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1 Supplementary Material

1.1 Algorithm

Algorithm 1: PyTorch-style pseudocode for the proposed algorithm
# f: encoder model
# h: projector head
# s: slim ratio of SACL
# slicer: SACL slicer
# alpha: weight between CL loss and CD loss
# lambda: weight on the off-diagonal terms
def normalize(z):

z_norm = (z - z.mean(dim=0)) / z.std(dim=0)
return z_norm

for batch in trainloader:
x_a, x_b = batch

# SACL forward pass
slicer.remove_mask()
z1 = h(f(x_a))
slicer.activate_mask()
z2 = h(f(x_b))

# reverse the order of input
with torch.no_grad():

slicer.remove_mask()
z1t = h(f(x_b))
slicer.activate_mask()
z2t = h(f(x_a))

# cross correlation
cab = mm(normalize(z1).T, normalize(z2)) / N
caat = mm(normalize(z1).T, normalize(z1t)) / N
cbbt = mm(normalize(z2).T, normalize(z2t)) / N

# Contrastive leanring loss
cl_loss = bt_loss(cab)

# CD loss
dcorr_a = off_diagonal(caat).mul_(lambda).sum()
dcorr_b = off_diagonal(caat).mul_(lambda).sum()
cd_loss = (dcorr_a + dcorr_b) / 2

loss = cl_loss.mul(alpha) + cd_loss.mul(1-alpha)
loss.backward()
optimizer.step()

Preprint. Under review.



1.2 Compared to the Log-based distillation loss

From the perspective of knowledge distillation, the negative logarithm-based distillation loss has
been widely incorporated into the “teacher-student” learning. In Section 3.2, we proposed the cross-
distillation (XD) learning scheme. The distillation objective in Eq (10) is the inner decorrelation
minimization between embeddings z and [z̃]. In addition to the correlation-based distillation loss, we
also investigate the negative logarithm (e.g, −a log b) distillation loss that is employed in both
supervised knowledge distillation [3] and contrastive learning [1].

To avoid the unbalanced loss magnitude, the distillation loss is introduced as the regularization term
controlled by the penalty level γ:

L = LSACL(zA, zB) + γLCD (1)
LCD = (−[z̃A] log zA +−[z̃B ] log zB)/2 (2)

We empirically observe that the negative logarithm-based distillation loss failed to outperform
the proposed cross-distillation loss LCD with inner-decorrelation minimization. As shown in the
ImageNet-100 results below:

Method Encoder # of Params (M) Linear Eval Acc. (%)
XD MobileNet-V1 (1×) 3.2 80.30

XD (w/ negative log) MobileNet-V1 (1×) 3.2 79.63∗

Barlow Twins [5] MobileNet-V1 (1×) 3.2 78.40
∗: Best accuracy we found with γ =1e-3.

Although the negative-logarithm distillation loss is suboptimal compared to the inner decor-
relation minimization, the proposed cross-distillation learning scheme is beneficial to lightweight
contrastive learning, compared to the baseline [5].

1.3 Detailed Experimental Setup of Pre-training

ImageNet-1K The encoders (MobileNet, EfficientNet, ResNet-50) are trained on ImageNet-1K
with 100/200/300 epochs from scratch with the proposed method. We set the batch to 256 with a
learning rate = 0.8. We employ the LARS optimizer with weight decay set to 1.5e-6. We set the
correlation weights λ to 0.005. The hidden layer dimension of the projector is 4096. The detailed
data augmentation is summarized in Table 1

Table 1: Detailed image augmentation settings on ImageNet-1K.
Parameter XA XB

Random crop size 224 × 224 224 × 224

Horizontal flip probability 0.5 0.5

Color jitter probability 0.8 0.8

Brightness adjustment probability 0.4 0.4

Contrast adjustment probability 0.4 0.4

Saturation adjustment probability 0.2 0.2

Hue adjustment probability 0.1 0.1

Gaussian blurring probability 1.0 0.1

Solarization probability 0.0 0.2

ImageNet-100 With the proposed cross-distillation method, we train the lightweight ViT model
on the ImageNet-100 dataset for 400 epochs. The batch size is set to 256 with AdamW optimizer.
The learning rate and weight decay are set to 0.005 and 1e-4. The detailed data augmentation is
summarized in Table 2:
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Table 2: Detailed image augmentation settings on ImageNet-100.
Parameter XA XB

Random crop size 224 × 224 224 × 224

Horizontal flip probability 0.5 0.5

Color jitter probability 0.8 0.8

Brightness adjustment probability 0.4 0.4

Contrast adjustment probability 0.4 0.4

Saturation adjustment probability 0.0 0.2

Hue adjustment probability 0.1 0.1

Gaussian blurring probability 1.0 0.1

Solarization probability 0.0 0.2

CIFAR-10 The proposed method is trained from scratch by 1,000 epochs with LARS-SGD opti-
mizer [4]. We use 256 batch size along with 0.3 learning rate and 1e− 4 weight decay. The Cosine
learning rate scheduler is used with 10 epochs of warmup training. The detailed data augmentation is
summarized in Table 3.

Table 3: Detailed image augmentation settings on CIFAR-10.
Parameter XA XB

Random crop size 32 × 32 32 × 32

Horizontal flip probability 0.5 0.5

Color jitter probability 0.8 0.8

Brightness adjustment probability 0.4 0.4

Contrast adjustment probability 0.4 0.4

Saturation adjustment probability 0.2 0.2

Hue adjustment probability 0.1 0.1

Gaussian blurring probability 0.0 0.0

Solarization probability 0.0 0.2

1.4 Detailed Experimental Setup of Downstream Fine-tuning

We evaluate the transferability of the pre-trained lightweight model on downstream tasks, including
CIFAR-10, CIFAR-100, and VOC2007. Following the settings in [2], we fine-tuned the models for
10,000 steps with SGD and batch size of 64. The learning rate is set to 0.1 with no weight decay. The
input samples are resized to 224× 224 to maintain the dimensionality as the pre-trained model. The
checkpoint of the pre-trained lightweight model will be released soon.
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