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Abstract

Transformer-based LLMs achieve strong001
results but demand large computational and002
memory resources. We propose a hybrid003
quantum-classical approach that embeds004
variational quantum circuits into transformers005
for compression. By replacing portions of006
feed-forward and attention sub-layers with007
compact quantum modules, we cut parameters008
while preserving perplexity. Theoretical009
analysis shows these quantum circuits can010
approximate large transformations with fewer011
parameters, and experiments on LLaMA and012
Qwen confirm memory savings and faster013
inference. We also discuss quantum hardware014
feasibility and GPU-based simulation. Overall,015
our method offers a promising avenue for016
deploying LLMs in resource-constrained017
environments.018

1 Introduction019

Modern transformer-based Large LanguageModels020

(LLMs) can have billions or even trillions of021

parameters, enabling them to excel at tasks ranging022

from natural language understanding to generative023

text composition (Brown et al., 2020).024

However, this success comes with significant025

computational and memory demands, both during026

training and deployment (Narang et al., 2021).027

Researchers have therefore sought ways to reduce028

model size and cost through model compression029

methods like pruning (Frankle and Carbin, 2019),030

quantization (Dettmers et al., 2022), and knowledge031

distillation (Sanh et al., 2020). Although these032

approaches can cut parameter counts by half or033

more, they often struggle to maintain the original034

model’s performance, highlighting a fundamental035

tension between efficiency and accuracy.036

Concurrently, quantum computing has emerged037

as a promising paradigm, introducing hybrid038

quantum-classical neural networks (QNNs)039

that harness the expressive power of quantum040

states. While the field remains constrained 041

by today’s noisy hardware, these quantum 042

circuits are theorized to capture high-dimensional 043

transformations more efficiently than classical 044

layers (Li et al., 2022). This opens a new avenue 045

for LLM compression: by replacing select sub- 046

layers with smaller quantum modules, one might 047

significantly reduce parameter counts without 048

severely degrading accuracy. 049

Motivated by this idea, we present a Hybrid 050

QNN-Transformer architecture that embeds 051

variational quantum circuits within large-scale 052

transformer blocks. In particular, we substitute 053

certain feed-forward (FFN) sub-layers and attention 054

heads with QNN modules to curb the model’s 055

computational footprint. Our contributions are 056

fourfold: 057

• We introduce a quantum-classical hybrid 058

design that strategically replaces expensive 059

transformer components, thereby lowering 060

parameters and floating-point operations 061

(FLOPs) while preserving quality. 062

• We provide theoretical evidence that 063

variational quantum circuits can encode 064

high-dimensional mappings more compactly 065

than classical layers, offering a solid basis for 066

compression. 067

• We empirically validate our method on 068

LLaMA and Qwen transformers, showing 069

that perplexity on language modeling tasks 070

remains nearly unchanged, yet memory and 071

runtime costs see notable gains. 072

• We discuss practical considerations for 073

implementing such a hybrid system on 074

current quantum hardware, and outline future 075

directions to expand quantum-assisted model 076

compression. 077
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Our work stands out by directly targeting078

the largest parameter sources in a transformer079

with quantum replacements—an approach that, to080

our knowledge, has not been explored at scale.081

By bridging the gap between quantum circuits’082

theoretical efficiency and large-scale NLP, we offer083

a potential path to more sustainable and capable084

language models, even in hardware-constrained085

settings.086

2 Related Work087

Transformer Compression. Researchers have088

proposed a variety of techniques to reduce the089

cost of transformer-based LLMs, which often090

span billions of parameters. One line of091

work prunes weights or entire attention heads092

(Michel et al., 2019), sometimes even removing093

entire groups of parameters without severely094

harming accuracy. Quantization, where weights095

are stored in lower-precision formats (e.g., 8-096

bit or 4-bit), has also proven effective at097

shrinking model size while retaining performance098

(Zafrir et al., 2019). Another approach is099

knowledge distillation, where a smaller student100

model learns from a larger teacher (Sanh et al.,101

2020), sometimes achieving 40–60% parameter102

reduction. Meanwhile, low-rank factorizations103

(Wang et al., 2020) and mixture-of-experts104

strategies can distribute computations across105

separate modules to boost efficiency. Despite106

these advances, highly expressive LLMs (GPT-3,107

PaLM, etc.) remain extremely memory-hungry,108

and pushing them into resource-constrained settings109

remains an open challenge. Our work addresses110

this by replacing parts of the largest layers (FFNs111

and MHSA heads) with more compact quantum112

circuits.113

Quantum Neural Networks (QNNs). Quantum114

neural networks fuse elements of quantum115

computing with classical optimization. They116

encode input vectors into quantum states, then117

evolve these states through parameterized gates118

before measurement (Schuld and Bergholm, 2019;119

Benedetti et al., 2019). This setup can theoretically120

represent some functions more efficiently than121

classical networks due to exponential growth122

in Hilbert space dimension (Preskill, 2018).123

However, real quantum hardware is still limited124

by noise, gate fidelity, and qubit counts, making125

large-scale quantum deep learning difficult.126

Simulating big circuits on classical machines127

is also expensive, though GPU-accelerated 128

frameworks like PennyLane’s lightning.gpu 129

aim to mitigate this overhead. These constraints 130

have so far restricted QNNs mostly to small 131

or medium-sized tasks, yet they highlight the 132

potential for strong representational power with 133

fewer explicit parameters. 134

Hybrid Quantum-Classical Approaches. 135

Recognizing the limitations of fully quantum 136

networks, many works employ hybrid models that 137

combine quantum sub-layers with standard deep 138

learning architectures. Early research in computer 139

vision explored substituting convolutional filters 140

with small quantum circuits (Cong et al., 2019), 141

yielding promising accuracies on tasks like 142

classification. In natural language processing, Li 143

et al. (2022) proposed a quantum self-attention 144

mechanism to process queries and keys in a 145

quantum state space. Others have tested quantum- 146

based embedding layers or quantum kernels for 147

textual similarity, though typically on smaller 148

datasets. These pioneering studies show that partial 149

quantum integration can be effective, especially 150

when combined with classical preprocessing and 151

postprocessing. 152

Quantum-Assisted Model Compression. Only 153

recently has attention shifted to using quantum 154

circuits for model compression, specifically for 155

large language models. Instead of applying QNNs 156

as separate modules for classification or encoding, 157

the focus here is on replacing bulky sub-layers 158

in the transformer. The rationale is that feed- 159

forward layers and multi-head attention are among 160

the largest parameter consumers in LLMs, so 161

introducing quantum gates could drastically reduce 162

memory footprint. Moreover, partial quantum 163

integration alleviates some hardware challenges by 164

limiting the number of qubits (e.g., n ≈ log2(d)), 165

thus lowering the risk of quantum decoherence 166

while retaining the classical backbone. As a result, 167

one can benefit from QNNs’ expressivity without 168

converting the entire model into a fully quantum 169

design. 170

3 Methodology 171

We present QFFN, a hybrid method that combines 172

classical transformer blocks with QNNs to 173

compress LLMs. The idea behind QFFN is 174

to reduce the number of parameters in key 175

sub-layers—especially feed-forward and attention 176
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Figure 1: Illustration of QFFN. Classical sub-layers (blue) and quantum sub-layers (green) appear in alternating

fashion. The dimension of each hidden vector is d, while the quantum circuits operate on n qubits, where n ≈ log2(d).
In practice, half of the feed-forward networks and half of the attention heads are replaced with quantum variants.

computations—while preserving the high-level177

structure of the original transformer. Below, we178

detail its overall design, rationale, integration179

within a transformer, and theoretical grounds for180

the parameter savings it achieves.181

3.1 Overview and Design Rationale182

QFFN originates from the observation that many183

LLMs spend a substantial number of parameters in184

FFNs and multi-head self-attention. For instance,185

standard decoder-only transformers like GPT,186

LLaMA, or Qwen dedicate a large fraction of187

parameters to the feed-forward sub-layers, which188

typically have O(d2) weights at each block for189

hidden dimension d. Recognizing this redundancy,190

QFFN replaces parts of these classical components191

with compact quantum circuits that can represent192

complex functions in fewer explicit parameters.193

By partially integrating quantum modules,194

QFFN retains the familiar transformer backbone195

(embeddings, residuals, normalization) while196

swapping out certain dense computations. This197

approach limits the risk of training instability or198

major architectural modifications, making QFFN199

more practical than a full redesign. Additionally,200

it helps avoid overhead in layers where quantum201

operations may not confer a clear advantage (e.g.,202

token embeddings).203

There are two main points of compression in204

QFFN:205

• Feed-Forward Replacement: Half of the206

classical FFN sub-layers are replaced with207

a Quantum Feed-Forward Network (QFFN) 208

to remove large weight matrices, which are 209

particularly costly in d × 4d or 4d × d 210

projections. 211

• Attention Replacement: Half of the attention 212

heads in each layer become quantum attention 213

heads, where queries and keys pass through 214

small quantum circuits to compute similarity 215

scores, reducing the classical parameters 216

needed in attention projections. 217

Although quantum circuits introduce overhead 218

in terms of simulation or specialized hardware, 219

their ability to encode large transformations 220

with fewer trainable parameters can result in a 221

net savings. For example, representing a d- 222

dimensional transformation by a circuit with n ≈ 223

log2(d) qubits can drastically reduce the parameter 224

count. This synergy between classical and quantum 225

components forms the core rationale behind QFFN. 226

3.2 Hybrid Transformer–QNN Architecture 227

We base QFFN on a decoder-only transformer 228

with L blocks (e.g., LLaMA-7B). Each block 229

contains multi-head self-attention (MHSA) and a 230

feed-forward network (FFN). QFFN modifies both 231

sub-layers, resulting in a hybrid architecture: 232

Quantum Feed-Forward Network (QFFN). 233

The feed-forward sub-layer in a standard 234

transformer usually includes two dense projections 235

surrounding an activation (e.g., ReLU or GELU). 236

This structure contains O(d2) parameters due 237
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to the large intermediate dimension (∼ 4d). In238

QFFN, half of these FFNs are replaced by a239

Quantum Feed-Forward Network (QFFN), which240

encodes the d-dimensional hidden vector into241

n = dlog2(d)e qubits through amplitude encoding.242

A variational circuit U(θ) of depth D then243

processes these qubits. A measurement step maps244

the quantum state back to a d-dimensional output.245

Since U(θ) often involves only O(nD) trainable246

gates, the total parameter count is notably smaller247

than a classical FFN layer. We optimize U(θ) via248

the parameter-shift rule (Schuld and Bergholm,249

2019), which works similarly to backpropagation250

but is specialized for quantum gates.251

Quantum Attention Heads. In MHSA, each252

attention head typically uses separate projections253

for queries, keys, and values, amounting to a254

substantial share of model parameters. QFFN255

modifies half of the heads in each layer by replacing256

the classical key-query similarity with a small257

quantum circuit. Specifically, queries and keys are258

first projected to dimension dh, then passed into259

a quantum circuit that computes an interaction or260

kernel. Themeasured output, representing attention261

scores, is used to weight the value vectors in the262

usual manner. Since only dh is encoded into the263

circuit, the overhead is modest, and substituting264

classical heads with quantum versions lowers the265

total parameter load.266

Residual and Normalization Layers. We keep267

the standard transformer residual connections and268

layer normalization steps, as these do not typically269

dominate the parameter budget. Retaining them270

also preserves stable training dynamics, preventing271

large changes to the overall forward pass.272

3.3 Practical Example of Integration273

To clarify how QFFN fits into a real transformer274

block, Algorithm 1 (pseudo-code) outlines the275

forward pass of a single layer. After computing276

queries, keys, and values in parallel, some heads277

proceed classically while others are routed to278

quantum attention. Similarly, the feed-forward step279

toggles between a classical MLP and the QFFN280

depending on the layer index or a scheduling policy.281

Although this pseudo-code shows a random or282

“fraction-based” selection of quantum sub-layers283

for simplicity, an actual implementation might284

alternate blocks deterministically or follow a user-285

specified pattern. Once the block is defined,286

we stack L such layers for the full transformer,287

Algorithm 1 Pseudo-code for a hybrid transformer

block in QFFN.

Require: hin (hidden states), quantum

replacement fraction α, classical MLP

parameters, quantum circuit parameters θ
1: q,k, v← LinearProjection(hin)
2: heads← SplitIntoHeads(q,k, v)
3: for each head in heads do

4: if head is quantum with probability α then

5: attn_score ←
QuantumAttention(head.q, head.k, θ)

6: else

7: attn_score ←
DotProduct(head.q, head.k)

8: end if

9: head_out← Softmax(attn_score) · head.v
10: end for

11: mhsa_out← ConcatHeads(heads)
12: if this block is quantum FFN with probability

α then

13: hout ← QFFN(mhsa_out, θ)
14: else

15: hout ← MLP(mhsa_out)
16: end if

17: return hout

with embeddings and final linear heads remaining 288

classical. 289

3.4 Theoretical Analysis 290

One of QFFN’s main advantages is that quantum 291

circuits can learn high-capacity transformations 292

with far fewer parameters than the layers they 293

replace. Here, we compare a classical feed-forward 294

sub-layer with a quantum counterpart to illustrate 295

this advantage more concretely. 296

3.4.1 Expressive Power of Quantum Circuits 297

The feed-forward layer in a standard transformer 298

typically includes O(d2) weights for each block 299

(e.g., two linear transformations, each dimension 300

d × 4d or 4d × d). Meanwhile, our quantum 301

feed-forward network (QFFN) uses n ≈ log2(d) 302

qubits and circuit depth D, so it primarily depends 303

on O(nD) gate parameters. Even for modest n, 304

quantum gates can map an input state through 305

a 2n-dimensional Hilbert space, representing 306

transformations that might otherwise require a large 307

classical matrix. This high-dimensional embedding 308

is one reason quantum approaches can excel at 309

compressing big networks. 310
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Figure 2: A conceptual view of a QFFN. Each d-dim input vector is encoded into n = dlog2(d)e qubits and
processed by a variational circuit U(θ). Measurement recovers a d-dim output.

3.4.2 Proof Sketch for Compression311

QFFN leverages known results on the universality312

of variational quantum circuits. Informally, a313

sufficiently deep n-qubit circuit can approximate314

any linear (or even nonlinear) mapping to arbitrary315

precision ε, provided it can encode input vectors316

appropriately.317

Theorem 1 (Informal). A sufficiently deep n-318

qubit variational circuit with amplitude encoding319

can approximate any linear map W ∈ Rd×d to320

arbitrary precision ε, provided n ≈ log2(d) and321

the circuit grows polynomially in 1
ε .322

Sketch. Given an input vector x ∈ Rd, we323

first normalize and load it into a 2n-dimensional324

quantum state via amplitude encoding. A universal325

set of gates can approximate any unitary U on326

C2n×2n to within ε. By composing U with a327

measurement scheme, we can replicate the linear328

map W applied to x, up to a small error. The329

parameter count relates primarily to n×D, where330

D is the depth of the circuit, rather than d2.331

Because n ≈ log2(d), this offers a more compact332

representation for large d.333

Figure 2 illustrates the QFFN concept. The334

quantum state dimension 2n can be much larger335

than d, yet the number of gates (and hence336

parameters) is proportional to nD. For large d,337

this reduction can be significant, suggesting that338

QFFNsmay serve as practical drop-in replacements339

for bulky classical FFNs in some layers.340

4 Evaluation 341

We now explain how we evaluate QFFN on large- 342

scale language modeling tasks and compare it 343

with other compression techniques. Our goal is 344

to explore not just perplexity, but also inference 345

speed, hardware overhead, ablation on quantum 346

layer fractions, and potential challenges that 347

arise when deploying hybrid quantum-classical 348

models. By examining both CPU-based and 349

GPU-based quantum simulations (via PennyLane’s 350

lightning.gpu device), we aim to provide a detailed 351

picture of QFFN’s real-world performance. 352

4.1 Implementation Details 353

Quantum-Classical Integration. We develop 354

QFFN by merging PennyLane1—a library for 355

differentiable quantum programming—with 356

PyTorch for classical transformer components. For 357

our quantum state-vector simulations, we rely on 358

two primary devices: 359

• lightning.qubit (CPU-based): A stable and 360

well-tested backend that runs on standard 361

CPUs, suitable for small to moderate qubit 362

numbers. 363

• lightning.gpu: A GPU-accelerated backend 364

using the NVIDIA cuQuantum SDK, designed 365

to handle more complex or deeper circuits 366

faster if enough GPU memory is available. 367

In practice, we initialize classical weights (e.g., 368

from LLaMA or Qwen) and randomly initialize 369

quantum parameters or pretrain them briefly on a 370

1https://pennylane.ai
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small corpus. During fine-tuning, we use the cross-371

entropy objective on next-token prediction, letting372

gradients flow seamlessly through both classical373

and quantum layers without any special partitioning.374

This unified approach allows the model to adapt375

to quantum modules without separate optimization376

phases.377

Hardware Environment. Unless otherwise378

noted, we run experiments on a single NVIDIA379

A100 GPU (40GB memory) alongside Intel Xeon380

CPUs. The CPU-only quantum simulation is381

threaded across multiple CPU cores, whereas382

the GPU-based simulation offloads quantum383

state-vector updates to the A100. We measure384

net throughput (tokens/sec) to account for385

communication overhead and memory constraints.386

4.2 Experimental Setup387

Dataset and Metrics. We train all models on388

a subset of OpenWebText (Gokaslan and Cohen,389

2019)—a large-scale corpus that approximates the390

diversity of online text. We thenmeasure perplexity391

(PPL) on WikiText-103 (Merity et al., 2016), a392

standard language modeling benchmark. We also393

track:394

• Inference Speed (tokens/s) on sequences of395

length 128,396

• Parameter Count to quantify memory397

savings,398

• GPUMemory Usage to highlight deployment399

feasibility.400

Results reflect an average of three runs to reduce401

variance.402

Baselines. We compare QFFN against three403

baselines:404

• LLaMA-7B (Touvron et al., 2023): A 7B-405

parameter transformer that serves as a standard406

uncompressed model.407

• Qwen-7B (Bai et al., 2023): Another 7B-408

parameter transformer with different training,409

offering a second uncompressed reference.410

• Distilled-4B (Sreenivas et al., 2024): A411

4B-parameter distillation of LLaMA-7B,412

representing a classical compression baseline.413

We name our hybrid quantum-classical model 414

QFFN (3.5B), reflecting that roughly half of the 415

feed-forward layers and half of the attention heads 416

are replaced with quantum modules. 417

4.3 Maintaining Quality While Compressing 418

Parameters 419

A core question is whether QFFN can preserve 420

language modeling accuracy even though its 421

parameter count is substantially lower. We train 422

each model for 10k steps on the OpenWebText 423

subset and compute validation perplexity on 424

WikiText-103. 425

Motivation. Compression methods often 426

sacrifice performance if they aggressively 427

remove parameters. We investigate whether 428

quantum-based replacements can approximate 429

the expressiveness of a 7B-parameter transformer 430

while employing fewer (3.5B) parameters. 431

Results. As shown in Table 1, QFFN achieves 432

a perplexity of 20.3, compared to 20.1 for 433

LLaMA-7B and 18.9 for Qwen-7B. Although 434

QFFN does not exactly match these larger models, 435

it significantly outperforms Distilled-4B (23.1), 436

which demonstrates classical compression. This 437

indicates that quantum layers can capture much of 438

the rich behavior of full-size transformers while 439

reducing parameter overhead. 440

Convergence Analysis. Figure 3 plots the 441

training curves. Initially, QFFN lags behind 442

LLaMA-7B by about 1–1.5 PPL, but it narrows 443

the gap as training progresses. After 10k steps, 444

QFFN finishes within 0.2–0.3 perplexity points 445

of LLaMA-7B. Distilled-4B, while converging 446

faster initially, plateaus at a significantly higher 447

perplexity in later epochs. 448

Discussion. These findings suggest that quantum 449

replacement does not drastically impede training 450

nor degrade final quality. A small gap remains 451

compared to a fully classical 7B-parameter model, 452

but QFFN still handles large-scale language 453

modeling well with nearly half as many parameters. 454

4.4 Inference Speed and Deployment 455

Considerations 456

Model size and latency are crucial for real-world 457

deployments. We measure tokens-per-second on 458

a single A100 GPU with two quantum simulation 459

modes: CPU-based (lightning.qubit) and GPU- 460

based (lightning.gpu). 461
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Model Params (B) PPL Speed (CPU QSim) Speed (GPU QSim)

LLaMA-7B 7.0 20.1 1.0× 1.0×
Qwen-7B 7.0 18.9 0.9× 0.9×
Distilled-4B 4.0 23.1 1.4× 1.4×
QFFN 3.5 20.3 0.6× 2.0×

Table 1: Main evaluation on WikiText-103. QFFN offers a moderate perplexity gap relative to full models (LLaMA,

Qwen) but clearly outperforms a distillation baseline. Speeds are relative to LLaMA-7B on an A100 GPU.

Fraction Params (B) PPL Speed (CPU QSim) Speed (GPU QSim)

Full Quantum 3.0 20.7 0.4× 1.8×
Half Quantum 3.5 20.3 0.6× 2.0×
Quarter Quantum 4.1 20.1 0.8× 1.4×

Table 2: Ablation on the fraction of quantum sub-layers. The half replacement balances parameter savings, perplexity,

and speed, especially under GPU-based simulation.
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Figure 3: Training curves showing that QFFN converges

more slowly than LLaMA-7B early on, but remains close

in final perplexity after 10k steps. Distilled-4B plateaus

at a higher perplexity.

Motivation. Although quantum simulation is462

known to be expensive, migrating from CPU463

to GPU can mitigate some costs by offloading464

matrix exponentials and state updates to specialized465

hardware. We want to see if shifting overhead from466

classical matrix multiplications to quantum circuits467

truly yields a net speedup.468

Results. Table 1 demonstrates that QFFN runs at469

only 0.6× the speed of LLaMA-7B if we simulate470

quantum circuits on the CPU, due to the overhead471

of transferring data and performing quantum472

state evolution. However, with lightning.gpu,473

we achieve 2.0× speed relative to LLaMA-7B.474

This highlights the potential of GPU-accelerated475

quantum backends for bridging or exceeding476

classical performance.477

Memory Footprint and Resource Usage. While 478

GPU-based quantum simulation benefits from 479

fast state updates, it also requires additional 480

device memory for storing qubit amplitudes. For 481

example, in our experiments, using 10 qubits 482

per circuit can require 210 = 1024 amplitudes 483

(multiplied by precision factors), which remains 484

tractable on high-end GPUs. For more extensive 485

quantum layers or deeper circuits, memory usage 486

may become a bottleneck, necessitating careful 487

architectural choices (e.g., splitting or batching 488

quantum evaluations). 489

Deployment Challenges. Despite these 490

encouraging speed gains under lightning.gpu, 491

practical deployment of QFFN still faces 492

challenges: 493

• Hardware Availability: Not all servers or 494

cloud environments offer the latest GPU 495

hardware or the cuQuantum SDK. 496

• Licensing and Integration: Using 497

specialized quantum frameworks requires 498

additional configuration and drivers, which 499

might complicate typical ML pipelines. 500

• Scaling Beyond 10–12 Qubits: As d grows 501

larger, n = log2(d) can demand more qubits. 502

For instance, d = 4096 yieldsn = 12, quickly 503

raising memory usage for state vectors. 504

Nonetheless, our results demonstrate that, given 505

appropriate hardware, hybrid quantum-classical 506

models can both reduce parameters and accelerate 507

inference. 508
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4.5 Ablation: Fraction of Quantum Layers509

We investigate how modifying the ratio of quantum510

sub-layers affects perplexity and speed. This ratio511

spans:512

1. Full Quantum Replacement: All FFNs and513

half of MHSA heads.514

2. Half Replacement (our default).515

3. Quarter Replacement.516

We keep the same training protocol for each setup517

and measure perplexity and relative speed.518

Findings. Table 2 confirms that fully replacing519

all FFN layers yields the smallest parameter520

count (3.0B) but degrades perplexity to 20.7 and521

remains slower in CPU-based simulation. Quarter522

replacement provides a near-best perplexity (20.1)523

but fewer parameter savings. Our default half524

setting appears to offer the most balanced tradeoff,525

showcasing a decent model size (3.5B), acceptable526

perplexity (20.3), and fast inference (2.0× speedup527

with GPU-based quantum simulation).528

Practical Tradeoffs. In real deployments, users529

may tune the quantum fraction to fit hardware530

capacity or precision needs. If extremely high531

accuracy is required, quarter replacement can532

deliver close to the original perplexity. Conversely,533

if memory reduction is paramount, a heavier534

quantum replacement might be justified.535

4.6 Summary of Findings536

Taken together, our experiments show that QFFN537

can substantially compress large language models538

by combining classical transformer layers with539

quantum feed-forward and attention modules.540

Notably, GPU-based quantum simulation alleviates541

many overheads found in CPU-only approaches,542

enabling a net speedup compared to the original543

full-scale model. While a small gap in perplexity544

persists relative to uncompressed transformers,545

QFFN significantly surpasses classical distillation546

methods at a similar parameter scale. Consequently,547

this hybrid quantum-classical approach holds548

promise for resource-limited NLP deployments,549

where efficient model execution is essential.550

4.7 Discussion and Future Extensions551

Our evaluation underscores that QFFN can552

meaningfully compress transformers while553

remaining close to full performance levels in terms554

of perplexity and generation quality. By swapping 555

out half the classical layers, we cut parameters by 556

about 50% and can accelerate inference up to 2.0× 557

on GPU-based quantum simulation. Still, several 558

interesting directions remain: 559

Combining with Other Compression 560

Techniques. QFFN may be further enhanced 561

by integrating classical pruning, quantization, or 562

distillation. For example, pruning attention heads 563

or embedding layers might further shrink memory 564

usage, and quantizing gate angles in the quantum 565

layers could reduce overhead. 566

Larger Contexts & More Complex Datasets. 567

Our experiments focus on typical context lengths 568

(128 tokens) and standard corpora (WikiText- 569

103, OpenWebText). Future work could examine 570

how QFFN behaves on longer input sequences or 571

specialized benchmarks like academic texts, code, 572

or multimodal data. 573

Advanced Quantum Layer Designs. While 574

QFFNs rely on amplitude encoding, alternative 575

encodings or parameterized gates might offer 576

better noise resilience or even higher expressivity. 577

Mid-circuit measurements, entangled sub-circuits, 578

or dynamic quantum gates might further reduce 579

classical parameters if implemented efficiently. 580

5 Conclusion 581

In summary, our work introduces a hybrid quantum- 582

classical solution, QFFN, which selectively 583

replaces the most parameter-heavy components of 584

a large language model (feed-forward sub-layers 585

and attention heads) with quantum counterparts. 586

By exploiting amplitude encoding and GPU- 587

accelerated quantum simulation (lightning.gpu), 588

QFFN significantly reduces parameter counts 589

and can even speed up inference, all while 590

retaining near-7B perplexity levels in language 591

modeling evaluations. Ablations confirm that a 592

balanced fraction of quantum sub-layers yields 593

both strong accuracy and efficient runtime, and 594

further integration with pruning or distillation 595

may enhance compression even more. These 596

findings indicate that, with suitable hardware 597

support, quantum modules can serve as a practical 598

new avenue for large-scale model compression in 599

real-world NLP deployments. 600
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6 Limitations601

While our proposed QFFN demonstrates promising602

results in compressing large language models603

through hybrid quantum-classical layers, several604

important limitations remain:605

Quantum Hardware Constraints. Current606

noisy intermediate-scale quantum (NISQ) devices607

have limited qubit counts and error-prone608

operations. Although GPU-based simulations can609

handle circuits with ∼ 10–20 qubits efficiently,610

the hardware required to deploy QFFN on actual611

quantum processors is not yet widely available.612

In real-world quantum experiments, decoherence613

and gate fidelity issues may hinder performance,614

especially for deeper circuits or larger d values.615

Simulation Overheads. While lightning.gpu616

accelerates quantum state-vector evolution on617

GPUs, simulation still introduces additional costs,618

including memory usage for qubit amplitudes619

and device-host data transfers. For tasks with620

long sequences or very high qubit numbers,621

these overheads can overshadow the benefits of622

substituting classical layers. As a result, hardware-623

aware architectural decisions (e.g., circuit depth,624

number of qubits) are crucial.625

Scalability to Larger Models. We showcase626

QFFN on architectures in the 7B-parameter range627

(LLaMA, Qwen) and a distilled 4B baseline.628

Although the method generalizes in principle,629

scaling to models with tens or hundreds of billions630

of parameters may require more sophisticated631

strategies for fractionally replacing sub-layers632

or distributing quantum modules across multiple633

accelerators. Moreover, training stability could be634

more challenging to maintain when many quantum635

sub-layers are introduced.636

Integration with Other Techniques. Our637

experiments primarily focus on a straightforward638

swap of classical layers with quantum circuits.639

Although we mention complementary compression640

methods (like pruning or quantization), we do641

not fully explore how to optimally combine them642

with QFFN. Finding the best synergy among643

different compression tools may require extensive644

tuning or auto-search approaches, and we have not645

exhaustively evaluated these interactions.646

Task Coverage. We measure perplexity on647

WikiText-103. While these offer a helpful snapshot,648

they do not guarantee performance across the 649

diverse tasks LLMs handle in real-world scenarios 650

(like code generation, dialogue, or multimodal 651

inputs). Evaluating QFFN on broader benchmarks 652

could expose additional challenges, especially for 653

domains requiring special attention structures or 654

external knowledge integration. 655

In light of these limitations, we view QFFN 656

as a step toward practical quantum-assisted 657

compression rather than a definitive solution 658

for all large language modeling needs. As 659

quantum hardware matures and mixed-precision 660

or advanced quantum algorithms evolve, it will be 661

important to revisit these constraints and further 662

refine the interplay between classical and quantum 663

components. 664
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A Appendix728

This appendix provides supplementary materials729

to support the paper. These include additional730

implementation details, extended experimental731

results, pseudo-code, and further discussions on732

quantum hardware constraints.733

B Additional Implementation Details734

B.1 Hyperparameter Settings735

Table 3 lists the main hyperparameters used across736

all our experiments. Unless otherwise noted, these737

values remain consistent for every model (LLaMA,738

Qwen, Distilled-4B, and QFFN) to allow fair739

comparisons.740

B.2 Quantum Simulation Backends741

We rely on PennyLane for quantum simulation742

with two primary backends: When lightning.gpu743

is used, around 5–10 GB of GPU memory may be744

reserved for quantum state vectors, depending on745

circuit depth and the number of qubits.746

Algorithm 2 High-level training loop for QFFN

with quantum fraction α.

Require: Training data D, quantum fraction α,
modelM (initialized with classical + quantum

parameters), optimizer Opt

1: Shuffle D into mini-batches

2: for each step = 1 to Nsteps do

3: (input, labels)← BatchFrom(D)
4: Opt.zeroGrad()
5: logits←M(input, α)
6: loss← CrossEntropy(logits, labels)
7: loss.backward() {Mixed quantum-classical

gradients}

8: Opt.step()
9: end for

B.3 Software and Hardware Environment 747

All experiments run on a single NVIDIA A100 748

40GB GPU and Intel Xeon CPUs. We use Python 749

3.9, PyTorch 1.13, PennyLane 0.28, and Hugging 750

Face Transformers 4.26. Table 4 summarizes key 751

software versions. 752

C Extended Experimental Results 753

C.1 Validation Curves Across Training Steps 754

Although the main text reports final perplexities, 755

we also record validation perplexity at intermediate 756

checkpoints (every 1k steps). QFFN stays within 757

0.3–0.5 perplexity points of LLaMA-7B for much 758

of training, whereas Distilled-4B diverges more 759

substantially after the initial warmup. This suggests 760

that quantum sub-layers, once stabilized, do not 761

severely impede overall convergence. 762

C.2 Ablation: Circuit Depth 763

In addition to varying the fraction of quantum 764

layers, we experiment with circuit depth D in 765

QFFNs and quantum attention heads. Deepening 766

circuits from D = 4 to D = 8 typically decreases 767

perplexity slightly (e.g., from 20.5 to 20.2), but 768

can raise GPU memory usage and increase training 769

time. Beyond D = 8, returns were minimal and 770

training sometimes became unstable, suggesting an 771

optimal range around 4–8 layers for our setup. 772

D Additional Pseudo-code and Training 773

Details 774

Algorithm 2 outlines a more extensive training 775

routine for QFFN, illustrating how quantum and 776

classical sub-layers coexist. The parameter-shift 777
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Hyperparameter Value Description

Max Sequence Length 128 Token length for both training and inference

Batch Size 8 Samples per batch (single GPU)

Learning Rate 2× 10−5 Initial LR for AdamW

Optimizer AdamW Weight decay = 0.01

Training Steps 10k Fine-tuning steps on OpenWebText

Warmup Steps 500 LR warmup steps

Gradient Clipping 1.0 Max gradient norm

Qubit Count (n) dlog2(d)e For quantum feed-forward/attention

Circuit Depth (D) 4–8 Layers of quantum gates per sub-layer

Activation Function GELU (Classical feed-forward only)

Table 3: Hyperparameters used for all experiments.

Component Version/Details

Python 3.9

PyTorch 1.13

PennyLane 0.40

Transformers (HF) 4.26

CUDA 11.7

cuQuantum SDK 24.03

Table 4: Software environment details.

Model R-1 R-2 R-L ASL

LLaMA-7B 36.8 15.1 33.9 57.2

Distilled-4B 32.2 13.8 30.1 52.4

QFFN 35.6 14.9 33.0 56.1

Table 5: ROUGE scores on CNN/DailyMail

summarization (zero-shot). ASL is the average number

of tokens in generated summaries.

rule applies to quantum gates, while standard778

autodiff handles classical weights.779

In practice, PennyLane automatically handles780

quantum gradients via parameter-shift, while781

PyTorch autograd manages classical layers. The782

user can toggle between lightning.qubit or783

lightning.gpu by specifying the device string (e.g.,784

”lightning.gpu”).785

E Reproducibility Checklist786

To encourage reproducibility, we release all787

training, nference, and evaluation scripts at https:788

//sites.google.com/view/qnn-transformer.789
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