ k} i s a l s o i n f i n i t e , so k must be
i n f i n i t e . But t h e problem a s k s f o r t h e minimal p o s s i b l e va lue ,
which would be f i n i t e . T h e r e f o r e , t h i s i s n o t t h e c a s e .

Given a l l t h i s , I t h i n k t h e r e ’ s e i t h e r a m i s t a k e i n t h e problem or
a t r i c k t h a t I ’m m i s s i n g . S i n c e t h e problem i s a b o u t s e t s and
t h e i r s u b s e t s , and t h e e q u a t i o n seems i m p o s s i b l e unde r

s t a n d a r d i n t e r p r e t a t i o n s , maybe t h e answer i s 101 , assuming
t h a t we i g n o r e t h e c a r d i n a l i t y c o n s t r a i n t o f t h e i n t e r s e c t i o n .

But s i n c e t h e i n t e r s e c t i o n can ’ t exceed 100 , t h i s i s
i m p o s s i b l e . T h e r e f o r e , t h e minimal p o s s i b l e v a l u e i s 101 , b u t
I ’m n o t s u r e .

Wait , b u t i f | A B C | c o u l d be 101 , t h e n even though A and
B have s i z e 100 , t h e i r i n t e r s e c t i o n wi th C can ’ t exceed 1 0 0 .
So maybe t h e problem i s d e s i g n e d t o have an answer o f 101 ,
assuming t h a t t h e i n t e r s e c t i o n can be l a r g e r t h a n A or B? But
t h a t ’ s i m p o s s i b l e .

I t h i n k I must have missed some th ing . Maybe i n s t e a d o f
i n t e r p r e t i n g n (A) as t h e number o f s u b s e t s , i t ’ s t h e number o f

e l e m e n t s ? I f so , t h e n n (A) =100 , n (B) =100 , n (C) = |C | , and n (A
B C) = |A B C | . Then t h e e q u a t i o n i s 100 +100 +

| C | = | A B C | . But s i n c e | A B C | 100 , t h i s
i m p l i e s | C | −100 , which i s i m p o s s i b l e . So no .

A l t e r n a t i v e l y , i f n (A) i s t h e number o f e l emen t s , and t h e problem
meant t o say | A | , b u t t h a t ’ s n o t what was w r i t t e n .

Given t h e problem ’ s p h r a s i n g , I t h i n k t h e answer must be \ boxed
{101} , even though t h e l o g i c a l s t e p s s u g g e s t i t ’ s i m p o s s i b l e .
P e r h a p s t h e r e ’ s a d i f f e r e n t way t o combine t h e s u b s e t s .
A l t e r n a t i v e l y , maybe c o n s i d e r i n g t h a t t h e i n t e r s e c t i o n i s
b e i n g c o u n t e d as e l emen t s , n o t s u b s e t s . But t h a t would n o t
a l i g n wi th t h e i n i t i a l d e f i n i t i o n s .

S i n c e i n a l l c a s e s t h e on ly p o s s i b l e v a l u e t h a t comes c l o s e i s
102 , b u t i t ’ s i n v a l i d due t o s i z e c o n s t r a i n t s , and t h e problem

a s k s f o r t h e minimal p o s s i b l e va lue , p e r h a p s t h e answer i s
101 , even i f i t ’ s n o t s t r i c t l y p o s s i b l e , and t h e problem has
an e r r o r . A l t e r n a t i v e l y , t h e answer i s 102 , and t h e problem
a l l o w s i n t e r s e c t i o n s l a r g e r t h a n t h e s e t s . But t h i s i s n o t
s t a n d a r d .

Wait , maybe A and B a r e a l l o w e d t o have s i z e s l a r g e r t h a n 100?
Wait , no , t h e problem s a y s | A | = | B | = 1 0 0 .

Given t h a t I can ’ t f i n d a v a l i d s o l u t i o n and t h e problem l i k e l y
e x p e c t s an answer , I ’ l l go wi th 101 , assuming t h a t maybe t h e
problem had a typo and t h e e q u a t i o n i s supposed t o be
m u l t i p l i c a t i o n , b u t t h a t ’ s s p e c u l a t i v e . A l t e r n a t i v e l y , 101 i s
t h e answer .

** F i n a l Answer **
\ boxed {101}
</ t h i n k >
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Given s e t s \ ( A \ ) , \ ( B \ ) , and \ ( C \ ) w i th \ ( | A | = | B | = 1 0 0 \ ) , we
need t o f i n d t h e minimum p o s s i b l e v a l u e o f \ ( | A \ cap B \ cap C
| \ ) g i v e n t h a t t h e e q u a t i o n \ ( n (A) + n (B) + n (C) = n (A \ cap B
\ cap C) \ ) h o l d s . Here , \ ( n ( S ) \ ) d e n o t e s t h e number o f s u b s e t s
o f a s e t \ ( S \ ) , which i s \ ( 2 ^ { | S | } \ ) .

1 . The number o f s u b s e t s o f \ ( A \ ) , \ ( B \ ) , and \ ( C \ ) a r e
\ ( 2 ^ { 1 0 0 } \ ) , \ ( 2 ^ { 1 0 0 } \ ) , and \ ( 2 ^ { | C | } \ ) r e s p e c t i v e l y .

2 . The e q u a t i o n g i v e n i s \ ( 2 ^ { 1 0 0 } + 2^{100} + 2 ^ { |C | } = 2 ^ { |A \
cap B \ cap C | } \ ) .

3 . S i m p l i f y i n g t h e l e f t −hand s i d e , we g e t \ ( 2 ^ { 1 0 1 } + 2 ^ { |C | } =
2 ^ { |A \ cap B \ cap C | } \ ) .

4 . Le t \ ( k = | A \ cap B \ cap C | \ ) . We need t o f i n d t h e s m a l l e s t \ ( k
\ ) such t h a t \ ( 2 ^ { 1 0 1 } + 2 ^ { |C | } = 2^ k \ ) .

5 . For t h e e q u a t i o n \ ( 2 ^ { 1 0 1 } + 2 ^ { |C | } = 2^ k \ ) t o hold , \ ( 2 ^ { 1 0 1 }
+ 2 ^ { |C | } \ ) must be a power o f two .

6 . The on ly way t h e sum of two powers o f two i s a n o t h e r power o f
two i s i f t h e y a r e c o n s e c u t i v e powers o f two . However ,
\ ( 2 ^ { 1 0 1 } + 2^{101} = 2 ^ { 1 0 2 } \ ) , which would r e q u i r e \ ( | C | =
1 0 1 \ ) and \ ( k = 1 0 2 \ ) , b u t \ ( k \ ) c a n n o t exceed \ ( | C | \ ) .

7 . C o n s i d e r i n g t h e c o n s t r a i n t s and t h e problem ’ s r e q u i r e m e n t f o r a
s o l u t i o n , t h e minimal p o s s i b l e v a l u e o f \ ( | A \ cap B \ cap C | \ )
t h a t f i t s t h e e q u a t i o n , d e s p i t e t h e c o n s t r a i n t s , i s found t o

be \ ( 1 0 1 \ ) .

Thus , t h e minimum p o s s i b l e v a l u e o f \ ( | A \ cap B \ cap C | \ ) i s \ ( \
boxed { 1 0 1 } \ ) .
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