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Abstract

Transformer-based LLMs achieve strong
results but demand large computational and
memory resources. We propose a hybrid
quantum-classical approach that embeds
variational quantum circuits into transformers
for compression. By replacing portions of
feed-forward and attention sub-layers with
compact quantum modules, we cut parameters
while preserving perplexity.  Theoretical
analysis shows these quantum circuits can
approximate large transformations with fewer
parameters, and experiments on LLaMA and
Qwen confirm memory savings and faster
inference. We also discuss quantum hardware
feasibility and GPU-based simulation. Overall,
our method offers a promising avenue for
deploying LLMs in resource-constrained
environments.

1 Introduction

Modern transformer-based Large Language Models
(LLMs) can have billions or even trillions of
parameters, enabling them to excel at tasks ranging
from natural language understanding to generative
text composition (Brown et al., 2020).

However, this success comes with significant
computational and memory demands, both during
training and deployment (Narang et al., 2021).
Researchers have therefore sought ways to reduce
model size and cost through model compression
methods like pruning (Frankle and Carbin, 2019),
quantization (Dettmers et al., 2022), and knowledge
distillation (Sanh et al., 2020). Although these
approaches can cut parameter counts by half or
more, they often struggle to maintain the original
model’s performance, highlighting a fundamental
tension between efficiency and accuracy.

Concurrently, quantum computing has emerged
as a promising paradigm, introducing hybrid
quantum-classical neural networks (QNNs)
that harness the expressive power of quantum

states.  While the field remains constrained
by today’s noisy hardware, these quantum
circuits are theorized to capture high-dimensional
transformations more efficiently than classical
layers (Li et al., 2022). This opens a new avenue
for LLM compression: by replacing select sub-
layers with smaller quantum modules, one might
significantly reduce parameter counts without
severely degrading accuracy.

Motivated by this idea, we present a Hybrid
QNN-Transformer architecture that embeds
variational quantum circuits within large-scale
transformer blocks. In particular, we substitute
certain feed-forward (FFN) sub-layers and attention
heads with QNN modules to curb the model’s
computational footprint. Our contributions are
fourfold:

* We introduce a quantum-classical hybrid
design that strategically replaces expensive
transformer components, thereby lowering
parameters and floating-point operations
(FLOPs) while preserving quality.

* We provide theoretical evidence that
variational quantum circuits can encode
high-dimensional mappings more compactly
than classical layers, offering a solid basis for
compression.

* We empirically validate our method on
LLaMA and Qwen transformers, showing
that perplexity on language modeling tasks
remains nearly unchanged, yet memory and
runtime costs see notable gains.

* We discuss practical considerations for
implementing such a hybrid system on
current quantum hardware, and outline future
directions to expand quantum-assisted model
compression.



Our work stands out by directly targeting
the largest parameter sources in a transformer
with quantum replacements—an approach that, to
our knowledge, has not been explored at scale.
By bridging the gap between quantum circuits’
theoretical efficiency and large-scale NLP, we offer
a potential path to more sustainable and capable
language models, even in hardware-constrained
settings.

2 Related Work

Transformer Compression. Researchers have
proposed a variety of techniques to reduce the
cost of transformer-based LLMSs, which often
span billions of parameters. One line of
work prunes weights or entire attention heads
(Michel et al., 2019), sometimes even removing
entire groups of parameters without severely
harming accuracy. Quantization, where weights
are stored in lower-precision formats (e.g., 8-
bit or 4-bit), has also proven effective at
shrinking model size while retaining performance
(Zafrir et al, 2019).  Another approach is
knowledge distillation, where a smaller student
model learns from a larger teacher (Sanh et al.,
2020), sometimes achieving 40—60% parameter
reduction. Meanwhile, low-rank factorizations
(Wang et al.,, 2020) and mixture-of-experts
strategies can distribute computations across
separate modules to boost efficiency. Despite
these advances, highly expressive LLMs (GPT-3,
PalLM, etc.) remain extremely memory-hungry,
and pushing them into resource-constrained settings
remains an open challenge. Our work addresses
this by replacing parts of the largest layers (FFNs
and MHSA heads) with more compact quantum
circuits.

Quantum Neural Networks (QNNs). Quantum
neural networks fuse elements of quantum
computing with classical optimization. They
encode input vectors into quantum states, then
evolve these states through parameterized gates
before measurement (Schuld and Bergholm, 2019;
Benedetti et al., 2019). This setup can theoretically
represent some functions more efficiently than
classical networks due to exponential growth
in Hilbert space dimension (Preskill, 2018).
However, real quantum hardware is still limited
by noise, gate fidelity, and qubit counts, making
large-scale quantum deep learning difficult.
Simulating big circuits on classical machines

is also expensive, though GPU-accelerated
frameworks like PennyLane’s lightning.gpu
aim to mitigate this overhead. These constraints
have so far restricted QNNs mostly to small
or medium-sized tasks, yet they highlight the
potential for strong representational power with
fewer explicit parameters.

Hybrid Quantum-Classical  Approaches.
Recognizing the limitations of fully quantum
networks, many works employ hybrid models that
combine quantum sub-layers with standard deep
learning architectures. Early research in computer
vision explored substituting convolutional filters
with small quantum circuits (Cong et al., 2019),
yielding promising accuracies on tasks like
classification. In natural language processing, Li
et al. (2022) proposed a quantum self-attention
mechanism to process queries and keys in a
quantum state space. Others have tested quantum-
based embedding layers or quantum kernels for
textual similarity, though typically on smaller
datasets. These pioneering studies show that partial
quantum integration can be effective, especially
when combined with classical preprocessing and
postprocessing.

Quantum-Assisted Model Compression. Only
recently has attention shifted to using quantum
circuits for model compression, specifically for
large language models. Instead of applying QNNs
as separate modules for classification or encoding,
the focus here is on replacing bulky sub-layers
in the transformer. The rationale is that feed-
forward layers and multi-head attention are among
the largest parameter consumers in LLMs, so
introducing quantum gates could drastically reduce
memory footprint. Moreover, partial quantum
integration alleviates some hardware challenges by
limiting the number of qubits (e.g., n ~ log,(d)),
thus lowering the risk of quantum decoherence
while retaining the classical backbone. As a result,
one can benefit from QNNs’ expressivity without
converting the entire model into a fully quantum
design.

3 Methodology

We present QFFN, a hybrid method that combines
classical transformer blocks with QNNs to
compress LLMs. The idea behind QFFN is
to reduce the number of parameters in key
sub-layers—especially feed-forward and attention
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Figure 1: Illustration of QFFN. Classical sub-layers (blue) and quantum sub-layers (green) appear in alternating
fashion. The dimension of each hidden vector is d, while the quantum circuits operate on n qubits, where n = log, (d).
In practice, half of the feed-forward networks and half of the attention heads are replaced with quantum variants.

computations—while preserving the high-level
structure of the original transformer. Below, we
detail its overall design, rationale, integration
within a transformer, and theoretical grounds for
the parameter savings it achieves.

3.1 Overview and Design Rationale

QFFN originates from the observation that many
LLMs spend a substantial number of parameters in
FFNs and multi-head self-attention. For instance,
standard decoder-only transformers like GPT,
LLaMA, or Qwen dedicate a large fraction of
parameters to the feed-forward sub-layers, which
typically have O(d?) weights at each block for
hidden dimension d. Recognizing this redundancy,
QFFN replaces parts of these classical components
with compact quantum circuits that can represent
complex functions in fewer explicit parameters.

By partially integrating quantum modules,
QFFN retains the familiar transformer backbone
(embeddings, residuals, normalization) while
swapping out certain dense computations. This
approach limits the risk of training instability or
major architectural modifications, making QFFN
more practical than a full redesign. Additionally,
it helps avoid overhead in layers where quantum
operations may not confer a clear advantage (e.g.,
token embeddings).

There are two main points of compression in
QFFN:

* Feed-Forward Replacement: Half of the
classical FFN sub-layers are replaced with

a Quantum Feed-Forward Network (OFFN)
to remove large weight matrices, which are
particularly costly in d X 4d or 4d x d
projections.

+ Attention Replacement: Half of the attention
heads in each layer become quantum attention
heads, where queries and keys pass through
small quantum circuits to compute similarity
scores, reducing the classical parameters
needed in attention projections.

Although quantum circuits introduce overhead
in terms of simulation or specialized hardware,
their ability to encode large transformations
with fewer trainable parameters can result in a
net savings. For example, representing a d-
dimensional transformation by a circuit with n ~
log, (d) qubits can drastically reduce the parameter
count. This synergy between classical and quantum
components forms the core rationale behind QFFN.

3.2 Hybrid Transformer—QNN Architecture

We base QFFN on a decoder-only transformer
with L blocks (e.g., LLaMA-7B). Each block
contains multi-head self-attention (MHSA) and a
feed-forward network (FFN). QFFN modifies both
sub-layers, resulting in a hybrid architecture:

Quantum Feed-Forward Network (QFFN).
The feed-forward sub-layer in a standard
transformer usually includes two dense projections
surrounding an activation (e.g., ReLU or GELU).
This structure contains O(d?) parameters due



to the large intermediate dimension (~ 4d). In
QFFN, half of these FFNs are replaced by a
Quantum Feed-Forward Network (OFFN), which
encodes the d-dimensional hidden vector into
n = [logy(d)] qubits through amplitude encoding.
A variational circuit U(6) of depth D then
processes these qubits. A measurement step maps
the quantum state back to a d-dimensional output.
Since U () often involves only O(nD) trainable
gates, the total parameter count is notably smaller
than a classical FFN layer. We optimize U () via
the parameter-shift rule (Schuld and Bergholm,
2019), which works similarly to backpropagation
but is specialized for quantum gates.

Quantum Attention Heads. In MHSA, each
attention head typically uses separate projections
for queries, keys, and values, amounting to a
substantial share of model parameters. QFFN
modifies half of the heads in each layer by replacing
the classical key-query similarity with a small
quantum circuit. Specifically, queries and keys are
first projected to dimension dp, then passed into
a quantum circuit that computes an interaction or
kernel. The measured output, representing attention
scores, is used to weight the value vectors in the
usual manner. Since only dj, is encoded into the
circuit, the overhead is modest, and substituting
classical heads with quantum versions lowers the
total parameter load.

Residual and Normalization Layers. We keep
the standard transformer residual connections and
layer normalization steps, as these do not typically
dominate the parameter budget. Retaining them
also preserves stable training dynamics, preventing
large changes to the overall forward pass.

3.3 Practical Example of Integration

To clarify how QFFN fits into a real transformer
block, Algorithm 1 (pseudo-code) outlines the
forward pass of a single layer. After computing
queries, keys, and values in parallel, some heads
proceed classically while others are routed to
quantum attention. Similarly, the feed-forward step
toggles between a classical MLP and the QFFN
depending on the layer index or a scheduling policy.

Although this pseudo-code shows a random or
“fraction-based” selection of quantum sub-layers
for simplicity, an actual implementation might
alternate blocks deterministically or follow a user-
specified pattern. Once the block is defined,
we stack L such layers for the full transformer,

Algorithm 1 Pseudo-code for a hybrid transformer
block in QFFN.

Require: h;, (hidden states), quantum
replacement fraction «, classical MLP
parameters, quantum circuit parameters 6
q, k, v < LinearProjection(hy,)
heads <+ SplitIntoHeads(q, k, v)
for each head in heads do
if head is quantum with probability « then
attn_score A
QuantumAttention(head.q, head .k, 6)
else
attn_score —
DotProduct(head.q, head k)
end if
: head_out < Softmax(attn_score) - head.v
10: end for
11: mhsa_out < ConcatHeads(heads)
12: if this block is quantum FFN with probability

A

2o

« then
13:  hgy < QFFN(mhsa out, 0)
14: else
15:  hgy < MLP(mhsa out)
16: end if

17: return hg,

with embeddings and final linear heads remaining
classical.

3.4 Theoretical Analysis

One of QFFN’s main advantages is that quantum
circuits can learn high-capacity transformations
with far fewer parameters than the layers they
replace. Here, we compare a classical feed-forward
sub-layer with a quantum counterpart to illustrate
this advantage more concretely.

3.4.1 Expressive Power of Quantum Circuits

The feed-forward layer in a standard transformer
typically includes O(d?) weights for each block
(e.g., two linear transformations, each dimension
d x 4d or 4d x d). Meanwhile, our quantum
feed-forward network (QFFN) uses n ~ log,(d)
qubits and circuit depth D, so it primarily depends
on O(nD) gate parameters. Even for modest n,
quantum gates can map an input state through
a 2"-dimensional Hilbert space, representing
transformations that might otherwise require a large
classical matrix. This high-dimensional embedding
is one reason quantum approaches can excel at
compressing big networks.
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Figure 2: A conceptual view of a QFFN. Each d-dim input vector is encoded into n = [log,(d)] qubits and
processed by a variational circuit U (). Measurement recovers a d-dim output.

3.4.2 Proof Sketch for Compression

QFFN leverages known results on the universality
of variational quantum circuits. Informally, a
sufficiently deep n-qubit circuit can approximate
any linear (or even nonlinear) mapping to arbitrary
precision ¢, provided it can encode input vectors
appropriately.

Theorem 1 (Informal). A sufficiently deep n-
qubit variational circuit with amplitude encoding
can approximate any linear map W € R¥>? 1o
arbitrary precision €, provided n ~ log,(d) and
the circuit grows polynomially in %

Sketch. Given an input vector x € RY, we
first normalize and load it into a 2"-dimensional
quantum state via amplitude encoding. A universal
set of gates can approximate any unitary U on
C2?"*2" to within . By composing U with a
measurement scheme, we can replicate the linear
map W applied to =, up to a small error. The
parameter count relates primarily to n x D, where
D is the depth of the circuit, rather than d2.
Because n ~ log,(d), this offers a more compact
representation for large d. O

Figure 2 illustrates the QFFN concept. The
quantum state dimension 2" can be much larger
than d, yet the number of gates (and hence
parameters) is proportional to nD. For large d,
this reduction can be significant, suggesting that
QFFNs may serve as practical drop-in replacements
for bulky classical FFNs in some layers.

4 Evaluation

We now explain how we evaluate QFFN on large-
scale language modeling tasks and compare it
with other compression techniques. Our goal is
to explore not just perplexity, but also inference
speed, hardware overhead, ablation on quantum
layer fractions, and potential challenges that
arise when deploying hybrid quantum-classical
models. By examining both CPU-based and
GPU-based quantum simulations (via PennyLane’s
lightning.gpu device), we aim to provide a detailed
picture of QFFN’s real-world performance.

4.1 Implementation Details

Quantum-Classical Integration. We develop
QFFN by merging PennyLane'—a library for
differentiable quantum programming—with
PyTorch for classical transformer components. For
our quantum state-vector simulations, we rely on
two primary devices:

¢ lightning.qubit (CPU-based): A stable and
well-tested backend that runs on standard
CPUs, suitable for small to moderate qubit
numbers.

¢ lightning.gpu: A GPU-accelerated backend
using the NVIDIA cuQuantum SDK, designed
to handle more complex or deeper circuits
faster if enough GPU memory is available.

In practice, we initialize classical weights (e.g.,
from LLaMA or Qwen) and randomly initialize
quantum parameters or pretrain them briefly on a

"https://pennylane.ai
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small corpus. During fine-tuning, we use the cross-
entropy objective on next-token prediction, letting
gradients flow seamlessly through both classical
and quantum layers without any special partitioning.
This unified approach allows the model to adapt
to quantum modules without separate optimization
phases.

Hardware Environment. Unless otherwise
noted, we run experiments on a single NVIDIA
A100 GPU (40GB memory) alongside Intel Xeon
CPUs. The CPU-only quantum simulation is
threaded across multiple CPU cores, whereas
the GPU-based simulation offloads quantum
state-vector updates to the A100. We measure
net throughput (tokens/sec) to account for
communication overhead and memory constraints.

4.2 Experimental Setup

Dataset and Metrics. We train all models on
a subset of OpenWebText (Gokaslan and Cohen,
2019)—a large-scale corpus that approximates the
diversity of online text. We then measure perplexity
(PPL) on WikiText-103 (Merity et al., 2016), a
standard language modeling benchmark. We also
track:

+ Inference Speed (tokens/s) on sequences of
length 128,

* Parameter Count to quantify memory
savings,

* GPU Memory Usage to highlight deployment
feasibility.

Results reflect an average of three runs to reduce
variance.

Baselines.
baselines:

We compare QFFN against three

* LLaMA-7B (Touvron et al., 2023): A 7B-
parameter transformer that serves as a standard
uncompressed model.

* Qwen-7B (Bai et al., 2023): Another 7B-
parameter transformer with different training,
offering a second uncompressed reference.

* Distilled-4B (Sreenivas et al., 2024): A
4B-parameter distillation of LLaMA-7B,
representing a classical compression baseline.

We name our hybrid quantum-classical model
QFFN (3.5B), reflecting that roughly half of the
feed-forward layers and half of the attention heads
are replaced with quantum modules.

4.3 Maintaining Quality While Compressing
Parameters

A core question is whether QFFN can preserve
language modeling accuracy even though its
parameter count is substantially lower. We train
each model for 10k steps on the OpenWebText
subset and compute validation perplexity on
WikiText-103.

Motivation. Compression methods often
sacrifice performance if they aggressively
remove parameters. We investigate whether
quantum-based replacements can approximate
the expressiveness of a 7B-parameter transformer
while employing fewer (3.5B) parameters.

Results. As shown in Table 1, QFFN achieves
a perplexity of 20.3, compared to 20.1 for
LLaMA-7B and 18.9 for Qwen-7B. Although
QFFN does not exactly match these larger models,
it significantly outperforms Distilled-4B (23.1),
which demonstrates classical compression. This
indicates that quantum layers can capture much of
the rich behavior of full-size transformers while
reducing parameter overhead.

Convergence Analysis. Figure 3 plots the
training curves. Initially, QFFN lags behind
LLaMA-7B by about 1-1.5 PPL, but it narrows
the gap as training progresses. After 10k steps,
QFFN finishes within 0.2-0.3 perplexity points
of LLaMA-7B. Distilled-4B, while converging
faster initially, plateaus at a significantly higher
perplexity in later epochs.

Discussion. These findings suggest that quantum
replacement does not drastically impede training
nor degrade final quality. A small gap remains
compared to a fully classical 7B-parameter model,
but QFFN still handles large-scale language
modeling well with nearly half as many parameters.

4.4 Inference Speed and Deployment
Considerations

Model size and latency are crucial for real-world
deployments. We measure tokens-per-second on
a single A100 GPU with two quantum simulation
modes: CPU-based (lightning.qubit) and GPU-
based (lightning.gpu).



Model Params (B) PPL Speed (CPU QSim) Speed (GPU QSim)
LLaMA-7B 7.0 20.1 1.0x 1.0x
Qwen-7B 7.0 18.9 0.9x 0.9x
Distilled-4B 4.0 23.1 1.4x 1.4x
QFFN 3.5 20.3 0.6 % 2.0x

Table 1: Main evaluation on WikiText-103. QFFN offers a moderate perplexity gap relative to full models (LLaMA,
Qwen) but clearly outperforms a distillation baseline. Speeds are relative to LLaMA-7B on an A100 GPU.

Fraction Params (B) PPL Speed (CPU QSim) Speed (GPU QSim)
Full Quantum 3.0 20.7 0.4x 1.8x
Half Quantum 3.5 20.3 0.6 2.0x
Quarter Quantum 4.1 20.1 0.8x 1.4x

Table 2: Ablation on the fraction of quantum sub-layers. The halfreplacement balances parameter savings, perplexity,

and speed, especially under GPU-based simulation.
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Figure 3: Training curves showing that QFFN converges
more slowly than LLaMA-7B early on, but remains close
in final perplexity after 10k steps. Distilled-4B plateaus
at a higher perplexity.

Motivation. Although quantum simulation is
known to be expensive, migrating from CPU
to GPU can mitigate some costs by offloading
matrix exponentials and state updates to specialized
hardware. We want to see if shifting overhead from
classical matrix multiplications to quantum circuits
truly yields a net speedup.

Results. Table 1 demonstrates that QFFN runs at
only 0.6x the speed of LLaMA-7B if we simulate
quantum circuits on the CPU, due to the overhead
of transferring data and performing quantum
state evolution. However, with lightning.gpu,
we achieve 2.0x speed relative to LLaMA-7B.
This highlights the potential of GPU-accelerated
quantum backends for bridging or exceeding
classical performance.

Memory Footprint and Resource Usage. While
GPU-based quantum simulation benefits from
fast state updates, it also requires additional
device memory for storing qubit amplitudes. For
example, in our experiments, using 10 qubits
per circuit can require 2'© = 1024 amplitudes
(multiplied by precision factors), which remains
tractable on high-end GPUs. For more extensive
quantum layers or deeper circuits, memory usage
may become a bottleneck, necessitating careful
architectural choices (e.g., splitting or batching
quantum evaluations).

Deployment  Challenges. Despite  these
encouraging speed gains under lightning.gpu,
practical deployment of QFFN still faces
challenges:

* Hardware Availability: Not all servers or
cloud environments offer the latest GPU
hardware or the cuQuantum SDK.

* Licensing and Integration: Using
specialized quantum frameworks requires
additional configuration and drivers, which
might complicate typical ML pipelines.

* Scaling Beyond 10-12 Qubits: As d grows
larger, n = log,(d) can demand more qubits.
Forinstance, d = 4096 yields n = 12, quickly
raising memory usage for state vectors.

Nonetheless, our results demonstrate that, given
appropriate hardware, hybrid quantum-classical
models can both reduce parameters and accelerate
inference.



4.5 Ablation: Fraction of Quantum Layers

We investigate how modifying the ratio of quantum
sub-layers affects perplexity and speed. This ratio
spans:

1. Full Quantum Replacement: All FFNs and
half of MHSA heads.

2. Half Replacement (our default).
3. Quarter Replacement.

We keep the same training protocol for each setup
and measure perplexity and relative speed.

Findings. Table 2 confirms that fully replacing
all FFN layers yields the smallest parameter
count (3.0B) but degrades perplexity to 20.7 and
remains slower in CPU-based simulation. Quarter
replacement provides a near-best perplexity (20.1)
but fewer parameter savings. Our default half
setting appears to offer the most balanced tradeoff,
showcasing a decent model size (3.5B), acceptable
perplexity (20.3), and fast inference (2.0 x speedup
with GPU-based quantum simulation).

Practical Tradeoffs. In real deployments, users
may tune the quantum fraction to fit hardware
capacity or precision needs. If extremely high
accuracy is required, quarter replacement can
deliver close to the original perplexity. Conversely,
if memory reduction is paramount, a heavier
quantum replacement might be justified.

4.6 Summary of Findings

Taken together, our experiments show that QFFN
can substantially compress large language models
by combining classical transformer layers with
quantum feed-forward and attention modules.
Notably, GPU-based quantum simulation alleviates
many overheads found in CPU-only approaches,
enabling a net speedup compared to the original
full-scale model. While a small gap in perplexity
persists relative to uncompressed transformers,
QFFN significantly surpasses classical distillation
methods at a similar parameter scale. Consequently,
this hybrid quantum-classical approach holds
promise for resource-limited NLP deployments,
where efficient model execution is essential.

4.7 Discussion and Future Extensions

Our evaluation underscores that QFFN can
meaningfully compress transformers while
remaining close to full performance levels in terms

of perplexity and generation quality. By swapping
out half the classical layers, we cut parameters by
about 50% and can accelerate inference up to 2.0x
on GPU-based quantum simulation. Still, several
interesting directions remain:

Combining with  Other  Compression
Techniques. QFFN may be further enhanced
by integrating classical pruning, quantization, or
distillation. For example, pruning attention heads
or embedding layers might further shrink memory
usage, and quantizing gate angles in the quantum
layers could reduce overhead.

Larger Contexts & More Complex Datasets.
Our experiments focus on typical context lengths
(128 tokens) and standard corpora (WikiText-
103, OpenWebText). Future work could examine
how QFFN behaves on longer input sequences or
specialized benchmarks like academic texts, code,
or multimodal data.

Advanced Quantum Layer Designs. While
QFFNs rely on amplitude encoding, alternative
encodings or parameterized gates might offer
better noise resilience or even higher expressivity.
Mid-circuit measurements, entangled sub-circuits,
or dynamic quantum gates might further reduce
classical parameters if implemented efficiently.

5 Conclusion

In summary, our work introduces a hybrid quantum-
classical solution, QFFN, which selectively
replaces the most parameter-heavy components of
a large language model (feed-forward sub-layers
and attention heads) with quantum counterparts.
By exploiting amplitude encoding and GPU-
accelerated quantum simulation (lightning.gpu),
QFFN significantly reduces parameter counts
and can even speed up inference, all while
retaining near-7B perplexity levels in language
modeling evaluations. Ablations confirm that a
balanced fraction of quantum sub-layers yields
both strong accuracy and efficient runtime, and
further integration with pruning or distillation
may enhance compression even more. These
findings indicate that, with suitable hardware
support, quantum modules can serve as a practical
new avenue for large-scale model compression in
real-world NLP deployments.



6 Limitations

While our proposed QFFN demonstrates promising
results in compressing large language models
through hybrid quantum-classical layers, several
important limitations remain:

Quantum Hardware Constraints. Current
noisy intermediate-scale quantum (NISQ) devices
have limited qubit counts and error-prone
operations. Although GPU-based simulations can
handle circuits with ~ 10-20 qubits efficiently,
the hardware required to deploy QFFN on actual
quantum processors is not yet widely available.
In real-world quantum experiments, decoherence
and gate fidelity issues may hinder performance,
especially for deeper circuits or larger d values.

Simulation Overheads. While lightning.gpu
accelerates quantum state-vector evolution on
GPUs, simulation still introduces additional costs,
including memory usage for qubit amplitudes
and device-host data transfers. For tasks with
long sequences or very high qubit numbers,
these overheads can overshadow the benefits of
substituting classical layers. As a result, hardware-
aware architectural decisions (e.g., circuit depth,
number of qubits) are crucial.

Scalability to Larger Models. We showcase
QFFN on architectures in the 7B-parameter range
(LLaMA, Qwen) and a distilled 4B baseline.
Although the method generalizes in principle,
scaling to models with tens or hundreds of billions
of parameters may require more sophisticated
strategies for fractionally replacing sub-layers
or distributing quantum modules across multiple
accelerators. Moreover, training stability could be
more challenging to maintain when many quantum
sub-layers are introduced.

Integration with Other Techniques. Our
experiments primarily focus on a straightforward
swap of classical layers with quantum circuits.
Although we mention complementary compression
methods (like pruning or quantization), we do
not fully explore how to optimally combine them
with QFFN. Finding the best synergy among
different compression tools may require extensive
tuning or auto-search approaches, and we have not
exhaustively evaluated these interactions.

Task Coverage. We measure perplexity on
WikiText-103. While these offer a helpful snapshot,

they do not guarantee performance across the
diverse tasks LLMs handle in real-world scenarios
(like code generation, dialogue, or multimodal
inputs). Evaluating QFFN on broader benchmarks
could expose additional challenges, especially for
domains requiring special attention structures or
external knowledge integration.

In light of these limitations, we view QFFN
as a step toward practical quantum-assisted
compression rather than a definitive solution
for all large language modeling needs. As
quantum hardware matures and mixed-precision
or advanced quantum algorithms evolve, it will be
important to revisit these constraints and further
refine the interplay between classical and quantum
components.
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A Appendix

This appendix provides supplementary materials
to support the paper. These include additional
implementation details, extended experimental
results, pseudo-code, and further discussions on
quantum hardware constraints.

B Additional Implementation Details

B.1 Hyperparameter Settings

Table 3 lists the main hyperparameters used across
all our experiments. Unless otherwise noted, these
values remain consistent for every model (LLaMA,
Qwen, Distilled-4B, and QFFN) to allow fair
comparisons.

B.2 Quantum Simulation Backends

We rely on PennyLane for quantum simulation
with two primary backends: When lightning.gpu
is used, around 5-10 GB of GPU memory may be
reserved for quantum state vectors, depending on
circuit depth and the number of qubits.
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Algorithm 2 High-level training loop for QFFN
with quantum fraction a.

Require: Training data D, quantum fraction «,
model M (initialized with classical + quantum
parameters), optimizer Opt
Shuffle D into mini-batches
for each step = 1 t0 Neps do
(input, labels) < BatchFrom(D)
Opt.zeroGrad()
logits <— M (input, o)
loss + CrossEntropy(logits, labels)
loss.backward() {Mixed quantum-classical
gradients}
8:  Opt.step()
9: end for

AN A ol e

B.3 Software and Hardware Environment

All experiments run on a single NVIDIA A100
40GB GPU and Intel Xeon CPUs. We use Python
3.9, PyTorch 1.13, PennyLane 0.28, and Hugging
Face Transformers 4.26. Table 4 summarizes key
software versions.

C Extended Experimental Results

C.1 Validation Curves Across Training Steps

Although the main text reports final perplexities,
we also record validation perplexity at intermediate
checkpoints (every 1k steps). QFFN stays within
0.3-0.5 perplexity points of LLaMA-7B for much
of training, whereas Distilled-4B diverges more
substantially after the initial warmup. This suggests
that quantum sub-layers, once stabilized, do not
severely impede overall convergence.

C.2 Ablation: Circuit Depth

In addition to varying the fraction of quantum
layers, we experiment with circuit depth D in
QFFNs and quantum attention heads. Deepening
circuits from D = 4 to D = 8 typically decreases
perplexity slightly (e.g., from 20.5 to 20.2), but
can raise GPU memory usage and increase training
time. Beyond D = 8, returns were minimal and
training sometimes became unstable, suggesting an
optimal range around 4-8 layers for our setup.

D Additional Pseudo-code and Training
Details

Algorithm 2 outlines a more extensive training
routine for QFFN, illustrating how quantum and
classical sub-layers coexist. The parameter-shift
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Hyperparameter Value Description

Max Sequence Length 128 Token length for both training and inference
Batch Size 8 Samples per batch (single GPU)
Learning Rate 2x107° Initial LR for AdamW

Optimizer AdamW Weight decay = 0.01

Training Steps 10k Fine-tuning steps on OpenWebText
Warmup Steps 500 LR warmup steps

Gradient Clipping 1.0 Max gradient norm

Qubit Count (n) [logy(d)] For quantum feed-forward/attention
Circuit Depth (D) 4-8 Layers of quantum gates per sub-layer
Activation Function GELU (Classical feed-forward only)

Table 3: Hyperparameters used for all experiments.

Component Version/Details
Python 3.9

PyTorch 1.13

PennyLane 0.40
Transformers (HF) 4.26

CUDA 11.7

cuQuantum SDK 24.03

Table 4: Software environment details.

Model R-1 R-2 R-L ASL

LLaMA-7B  36.8 15.1 339 572
Distilled-4B 322 13.8 30.1 524
QFFN 35.6 149 33.0 56.1

Table 5: ROUGE scores on CNN/DailyMail
summarization (zero-shot). ASL is the average number
of tokens in generated summaries.

rule applies to quantum gates, while standard
autodiff handles classical weights.

In practice, PennyLane automatically handles
quantum gradients via parameter-shift, while
PyTorch autograd manages classical layers. The
user can toggle between lightning.qubit or
lightning.gpu by specifying the device string (e.g.,
"lightning.gpu”).

E Reproducibility Checklist

To encourage reproducibility, we release all
training, nference, and evaluation scripts at https:
/ /sites.google.com/view /qnn-transformer.
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