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ABSTRACT

Vision-Language-Action (VLA) models have shown promising results in robot
control, yet prevailing auto-regressive frameworks suffer from inherent limita-
tions, such as error accumulation and temporal rigidity in action generation. To
address this, we introduce a DIscrete diffusion Vision-language-Action model
(DIVA), a discrete diffusion-based VLA framework that reformulates action gen-
eration as an iterative denoising process over discrete latent representations. The
innovation of DIVA lies in the unified discrete diffusion architecture that system-
atically integrates three core designs: first, a learnable discrete action tokenization
process bridges continuous action with the structural multimodal space. Second,
A latent-driven policy learning strategy is proposed to align the representative
space of the vision-language backbone and the policy head through a joint opti-
mization. Third, a selective group unmasking strategy is introduced during the
discrete diffusion decoding to preserve spatiotemporal coherence. Extensive eval-
uation demonstrates that DIVA achieves state-of-the-art performance in both sim-
ulated and real-world environments, validating its advantages in generating coher-
ent, precise, and generalizable robot behaviors. Our work establishes a robust and
scalable paradigm for future embodied decision-making systems.

1 INTRODUCTION

The rapid development of robotics has enabled embodied machines to perform increasingly diverse
tasks, achieving notable success in structured environments such as industrial assembly lines, ware-
house logistics, and controlled household chores. However, generalization to open-world, unstruc-
tured scenarios remains a fundamental challenge due to the complexity and variability of real-world
settings. Concurrently, the emergence of large multimodal foundation models, such as CLIP Radford
et al. (2021) for visual-language alignment, DINO Oquab et al. (2023) for semantic understanding,
and R1 Guo et al. (2025) for reasoning ability incentivization, has demonstrated unprecedented per-
ceptual and reasoning capabilities, creating new opportunities for general-purpose robotic systems.
A growing trend of research Black et al. (2024); Kim et al. (2024); Bjorck et al. (2025) has sought to
integrate the powerful capabilities of foundation models into robotic control frameworks, spurring
the emergence of Vision-Language-Action (VLA) models as a prominent direction.

Vision-Language-Action (VLA) models bridge high-level instruction understanding with low-level
motion generation, enabling robots to interpret and execute tasks from multimodal instructions in
dynamic environments. (Zitkovich et al., 2023; Shridhar et al., 2022). By integrating perception, rea-
soning, and control within a unified architecture, VLAs aim to endow robotic systems with greater
generalization and interactivity. Despite recent progress, it remains a challenging problem to trans-
late perceptual and linguistic inputs into continuous and sequential controls for high quality action
generation (Chi et al., 2023; Reed et al., 2022). Existing approaches largely fall into two cate-
gories (Ma et al., 2024; Zhong et al., 2025). The first category relies on the powerful multi-modal
autoregressive transformers (Wu et al., 2023), which generate actions in a token-by-token sequential
manner. While simple and widely adopted, this paradigm is inherently constrained by the sequential
decoding strategy, which leads to issues such as error accumulation, temporal rigidity, and limited
contextual flexibility (Ranzato et al., 2015). The second one employs continuous diffusion models,
which excel at capturing multimodal action distributions through iterative refinement (Black et al.,
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Figure 1: Comparison between autoregressive and discrete diffusion models. (a) Autoregressive
decoding suffers from error accumulation due to its rigid sequential nature. (b) Discrete diffusion
enables parallel inference for iterative refinement, offering greater flexibility action decoding.

2023; Ren et al., 2024). However, these models often operate as decoupled decoders that are mis-
aligned with the pretrained representations of the underlying vision-language backbone, leading to
inefficiencies and training instability.

To address these limitations, we introduce DIVA, a unified VLA framework that reformulates ac-
tion generation as a discrete diffusion process. Our approach is motivated by the need for a more
expressive, robust, and natively-integrated decoding mechanism that remains consistent with large
language model architectures. DIVA addresses three key challenges in current VLA methods. First,
existing discretization approaches often rely on fixed binning strategies, which struggle to capture
the nuanced structure of continuous action spaces (Brohan et al., 2022; Jang et al., 2022). To over-
come this, we introduce a Discrete Action Tokenization module that learns an adaptive mapping
from continuous action to a structured vocabulary, preserving fine-grained motion information. Sec-
ond, the training of VLAs often suffers from a disconnect between the pretrained backbone and the
policy head (Kim et al., 2024). We tackle this through Latent-Driven Policy Learning, which em-
ploys a latent regularization strategy to jointly optimize the discrete vision-language representations
and continuous action. Third, conventional decoding processes in discrete diffusion models follow
the confidence-first principle for selective token unmasking, which tends to generate actions in a
fragmented, token-by-token manner and disrupt more complex temporal coherence (Austin et al.,
2021a). To address this, we propose a Selective Group Unmasking strategy that enables group-level
decoding to facilitate inter-action dependencies in the process of action generation. Together, these
components enable DIVA to bridge the continuous action space with discrete reasoning, forming the
unified vision-langauge-action framework for action generation in dynamic environments.

In summary, the contributions of this work are threefold:

• We propose the first discrete diffusion vision-language-action model that unifies discrete
action tokenization and decoding.

• We introduce three core technical innovations to construct a unified framework: a discrete
action tokenizer bridging the continuous action and language space, a latent-driven policy
learning objective for joint optimization, and a selective group unmasking strategy ensuring
temporally coherent decoding.

• Extensive simulated and real-world evaluations demonstrate state-of-the-art performance
across multiple benchmarks, confirming the effectiveness of our method.

2 RELATED WORKS

2.1 VISION-LANGUAGE-ACTION MODELS

Research on Vision–Language–Action (VLA) models has converged along two complementary but
distinct design axes: how actions are represented and generated and how tightly action generation

2
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is integrated with large pretrained vision–language models (VLMs) (Ma et al., 2024; Zhong et al.,
2025). One prevalent family frames control as a discrete sequence prediction problem, tokenizing
low-level actions and decoding them autoregressively on top of a VLM (Brohan et al., 2022; Chen
et al., 2021), which leverages strong sequence modeling and pretrained cross-modal features but
suffers from serial decoding latency and compounding errors (Shridhar et al., 2023). Another family
models entire action trajectories in continuous spaces and generates them via iterative refinement.
Denoising diffusion and flow-matching methods (Chi et al., 2023; Hou et al., 2025) naturally capture
multimodal and smooth behaviors but incur multiple inference steps and typically require separate
modules and training schedules (Reed et al., 2022).

Recent research has focused on transferring the powerful perceptual and reasoning capabilities of
large pretrained models to Vision–Language–Action (VLA) tasks, proposing a range of methods
and frameworks to support this goal. Approaches include co-training (Black et al., 2024; Reed
et al., 2022) as a training strategy and engineering techniques for runtime efficiency such as fast
diffusion samplers (Chi et al., 2023; Hou et al., 2025). OpenVLA-OFT (Kim et al., 2025) improves
inference efficiency and flexibility by combining parallel decoding, action chunking, and continuous
action representations; Moto (Chen et al., 2024) leverages unsupervised latent motion tokens as an
intermediate language to absorb motion priors from videos and transfer them to robot manipulation;
VQ-VLA (Wang et al., 2025) scales action tokenization via a convolutional residual VQ-VAE with
progressive training to achieve more stable representations; and DreamVLA (Zhang et al., 2025)
incorporates world-knowledge forecasting into VLA models, predicting key environmental features
rather than full future frames to enhance action planning.

2.2 DISCRETE DIFFUSION LARGE LANGUAGE MODELS

Discrete Diffusion Large Language Models (dLLMs) have recently been proposed as an alternative
to autoregressive generation by iteratively denoising masked sequences rather than producing tokens
strictly left-to-right (Austin et al., 2021b; Lou et al., 2024). This paradigm supports bidirectional at-
tention, parallel decoding, and iterative refinement, thereby improving reasoning, controllability,
and infilling. Recent scaling efforts such as LLaDA (Nie et al., 2025) and LLaDA 1.5 (Zhu et al.,
2025) demonstrate that dLLMs can match or surpass autoregressive baselines in text tasks, while
multimodal extensions including LLaDA-V (You et al., 2025) and LaViDa (Li et al., 2025) highlight
their applicability beyond language. Inspired by the powerful parallel decoding capabilities of previ-
ous work, DIVA introduces a unified discrete-diffusion framework that incorporates precise discrete
tokenization and flexible decoding, yielding for efficient and scalable parallelized action generation
for vision-language-action tasks.

3 METHOD

3.1 PRELIMINARIES

Discrete diffusion large language models Nie et al. (2025); Zhu et al. (2025); You et al. (2025);
Li et al. (2025); Yang et al. (2025)) introduce a novel generative approach that integrates discrete
diffusion techniques Austin et al. (2021b) with conventional language modeling to establish a non-
autoregressive generative paradigm. These methods construct a model distribution through a for-
ward Markov process and its reverse process. Given an input sequence x0 = [x1

0, x
2
0, ..., x

N
0 ] ∼

p(x), the forward process gradually corrupts x0 into an increasingly noisy state xt, with each token
independently being masked into a special token [MASK] in probability t, t ∈ [0, 1]. This process
is formulated using Bernoulli variables {bk}Nk=1 ∼ Bernoulli(t), as

xk
t =

{
[MASK], bk = 1,

xk
0 , bk = 0.

(1)

The reverse process employs a parametric mask predictor that recovers the marginal distribution pθ
from the noisy variables. Beginning with a fully-masked sequence x1, the posterior x̂0 is progres-
sively sampled through an iterative remasking strategy for refinement. For a given remasking ratio
γ ∈ (0, 1), the mask predictor concurrently assesses the likelihood of candidate predictions across
all masked tokens. This process yields the intermediate state x̂s (s ∈ [0, t)) through the remasking
of a fraction γ of the originally masked tokens. Then xs is refined in an iterative process until all
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Figure 2: The architecture of DIVA. Our framework introduces two key innovations to enable precise
and coherent action generation. First, a Discrete Action Tokenization process bridges continuous
actions with structural language space. Second, a Latent-Driven Policy Learning paradigm jointly
trains a discrete diffusion model with latent-space regularization, allowing iteratively refined parallel
action decoding.

tokens are unmasked. Common unmasking strategies include low-confidence remasking and semi-
autoregressive remasking. The overall transition from the fully-masked sequence x1 to the posterior
x̂0 is modeled as a reverse diffusion process:

pθ(x̂0|x1) =

T∏
i=1

pθ(x̂si−1
|x̂si), (2)

where {si}Ti=0 is an increasing sequence of diffusion steps satisfying 0 = s0 < s1 < · · · < sT = 1,
with x̂sT = x1 and T is the number of decoding steps.

3.2 OVERVIEW

In this section, we introduce DIVA, a unified framework that integrates action generation into a
discrete diffusion model for vision-language-action (VLA) tasks. As illustrated in Fig. 2, the archi-
tecture of DIVA consists of two innovative modules, each contributing to robust and coherent action
generation. First, the Discrete Action Tokenization process (Sec. 3.3) serves as a bridge between
continuous action trajectories and the discrete token space of large language models. By quantiz-
ing actions into semantically meaningful tokens, it preserves spatiotemporal structure in action and
ensures native compatibility with language-guided reasoning. Second, Latent-Driven Policy Learn-
ing (Sec. 3.4) enables mutual enhancement between language representations and action decoding
through a multi-objective training scheme. Finally, we introduce a Selective Group Unmasking strat-
egy (Sec. 3.5) as an extension of discrete diffusion decoding strategies in vision-lanaguage-action
tasks, which facilitates the inter-action dependencies through group-level unmasking. Together,
these innovations establish DIVA as an effective framework for generating precise and temporally-
coherent actions for VLA tasks.

3.3 DISCRETE ACTION TOKENIZATION

We formalize action representation through a Discrete Action Tokenization process, which cen-
ters on an action tokenizer built upon a Vector-Quantized Variational Auto-Encoder (VQ-VAE).
This module learns an adaptive mapping from continuous motion sequences to a structured discrete
vocabulary, enabling more precise and semantically meaningful encoding than current bin-based
quantization approaches Kim et al. (2024).
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The tokenizer extends the vocabulary codebook of a pre-trained Visual Language Model (VLM) to
ensure native compatibility with large language backbones. As illustrated in Fig. 2, the encoding
process begins by segmenting the input continuous action sequence along the temporal dimension.
Each segment is augmented with time and action-type embeddings to preserve temporal and cate-
gorical context. The segmented actions are further split along feature dimensions and processed by
a convolutional encoder Etok to produce latent action representations. These latents are then quan-
tized via nearest-neighbor lookup in the VLM-derived codebook, mapping them to discrete tokens.
During decoding, a convolutional decoder Dtok reconstructs the original continuous action from the
quantized tokens, ensuring minimal reconstruction error and high fidelity.

The action tokenizer is optimized using a VQ-VAE objective that combines the reconstruction loss,
vector quantization loss, and commitment loss. The overall loss Ltoken is formulated as:

Ltoken = MSE(SA,Dtok(zq)) + MSE(sg[Etok(SA)], ek) + β · MSE(Etok(SA), sg[ek]) (3)
where SA denotes the original continuous action, zq represents the quantized latent code, ek is the
codebook embedding, MSE denotes the mean square error, sg[·] denotes the stop-gradient operator
introduced in VQ-VAE Van Den Oord et al. (2017), and β controls the commitment weight.

3.4 LATENT-DRIVEN POLICY LEARNING

We introduce Latent-Driven Policy Learning as a joint optimization strategy to address the common
disconnect between pretrained vision-language backbones and policy heads in VLA training. As il-
lustrated in Fig. 2, this strategy employs multi-level regularization to align discrete visual-language
representations with continuous actions, enabling mutual enhancement between the VLM’s repre-
sentative space and the policy head’s action space.

The Latent-Driven Policy Learning operates by applying distinct regularization mechanisms to la-
tent representations throughout the forward process. Given the natural language instruction I, visual
observation V, and ground-truth action sequence SA, they are first encoded into discrete tokens HI ,
HV , and HA using separate modality-specific encoders. The action tokens are randomly masked at
ratio t to form HM

A , concatenated with the visual and textual tokens, and fed into the diffusion lan-
guage model to produce action hidden states H′

A. These hidden states are then decoded by a policy
head into continuous action predictions OA. Throughout this propagation, latent regularization is
applied at multiple levels to maintain alignment and fidelity across modalities.

The regularization consists of three complementary objectives designed to jointly constrain the latent
and output spaces. First, a cross-entropy loss Lce is applied to the predicted token distribution to
ensure accurate discrete reasoning:

Lce = −Et

[
1

t

L∑
i=1

1[HM
A = [MASK]]pθ(HA) · log(Mc)

]
, (4)

where Mc denotes the confidence score matrix, and 1[] is the indicator function.

Second, a reconstruction loss Lrecon regularizes the action tokenizer by mapping hidden states back
to the action codebook:

Lrecon = MSE(ŜA,SA) + MSE(sg[HA],H
′
A) + MSE(HA, sg[H

′
A]), (5)

where ŜA = Dlat(HA) is the reconstructed action sequence, MSE is the mean square error, and sg[]
denotes the stop-gradient operator.

Finally, a regression loss Lreg directly supervises the policy output:
Lreg = MSE(SA,OA). (6)

The complete training objective integrates these losses as:
Ltotal = Lce + Lrecon + Lreg. (7)

By simultaneously optimizing discrete token prediction, latent-space reconstruction, and continu-
ous action regression, this multi-level regularization strategy promotes a semantically consistent
alignment between language-guided understanding and actionable motion generation. The approach
bridges the representational gap between pretrained VLMs and policy heads, enabling more reliable
action decoding.
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Figure 3: The comparison between (a) Selective Token Unmasking (STU) and (b) Selective Group
Unmasking (SGU): STU only refines one token per step, which potentially fragments action se-
quences. In contrast, SGU refines the entire token groups simultaneously, preserving action depen-
dencies to generate more coherent and physically reasonable motions.

3.5 SELECTIVE GROUP UNMASKING

Apart from the confidence-first principle of discrete diffusion decoding strategies Nie et al. (2025);
Yang et al. (2025), we propose a Selective Group Unmasking (SGU) strategy, which advances the
decoding process by shifting from a token-level to a group-level paradigm, where iterations are
performed over non-overlapping groups of action tokens. This mechanism incorporates inter-action
dependencies in the generation of action sequence, ensuring temporally coherent and structurally
sound motions for dynamic environments.

As depicted in Fig. 3, unlike conventional Selective Token Unmasking (STU) that refines one
highest-confidence token at a time, the Selective Group Unmasking (SGU) strategy operates at a
grouped scale. Starting from a fully-masked sequence x of L tokens, the diffusion large language
model first produces action hidden states Hx, which encode motion information. The correspond-
ing token-level confidence matrix Mc is then derived from Hx as the probabilities for candidate
predicted tokens. The L tokens are divided into G non-overlapping groups {gi}Gi=1, each containing
K = L/G consecutive tokens. The token-level confidence scores are aggregated into group-level
confidence scores MG

c via a non-overlapping average pooling with stride K. Based on the score, the
group with the highest aggregate confidence is then fully unmasked, while all other groups remain
masked for the next refinement cycle. This process is formulated as:

MG
c = GROUP AVG(Mc) = [u1, u2, ...,uL], where ui =

1

K

K∑
i=1

max(Mc,(i−1)K+i) (8)

m = argmax(MG
c ) (9)

Hi = [MASK], ∀i /∈ gm, (10)

where GROUP AVG denotes the non-overlapping average pooling operation.

By unmasking coherent groups of action tokens simultaneously, SGU balances the confidence-first
principle with the intrinsic inter-action dependencies. This ensures the coherence of the generated
motion, making it particularly suitable for continuous action decoding in VLA tasks.

4 EXPERIMENT

4.1 SETUP

We evaluate our approach on the LIBERO benchmark (Liu et al., 2023), which provides a diverse
and standardized environment for studying embodied manipulation. The benchmark comprises four
suites (LIBERO-Spatial, LIBERO-Object, LIBERO-Goal, and LIBERO-Long) with 10 tasks and
500 expert demonstrations in each suite, covering spatial reasoning, object-centric manipulation,
goal-directed behavior, and extended-horizon execution. For each task, the policy observes RGB
inputs from a third-person camera and a wrist-mounted camera, accompanied by a natural language

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Evaluation results on LIBERO, measured by success rate (%). Best in bold.

Method LIBERO-Sp LIBERO-Obj LIBERO-Goal LIBERO-Long Average

Diffusion Policy 78.3 92.5 68.3 50.5 72.4

Octo 78.9 85.7 84.6 51.1 75.1

DiT Policy 84.2 96.3 85.4 63.8 82.4

OpenVLA 84.7 88.4 79.2 53.7 76.5

OpenVLA-OFT 95.2 94.2 95.2 93.2 94.5

MDT 78.5 87.5 73.5 64.8 76.1

π0 + FAST 96.4 96.8 88.6 60.2 85.5

π0 96.8 98.8 95.8 85.2 94.2

DIVA (Ours) 98.0 98.8 97.6 95.2 97.4

Put the cream cheese box and the butter in the basket.

Put the white mug on the left plate and the yellow mug on the right plate.

Figure 4: Demonstrations of DIVA on the LIBERO benchmark. Videos are sampled from long-
horizontal tasks in the task suite of LIBERO-Long.

instruction and end-effector state. Depth images, affordance maps, and other auxiliary sensory
channels are intentionally excluded to focus on learning directly from visual and language signals.

For fair comparisons, we choose a broad set of established methods spanning the two dominant
paradigms of action generation. For the autoregressive baselines, we include OpenVLA (Kim et al.,
2024), Octo (Team et al., 2024), OpenVLA-OFT (Kim et al., 2025), and π0+FAST (Black et al.,
2024; Pertsch et al., 2025). For the continuous diffusion and flow-matching baselines, we evaluate
Diffusion Policy (Chi et al., 2023), MDT (Reuss et al., 2024), DiT Policy (Hou et al., 2025), and π0

(Black et al., 2024). All methods are assessed under identical observation modalities and the official
LIBERO evaluation metrics. Baseline results are drawn directly from the original publications or
reproduced from open-source implementations to ensure consistency.

4.2 EVALUATION PERFORMANCE

We present qualitative performance results on the LIBERO benchmark in a simulated environment.
As shown in Tab. 1, DIVA achieves superior performance with success rates of 98.0%, 98.8%,
97.6%, and 95.2% across the four task suites, yielding a top-tier average of 97.4%. Our method
demonstrates a particular advantage on long-horizon tasks, outperforming the second-best method
on LIBERO-Long by +2.0%. We attribute this performance gain to DIVA’s structured represen-
tation space and learning strategy. The discrete action tokenization process effectively captures
fine-grained motion patterns through the adaptive codebook, while the latent-driven policy learn-
ing ensures the alignment between linguistic instructions and action sequences through multi-level
regularization. This combination enables temporally-coherent action modeling and precise motion
execution, which is critical in complex, multi-stage scenarios. Furthermore, Fig. 4 provides quali-
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Table 3: Performance of Discrete Diffusion Decoding, measured by success rate (%). Best in bold.
Strategy PD STU SGU

Policy Head CNN DP CNN DP CNN DP

LIBERO 95.2 95.8 97.0 96.9 97.2 97.4

Table 4: Real-world evaluation, measured by success rates (%). Best in bold.

Method Stack Two Cubes Pick Up Food Put Food in Basket Put Food on Plate Average

π0 30 60 45 45 45

DIVA (Ours) 45 70 60 65 60

tative demonstrations by showcasing long-horizon tasks where DIVA capably executes multi-stage
plans to achieve the desired goals, further validating the framework’s ability to maintain coherent
action sequences over extended time horizons.

4.3 ABLATION STUDY

Table 2: Ablation study of DIVA, measured by suc-
cess rate (%) on the LIBERO benchmark. Best in bold.
[Keys: DAT: Discrete Action Tokenization; LDPL:
Latent-Driven Policy Learning; CNN: Convolutional
Neural Network; DP: Diffusion Policy.]

Models Learning Strategy Policy Head Average
DAT LDPL CNN DP

1 ✔ 95.2

2 ✔ ✔ 96.6

3 ✔ ✔ 96.7

4 ✔ ✔ ✔ 97.2

5 ✔ ✔ ✔ 97.4

We conduct extensive ablation studies to
evaluate the contribution of each compo-
nent in DIVA. As summarized in Tab. 2,
we begin with OpenVLA equipped with a
CNN policy head as the baseline (Model
1) and incrementally integrate our pro-
posed modules. First, introducing the
discrete action tokenizer brings a con-
sistent improvement, raising performance
by +1.4% with the CNN head (Model 2)
and +1.5% with the DP head (Model 3),
validating the importance of adaptive and
semantically-grounded action discretiza-
tion. Then, the incorporation of the
Latent-Driven Policy Learning (LDPL)
strategy yields additional gains of +0.6%
(Model 4) and +0.7% (Model 5), demon-
strating its effectiveness in aligning mul-
timodal representations and enabling more consistent action decoding through joint latent-space
regularization. These results confirm that both the discrete action tokenization and the LDPL strat-
egy are essential to DIVA’s performance.

4.4 DISCRETE DIFFUSION DECODING

We conduct a comprehensive comparison of discrete diffusion decoding strategies to determine the
optimal paradigm for action generation. Three distinct approaches are evaluated: Parallel Decoding
(PD), which unmasked all tokens simultaneously; Selective Token Unmasking (STU), which un-
masked individual tokens following a confidence-first principle; and our proposed Selective Group
Unmasking (SGU), which unmasked coherent token groups based on aggregated confidence scores.
As summarized in Tab. 3, SGU achieves consistent performance gains with both CNN and Diffuser
(DP) policy heads. Specifically, it surpasses PD by +2.0% and +1.6%, and outperforms STU by
+0.2% and +0.5% using CNN and DP heads, respectively. These results indicate that SGU strikes
a balance between effectiveness and efficiency. It avoids the overly coarse approximation of PD
while mitigating the fragmentation and error accumulation inherent in STU’s sequential token-by-
token unmasking. The group-wise refinement preserves local temporal dependencies within action
segments, leading to more coherent and stable motion generation.

8
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Put the pepper in the basket.

Put the pumpkin on the plate.

Pick up the banana.

Stack the blue cube on the red one.

Figure 5: Demonstrations of DIVA on the real-world evaluation.

4.5 REAL-WORLD EVALUATION

To further validate the effectiveness of DIVA, we conduct real-world experiments using one Franka
Research 3 robotic arm. The robot is equipped with an Intel RealSense D435 RGB-D camera, which
provides visual observations of the workspace. The camera is mounted in a fixed position to capture
both objects and the end-effector, ensuring reliable visual feedback for grasping and manipulation.
The control interface is realized through the Franka Control Interface (FCI) based on the Deoxys
library Zhu et al. (2022), enabling low-latency execution of continuous actions predicted by our pol-
icy. We evaluate DIVA on four representative manipulation tasks, which cover both object grasping
and precise placement. The detailed descriptions of these tasks are provided in the Appendix C.1.3.

The real-world efficacy of DIVA is evaluated through qualitative demonstrations (Fig. 5) and quan-
titative comparisons with the baseline π0 Black et al. (2024) (Tab. 4). The quantitative results sub-
stantiate a consistent performance gain across all tasks, raising the average success rate from 45%
to 60%. These results demonstrate that our method delivers substantial improvements in real-world
manipulation, proving the effectiveness of our method under complex real-world environments.

5 CONCLUSION

In this paper, we present DIVA, a discrete diffusion framework for vision-language-action (VLA)
tasks that reformulates action generation as a structured denoising process. Our approach introduces
three key innovations: a discrete action tokenizer that adaptively maps continuous motions to se-
mantic tokens, a latent-driven policy learning method that aligns multimodal representations with
action outputs, and a selective group unmasking strategy that maintains temporal coherence dur-
ing decoding. Extensive experiments show that DIVA achieves state-of-the-art performance in both
simulated and real-world environments, demonstrating significant advantages in long-horizon tasks.
This work establishes a new paradigm for VLA models and provides a solid foundation for future
research on scalable embodied intelligence.
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Supplementary Material

A ETHICS STATEMENT

In this paper, we propose a unified vision-language-action model, DIVA, which is built upon the
open-source framework OpenVLA and trained on the LIBERO, a public dataset in the simulation
environments. As our research aims at advancing visual-language-action models, it does not involve
the use of any personal data or human subjects. Consequently, we identify no foreseeable issues
pertaining to privacy infringement, physical safety, algorithmic fairness, or other ethical conflicts.
This work is conducted in full compliance with standard ethical guidelines.

B REPRODICIBILITY STATEMENT

Our methodology and experiments are designed to be fully reproducible. To support this goal, we
will publicly release the complete source code for the DIVA model, encompassing all components
for network architecture, training, and evaluation. The final trained model weights will be made
available on a community platform once the paper is accepted. All datasets used in this study are
publicly accessible benchmarks. Comprehensive implementation details, including hyperparameter
values, training procedures, and environment setups, are described within the paper and its sup-
plementary materials. We ensure these resources allow for the straightforward replication of our
reported results.

C USAGE OF LLMS

In this work, large language models were utilized strictly as an auxiliary tool in two ways: firstly, for
polishing the manuscript’s language and enhancing its readability; and secondly, for providing tech-
nical support for the software development. The models played no role in the core research process,
such as the conception of ideas, the design of the methodology, or the execution of experiments. All
AI-generated content was reviewed and edited by all the authors, who take full responsibility for the
presentation of the work.

C.1 IMPLEMENTATION DETAILS

C.1.1 ARCHITECTURE

We develop DIVA on the foundational VLA model OpenVLA Kim et al. (2024), which consists of a
language model Prismatic-7B Karamcheti et al. (2024) and two visual encoders (SigLIP Tschannen
et al. (2025) and DINO v2 Oquab et al. (2023). The discrete latent action tokenizer shares the
codebook with OpenVLA, with the codebook size 1024 and the dimension 4096. An additional
[MASK] token is extended for discrete diffusion. We choose Convolutional Neural Network (CNN)
and Diffusion Policy Chi et al. (2023) (DP) as the policy heads.

C.1.2 TRAINING AND INFERENCE

The training strategy of our method is a two-stage phases: 1) the cold start of discrete latent tokeniza-
tion and 2) an overall finetuning of the overall architecture. In the first stage, the action tokenizer is
trained with the batch size 2e− 5 and the learning rate 2e− 5 until converged. In the second stage,
our method is finetuned on 8x A100 with the batch size 16 and the learning rate 2e − 5. We fine-
tune the CNN policy head for 150K-200K iterations and the diffusion policy head for 300K-400K
iterations. The sequence length of action L and the masking ratio α are set as 8 and 0.5. During
inference, the group number for SGU is set as 4.

C.1.3 REAL-WORLD EXPERIMENT

We conduct our real-world evaluation on a manipulation platform equipped with a single Franka
Research 3 arm mounted on a fixed base. An Intel RealSense D435 RGB-D camera is placed beside
the manipulator to capture the workspace, and the camera is extrinsically calibrated to the robot

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

base frame to enable accurate localization. The DIVA receives the raw RGB observations and the
natural language instruction, and autoregressively predicts low-level robot actions in the form of end-
effector deltas and gripper commands. These actions are executed step by step through the Franka
Control Interface, which closes the loop between perception, reasoning, and control. Specifically,
we use the Deoxys library Zhu et al. (2022) to interact with the Franka Control Interface.

In the real-world evaluation, we design four representative tabletop manipulation tasks to test the
generality of our method. The tasks include: (1) Put the pepper in the basket, where the robot
must grasp a small food item and place it into a container; (2) Put the pumpkin on the plate, which
requires placing the target object precisely on a flat surface; (3) Pick up the banana, a grasping-
only task that evaluates object detection and grasp stability under clutter; and (4) Stack the blue
cube on the red one, which involves geometric reasoning and accurate placement for block stacking.
These tasks cover a diverse range of skills—from basic grasping to precise placement and spatial
reasoning—and their visual appearances are illustrated in Figure 5.

D LIMITATIONS AND FUTURE WORK

Limitations : Our work presents a limitation in its reliance on the iterative refinement process
of diffusion decoding, which requires multiple unmasking steps to generate high-quality actions.
This refinement process inherently demands greater computational resources to achieve optimal
performance, potentially hindering its application in scenarios requiring real-time decision-making.

Future Work : A promising direction for future work is to develop strategies that better balance
the trade-off between model effectiveness and computational efficiency. This could involve explor-
ing accelerated sampling techniques for discrete diffusion models, designing more efficient latent
representations, or investigating hybrid decoding strategies that maintain high performance while
enabling faster, and potentially real-time, action prediction.
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