
Under review as a conference paper at ICLR 2024

MULTI-AGENT INTERPOLATED POLICY GRADIENTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Policy gradient method typically suffers high variance, which is further amplified
in the multi-agent setting due to the exponential growth of the joint action space.
While value factorization is a popular approach for efficiently reducing the com-
plexity of the value function, integrating it with policy gradient to reduce variance
is challenging, as bias is introduced due to the limitations of factorization struc-
ture. This paper addresses the underexplored bias-variance trade-off problem by
proposing a novel policy gradient method in MARL that uses a convex combination
of joint Q-function and a factorized Q-function. This results in a policy gradient
approach that balances stochastic and factorized deterministic policy gradients,
enabling a more flexible trade-off between bias and variance. Theoretical results
validate the effectiveness of our approach, showing that factorized value functions
can effectively reduce variance while potentially maintaining low bias. Empirical
experiments on several benchmarks demonstrate that our approach outperforms
existing state-of-the-art methods in terms of efficiency and stability.

1 INTRODUCTION

Cooperative multi-agent reinforcement learning (MARL) has become an increasingly popular research
area due to its wide range of potential applications, including robotics (Zhang et al. (2021a)),
autonomous driving (Zhou et al. (2020)), inventory management (Ding et al. (2022)) and so on
(Wang et al. (2021b); Yu et al. (2022b); Zhou et al. (2021)). MARL extends reinforcement learning
to scenarios where multiple agents interact in a shared environment, presenting new challenges
and opportunities for researchers in the field of RL. One popular learning paradigm in cooperative
MARL is Centralized Training with Decentralized Execution (CTDE) (Kraemer & Banerjee (2016);
Oliehoek et al. (2008)), which has shown promising results in addressing the non-stationary problem
(Hernandez-Leal et al. (2017)) of MARL by allowing agents to access global information during
training while still maintaining individual control during execution.

Policy gradient (Sutton et al. (1999)) is a successful method employed in CTDE for multi-agent
learning, enabling agents to learn centralized value functions to optimize their individual policies
while maintaining good coordination and convergence (Wang et al. (2020b); Yu et al. (2022a)).
However, policy gradient methods often suffer from high variance, which is further amplified in the
multi-agent setting due to the exponential growth of the joint action space, and the sub-optimal or
exploratory actions from other agents. Consequently, achieving a stable and efficient policy that
yields good performance in MARL poses a challenge.

Recently, value function factorization method (Rashid et al. (2020); Son et al. (2019); Sunehag et al.
(2017); Wang et al. (2020a)) has emerged as a popular approach in MARL under CTDE for efficiently
learning the joint value function. By decomposing the joint value function into individual utilities of
individual state-action spaces, the value factorization method reduces the complexity of the factorized
function, thereby improving learning efficiency. However, this reduction in complexity comes at
the cost of introducing bias due to the limited function class. While value function factorization
has demonstrated success in value-based methods, its integration with policy gradient methods in
MARL remains relatively unexplored, and it may not fully leverage its advantages. Several policy-
based approaches (Peng et al. (2021); Wang et al. (2020b); Zhang et al. (2021b)) directly apply
value factorization to learn the value function, reducing the variance of the policy gradient but also
introducing some bias. The degree of bias and variance is determined by the factorization structures
used, and it is difficult to achieve the optimal trade-off between them since it requires new structures.
This inflexibility can limit the performance of the policy-based approach and make it challenging to

1

Under review as a conference paper at ICLR 2024

achieve good results. Furthermore, while the theoretical properties of value factorization in policy
gradient have been partially explored (Wang et al. (2020b)), further investigation is necessary to
advance our understanding in this field.

In this paper, we demonstrate that bias-variance trade-offs can be achieved by employing a convex
combination of joint Q-function and a factorized Q-function, resulting in a Multi-Agent Interpolated
Policy Gradient (MAIPG). By integrating an unbiased stochastic policy gradient with a low-variance
factorized deterministic policy gradient, our approach offers a more flexible trade-off between bias
and variance. Theoretical results validate the effectiveness of bias-variance trade-offs and show
that the factorized value functions can effectively reduce variance while potentially maintaining low
bias. To evaluate the performance of our approach, we conducted empirical experiments on several
benchmark scenarios. The results show that our proposed method achieves superior bias-variance
trade-offs and outperforms existing state-of-the-art methods in terms of efficiency and stability.

2 BACKGROUND

2.1 PRELIMINARIES

We employ the Multi-agent Markov Decision Process (MMDP) (Boutilier (1996)) as the framework,
which is a special case that rules out the concerns of partial observability of Decentralized Partially
Observable Markov Decision Process (Dec-POMDP) (Oliehoek & Amato (2016)) in modeling
cooperative multi-agent tasks. It’s worth noting that our method is applicable for Dec-POMDP.
The choice of MMDP is to simplify the theoretical analysis. The MMDP is defined by a tuple
⟨N ,S,A, r,P, γ⟩, where N represents the set of agents, S is the set of states, A is the set of actions,
r is the reward function, P is the transition probability function, and γ is the discount factor. At each
time step, each agent i ∈ N observes the current state s ∈ S and then selects an action ai ∈ A based
on its policy πi(ai|s) : S → ∆(A) (the probability simplex over A). The actions of all agents form a
joint action a ∼ π(a|s), where π(·|s) represents the joint policy formed by πi. The next state resulted
by current state and joint action is determined by the transition probability function P(s′|s, a), and
a global reward r is shared by all agents. The joint policy induces a distribution over trajectories
τ = (st, at, rt)

∞
t=0 and for all subsequent timesteps t, at ∼ π(·|st) and st+1 ∼ P(·|st, at). The

objective of MARL is to find a joint policy π that maximizes the expected discounted rewards, defined
by V π(s) = E

[∑∞
t=0 γ

trt|π, s0 = s
]
. Consequently, the action-value function (or Q-function) is

defined as Qπ(s, a) = r + γEs′∼P (·|s,a)
[
V π(s′)

]
. Additionally, we define deterministic policies µi

for each agent based on πi, i.e. µi(s) = argmaxaiπi(ai|s). Let µ(s) = ⟨µ1(s), ..., µn(s)⟩ be the joint
deterministic policy. Further, we use θi denote the parameters of the individual policy πθi and µθi .
Then θ = ⟨θ1, ..., θn⟩ is the parameters of the joint policy π and µ. To maintain conciseness, notations
with subscripts "i" pertain to individual agents, while notations without subscripts encompass all
agents, or they refer to single-agent notations in the context of single-agent RL.

The centralised training with decentralised execution (CTDE) paradigm is employed in our work.
CTDE allows for policy training to leverage global information that may be available, as well as
sharing information between agents during training. During execution, however, each agent can only
access its own action-observation history, thereby implementing decentralised execution.

2.2 STOCHASTIC AND DETERMINISTIC POLICY GRADIENT

Policy gradient methods can be regarded to solve the optimization problem: maxπ V
π(s0). These

methods (Schulman et al. (2015a); Williams (1992)) compute gradients of the objective and update
policy parameters to maximize the expected return. If the policy is stochastic, the policy gradient
functional form (Sutton et al. (1999)) with respect to θ is:

∇θJ(θ) = ∇θV πθ (s0) =
1

1− γ
Es∼dπθ

ρ
Ea∼πθ(·|s)

[
∇θ log πθ(a|s)Qπθ (s, a)

]
, (1)

where dπρ := Es0∼ρ
[
(1 − γ)

∑∞
t=0 Pr

π(st = s|s0)
]

is the discounted state visitation distribution
over initial state distribution ρ. This results in a basic form of stochastic policy gradient in CTDE,
where two representative variants are COMA (Foerster et al. (2018)) and MAPPO (Yu et al. (2022a)):

∇θJCOMA(θ) = Es∼dπθ
ρ
Ea∼πθ(·|s)

[n∑
i=1

∇θ log πi(a|s)ACOMA(s, a)
]
, (2)

2

Under review as a conference paper at ICLR 2024

∇θJMAPPO(θ) = Es∼dπθ
ρ
Ea∼πθ(·|s)

[n∑
i=1

min(riA
GAE
i , clip(ri, 1− ϵ, 1 + ϵ)AGAE

i)
]
, (3)

where ACOMA is counterfactual advantage, AGAE is computed using GAE (Schulman et al. (2015b)).
Both methods use centralized value functions to calculate the gradients of decentralized policies.

On the other hand, the objective function with a deterministic policy µθ(s) according to the determin-
istic policy gradient theorem (Silver et al. (2014)) can be written as:

∇θJDPG(θ) = Es∼D
[
∇θµθ(s)∇aQµ(s, a)|a=µ(s)

]
, (4)

where D is a replay buffer of any behavior policy. In MARL, a representative deterministic policy
gradient method is MADDPG (Lowe et al. (2017)), which learns centralized critics for each agent to
calculate individual policy gradient:

∇θiJMADDPG(θi) = Es,a∼D
[
∇θiµθi(s)∇aiQ

µ
i (s, a)|ai=µi(s)

]
. (5)

2.3 VALUE FACTORIZATION METHODS

In cooperative MARL, value decomposition methods are used to learn a centralized but factored
action-value function efficiently under the CTDE paradigm. Two representative examples of value-
based methods are VDN (Sunehag et al. (2017)) and QMIX (Rashid et al. (2020)). VDN fac-
tors Qπ(s, a) into a sum of the per-agent utilities: QVDN(s, a) =

∑n
i=1Qi(s, ai). QMIX, on

the other hand, uses a hypernetwork to monotonically mix each agent’s utilities: QQMIX(s, a) =

f(s,Q1(s, a1), ..., Qn(s, an)), where f represents the hypernetwork and ∂f
∂Qi

> 0. In addition
to value-based methods, some policy-based methods also utilize factored value functions in their
gradient. DOP (Wang et al. (2020b)) and FACMAC (Peng et al. (2021)) are two such examples. DOP
adopts a linear factorization similar to VDN to obtain a decomposed policy gradient

∇θJDOP(θ) = Eπ
[∑

i

ki(s)∇θi log πi(ai|s)Qi(s, ai)
]
. (6)

On the other hand, FACMAC uses QMIX to learn a centralized Q-function instead of the joint
Q-functions of MADDPG. It also uses a centralized gradient estimator that optimises over the entire
joint action space as following:

∇θJFACMAC(θ) = Es∼D
[
∇θµθ(s)∇aQQMIX(s, a)|a=µ(s)

]
. (7)

This helps FACMAC to overcome relative overgeneralization (Wei & Luke (2016)).

3 METHOD

In this section, our focus lies on exploring the integration of value factorization and policy gradient in
MARL. To achieve this, we propose an approach that combines the joint and factorized Q-functions
using a convex combination. This results in an interpolation between stochastic policy gradient and
factorized deterministic policy gradient, which in turn provides bias-variance trade-offs. Additionally,
we present a practical algorithm that implements this concept.

3.1 MULTI-AGENT INTERPOLATED POLICY GRADIENT

The value function factorization method reduces the complexity of joint Q-function by limiting the
function class of it, making its expressive ability crucial. A better expressive ability often results in a
better fit to the Bellman equation, i.e., lower bias. However, this comes at the cost of considering a
larger function class, thus potentially increasing variance. For example, QPLEX (Wang et al. (2020a))
and QTRAN (Son et al. (2019)) have better expressive ability than QMIX and VDN, but they both need
to learn a function that involves the whole joint state-action space which can result in higher variance.
New factorization structures may achieve a better balance between bias and variance, although
constructing them is not always straightforward. As a result, our approach considers combining the
joint Q-function Qπ(s, a) : S × An → R and the factorized Q-function Qµ(s, a) : S × nA → R,
with the stochastic policy π and deterministic policy µ, respectively. Although Qπ(s, a) is unbiased,

3

Under review as a conference paper at ICLR 2024

its large joint action space encompasses actions from other agents that may come from exploration or
suboptimal policies, leading to potential high variance. In contrast, Qµ(s, a) has a factorized action
space with deterministic policy, resulting in less variance but introducing bias. To achieve a more
favorable bias-variance trade-off, we use a convex combination of the two terms as the new joint
Q-function Qjt(s, a), with a weight parameter ν:

Qjt(s, a) = (1− ν)Qπ(s, a) + νQµ(s, a). (8)

It’s worth noting that a convex combination like (8) may not work for value-based methods (see
Appendix A.1 for further details). In contrast, policy-based methods directly optimize the policy
and can capture the gradient indicated by the joint Q-function, making it easier to handle bias-
variance trade-offs by adjusting the weight parameter of (8). The following proposition provides the
policy gradient of our method, which can be regarded as a convex combination of stochastic and
deterministic policy gradient.
Proposition 1 (multi-agent interpolated policy gradient). Given (8), the policy gradient can be
written as

∇θĴ(θ) = (1− ν)Es∼dπρ ,a∼π
[
∇logπ(a|s)Qπ(s, a)

]
+ νEs∼dµρ

[
∇µ(s)∇Qµ(s, a)|a=µ(s)

]
. (9)

This result is derived directly from the stochastic policy gradient theorem (Sutton et al. (1999)) and
deterministic policy gradient theorem (Silver et al. (2014)) (refer to Appendix A.2). It is important to
note that these theorems require that the Q-functions conform to the Bellman equation. However, in
the case of factorized Q-functions, they often fail to satisfy it. In Section 4.2, we will explore the
bias introduced by this deviation. Moreover, although (9) is similar to the single-agent interpolated
policy gradient (Gu et al. (2017)), they are very different in both motivations and implementations.
We present a detailed comparison in section 5.

The first term in (9) corresponds to the stochastic part of the gradient, which is based on sampling
actions from the joint policy, resulting in potentially high variance and thus leading to slow conver-
gence. The second term corresponds to the deterministic part of the gradient, which is based on the
gradient of the factorized Q-function with respect to the action, evaluated at the action selected by the
deterministic policy. This term has low variance, but it introduces bias consisting of the deterministic
policy and factorization. Therefore, the policy gradient theorem allows us to directly trade off bias
and variance by adjusting the weight ν. A more detailed analysis of the bias and variance trade-off
will be presented in Section 4.

3.2 PRACTICAL ALGORITHM

In this subsection, we will provide the implementation of our method that employs interpolated policy
gradients to trade off bias and variance. To update the policy parameters, we modify (9) as following:

∇θĴ(θ) = Es∼dπρ
[
(1−ν)Ea∼π

[
∇θ log πθ(a|s)Â(s, a, τ)

]
+ν∇θµ(s)∇a′Qµ(s, a′)|a′=µ(s)

]
. (10)

There are two differences between (9) and (10). Firstly, we use an advantage estimator instead of
the joint Q-function in the first term. This is based on the superior performance of the advantage
estimator compared to directly learning a joint Q-function (Papoudakis et al. (2020); Schulman et al.
(2015b)). Secondly, the state distribution of the second term is merged by the state distribution dµπ , as
we do not have access to dµρ when the behavior policy is π. The requirement for importance sampling
is eliminated due to the deterministic policy gradient. In addition, PPO-clipping is applied to the
first term for two purposes: to improve training stability and performance, and to ensure the gradient
is equivalent to that of MAPPO (3) when ν = 0. This allows for a direct comparison between our
method and MAPPO.

The overall framework of our algorithm follows the common implementation of on-policy method that
is based on CTDE. We utilized a state value network V φ(s) with parameter φ to estimate V π(s), and
the factorized Q-functionQµ(s, a) is estimated by Q̂(s, a) which is formed by individual action-value
networks Qψ = [Qψi

i]ni=1 and a mixing network Mω with parameters ψ and ω, respectively. The
default mixing network used is QMIX. To update the networks and compute gradients, we employ a
shared episode buffer that stores trajectories of all agents. Specifically, the advantage Â is computed
using GAE and the Q̂ is learned using TD(λ). Similar to DDPG, we use a target Q-network, which
smoothly updates its parameters to match the factorized Q-network, to reduce overestimation.

4

Under review as a conference paper at ICLR 2024

We use policy networks πθ = [πθi]
n
i=1 to represent the stochastic policy. These networks can be

shared among all agents when the agents are homogeneous. The deterministic policy µi shares
the same parameters with πi and reparameterization is used to realize µi(s) = argmaxaiπ(ai|s).
Specifically, for discrete tasks, µi is reparameterized using Gumbel-Softmax (Jang et al. (2016)). In
the case of continuous action space, µi represents the mean value of Gaussian distribution πi. It’s
worth noting that we only use µi to sample actions in (10) when calculate gradients, which means the
behavior policy is π. The training process is similar to on-policy RL methods, where agents interact
with the environment and collect trajectories to the shared episode buffer, and networks are updated
multiple times per mini-batch. Pseudo code for the algorithm can be found in Appendix B.

4 THEORETICAL ANALYSIS

This section presents theoretical analysis of the proposed method. We start by demonstrating how the
factorized Q-function can act as a control variate to reduce the variance of gradient estimates. Next,
by deriving performance bounds, our analysis reveals that the bias could be kept small, allowing
us to achieve favorable bias-variance trade-offs. Furthermore, we explore the compatible function
approximation under CTDE and demonstrate its relevance to the value factorization method. Our
results indicate that the factorized value function can effectively reduce variance while even preventing
the introduction of bias. The proof in this section is omitted and can be found in Appendix A.

4.1 THE FACTORIZED Q-FUNCTION AS A CONTROL VARIATE

A control variate is a statistical technique that can improve the accuracy and efficiency of estimators
by reducing their variance. The basic idea is to introduce an additional variable into the estimation
process that shares a common trend with the variable of interest. To be effective, the control variate
should exhibit a high correlation with the variable of interest and be easily estimable. In the context
of policy-based RL, the state value function V π(s) is a commonly used control variate for policy
gradients. Some previous works (Gu et al. (2016; 2017); Liu et al. (2017)) have explored using
an action-dependent control variate ϕ(s, a), such as the Q-function, to further reduce the variance.
However, it has been observed (Tucker et al. (2018)) that while the "true" value of the action-
dependent variate can significantly reduce the variance, the "learned" variate may not outperform a
state value function. This may be due to the difficulty of accurately estimating the Q-function.

In multi-agent settings, however, the utilization of value factorization methods has shown promise for
identifying a suitable control variate. The factorized Q-function is highly correlated with the original
Q-function and also easier to estimate, thereby potentially serving as an effective control variate. The
following proposition shows that our method can be seen as using factorized Q-function as a control
variate.
Proposition 2. If πθi is reparameterizable and can be expressed as ai = fθi(s, ξ), with some random
noise ξi drawn from distribution π(ξi), we can derive

Eπ(a|s)
[
∇θ log π(a|s)Q(s, a)

]
= Eπ(a,ξ|s)

[
∇θfθ(s, ξ)∇aQ(s, a)

]
, (11)

where fθ(s, ξ) = (fθ1(s, ξ1), ..., fθn(s, ξn))
T . We then have

∇θJ(θ) = (1− ν)Edπρ ,π
[
∇ log π(a|s)

(
Â(s, a, τ)− Q̂(s, a)

)]
+ Edπρ

[
∇µ∇Q̂(s, a)|a=µ(s)

]
. (12)

This theorem and proof is similar to Liu et al. (2017) which applies Stein control variate (Stein
(1986)) to policy gradient. Here we assume that ai ∼ πθi(a|s) can be regarded as ai = fθi(s, ξi)
with some random noise ξi, which is consistent with the practical implementation. Taking discrete
tasks as an example, ξi could be sampled from a Gumbel distribution π(ξi) and the deterministic
policy is denoted as µθi(s) = Eπ(ξi)[fθi(s, ξi)].

Using (12), the law of total variance gives the variance of the gradient:

(1− ν)2Es
[
Vara,τ |s

((
Â(s, a, τ)− Q̂(s, a)

)
∇ log π(a|s)

)]
+VarsEa|s

[(
(1− ν)Eτ |s,a

[
Â(s, a, τ)

]
+ νQ̂(s, a)

)
∇ log π(a|s)

]
.

(13)

Thus, the variance term of joint actions, which typically has high variance, is reduced by Q̂ and a
factor of (1 − ν)2. Furthermore, in Section 6.1, we demonstrate that the factorized Q-function is

5

Under review as a conference paper at ICLR 2024

capable of reducing the variance Var(A − Q) more effectively compared to the joint Q-function.
In summary, incorporating the factorized Q-function as a control variate shows great promise in
effectively reducing variance.

4.2 PERFORMANCE BOUNDS FOR MAIPG

In this subsection, we analyze the bias of our policy gradient by comparing the original objective (1),
denoted as J(π), with the biased objective, denoted as Ĵ(π) induced by (9). As mentioned earlier,
using a factorized Q-function may violate the Bellman equations and introduce bias. To be specific,
we define the function class Q :=

{
Q|Q(s, a) = f(s, [Qi]

n
i=1), Qi ∈ R|S×A|}, where f represents

the factorization structure. Due to the limited function class, it is usually the case T Q /∈ Q, where T
is the Bellman operator. Previous works (Wang et al. (2021a; 2020b)) simplified the update rule of
the factorized Q-function as a regression problem denoted by the operator T Q

D as follows:

Q(t+1) ← T Q
D Q(t) = argmin

q∈Q
E(s,a)∼D

(
y(t) − q(s, a)

)2
.

Here y(t) is the target and D denotes state-action distribution depending on specific algorithm. In this
paper, we set the target to be the true Q-function Qµ(s, a) and D to be the state-action distribution
induced by policy π according, namely

Q̂ = argmin
q∈Q

Es∼dπρ ,a∼π
(
Qµ(s, a)− q(s, a)

)2
. (14)

In the following, we start by providing a general bound that is applicable to all Q̂.

Proposition 3 (General bounds for MAIPG). If δ = maxs,a
∣∣Qµ(s, a) − Q̂(s, a)

∣∣, ϵ =

maxs
∣∣ log π(µ(s)|s)∣∣, we have ∣∣J(π)− Ĵ(π)∣∣ ≤ 2

√
2ϵ

(1− γ)2
ν + νδ.

This proposition shows that the bias mainly depend on how well the factorized Q̂ can approximate
Qµ and the KL-divergence between π and µ. Furthermore, it suggests that the introduced bias is
bounded and proportional to ν. While the variance is proportional to (1− ν)2, adjusting ν allows for
a direct trade-off between bias and variance.

It’s worth noting that ϵ is relatively small. This observation is due to the fact that µ(s) =
argmaxaπ(a|s). On the other hand, the value of δ might be significant since it maximizes across the
complete state-action space. In order to obtain a tighter bound, we introduce Q̂ as the linear function
class, and the following proposition formally asserts that when considering a linear function class
and an almost deterministic policy π, the bias can be exceedingly small.
Proposition 4 (Bounds for linear function class). Assume ∇aQµ(s, a) is L-Lipschitz and there exist
σ such that for any s,

∑
a/∈D(µ(s),σ) π(a|s) ≤ σ2, where D(µ(s), σ) = {a|∥a− µ(s)∥2 ≤ σ}. Then

∣∣J(π)− Ĵ(π)∣∣ ≤ 2
√
2ϵ

(1− γ)2
ν + νc

√
Lσe

ϵ
2 ,

where c is a constant.

The assumption of Lipschitz smoothness of ∇aQ is reasonable since the Q-functions tend
to be smooth in most environments. The existence of σ can be guaranteed since the term∑
a/∈D(µ(s),σ) π(a|s) monotonically decreases with increasing σ, while σ2 monotonically increases.

If the policy is nearly deterministic, it is possible to make both D(µ(s), σ) and ϵ very small. Conse-
quently, if the optimal policy is deterministic, the bias introduced to the objective would be negligible.

4.3 COMPATIBLE FUNCTION APPROXIMATION IN MARL

Similar to the single-agent case, the Q-functions we learned may not follow the true gradient. In
this subsection, we explore the compatible function approximators of Q-function under CTDE such

6

Under review as a conference paper at ICLR 2024

that the true gradient is preserved. It’s worth noting that the results hold for both stochastic and
deterministic policy gradient. However, to simplify notation, we present the results for the stochastic
policy gradient here, and the result for deterministic policy in Appendix C. For conciseness, we
consider the tabular case, where the dimension of θi is equal to the dimension of individual action
space, denoted by m = |A|. Thus θ = (θ1, ..., θn)

T is an mn×1 column vector. We can then rewrite
the gradient of the logarithm of the joint policy with respect to θ as:

∇θ log πθ(a|s) =
n∑
i=1

∇θ log πθi(ai|s) = (∇θ1 log πθ1(a1|s), ...,∇θn log πθn(an|s))T , (15)

where the second equation follows from the independence between θi and θj for i ̸= j. Based on
this, we can state the following proposition, similar to the Compatible Function Approximation in
single-agent RL (Sutton et al. (1999)):
Proposition 5 (Compatible Function Approximation under CTDE). A function approxi-
mator Qw(s, a) is compatible with a joint stochastic policy πθ(a|s), i.e. ∇θJ(θ) =
Edπρ ,π

[
∇θ log πθ(a|s)Qw(s, a)

]
, if

1. ∇wQw(s, a) = ∇θ log πθ(a|s) = (∇θ1 log πθ1(a1|s), ...,∇θn log πθn(an|s))T and

2. w minimises the mean-squared error, MSE(θ, w) = Edπρ ,π
[(
Qπ(s, a)−Qw(s, a)

)2]
.

For any stochastic policy πθ(a|s), there always exists a compatible function approximator of the
form Qw(s, a) = wT∇θ log πθ(a|s) + V (s) that satisfies condition 1. Here, V (s) can be any
differentiable baseline function that is independent of the action a. Furthermore, we can rewrite it
as Qw(s, a) =

∑
iQ

wi
i (s, ai) + V (s) where Qwi

i (s, ai) = wTi ∇θi log πθi(ai|s) and wi is an m× 1
column vector of the mn× 1 column vector w = (w1, ..., wn)

T . This implies that an approximated
Q-function that is compatible can be factorized as the linear sum of the utility of each agent.

To satisfy condition 2, we need to find the parameters w that minimise the MSE between Qw and the
true Q-function, which is quite similar to (14):

w = argmin
w

Es∼dπρ ,a∼π
(
Qπ(s, a)−Qw(s, a)

)2
where Qw(s, a) =

∑
i

Qwi
i (s, ai)+V (s). (16)

Proposition 5 indicates that we can use factorized value function as a compatible function approxima-
tor to not only reduce variance but also preserve the true gradient. This proposition also suggests that
the value function under CTDE naturally lends itself to factorization. To understand this, noticing
that, for each state, the joint value function is of dimension mn, whereas mn parameters suffice to
fully represent the individual policies. As a result, the joint value function needs to be reduced or
projected into the same dimension before updating policy parameters. This fact can be viewed as
prior knowledge within the CTDE paradigm, and value factorization emerges as a natural approach
to leverage it. It should be noted that while linear factorization, such as VDN, could be compatible
with the compatible function approximation theorem under CTDE, this compatibility may not hold
true in practice. Learning a compatible value factorization using neural networks requires further
investigation and discussion. Consequently, we defer this topic to future research.

5 RELATED WORKS

Value factorization methods. Value factorization methods such as VDN (Sunehag et al. (2017))
and QMIX (Rashid et al. (2020)), have been developed to decompose the joint value function into
individual value functions while preserving the Individual-Global-MAX (IGM) principle (Son et al.
(2019)). To adhere to the IGM principle more effectively, QTRAN (Son et al. (2019)) formulates the
decomposition as an optimization problem while QPLEX (Wang et al. (2020a)) introduces a duplex
dueling structure to constrain the advantage functions. Both QTRAN and QPLEX can achieve the
sufficient and necessary conditions for IGM. However, we do not consider QTRAN and QPLEX in
this paper due to their potential for high variance.

Multi-agent policy gradient methods. COMA (Foerster et al. (2018)) and MADDPG (Lowe et al.
(2017)) firstly introduce the paradigm of centralized critic with decentralized actors to deal with the
non-stationarity issue while maintaining decentralized execution. MAAC (Iqbal & Sha (2019)) and
MAPPO (Yu et al. (2022a)) build upon this paradigm by integrating it with SAC (Haarnoja et al.

7

Under review as a conference paper at ICLR 2024

(2018a;b)) and PPO (Schulman et al. (2017)), respectively. DOP (Wang et al. (2020b)) is the first
attempt to introduce linear value factorization to multi-agent policy gradient and formally establishes
its convergence guarantee. FOP (Zhang et al. (2021b)) and FACMAC (Peng et al. (2021)) are two
methods that integrate SAC with QPLEX and MADDPG with QMIX, respectively. Another line is
about the fully decentralized multi-agent learning (de Witt et al. (2020); Suttle et al. (2020); Yang
et al. (2018); Zhang et al. (2018)), where each agent has its own reward.

Single-agent RL. The IPG method (Gu et al. (2017)) is particularly relevant to this paper. The
basic difference between IPG and MAPIG lies in the usage of off-policy data. IPG employs off-
policy updates to enhance sample efficiency, whereas MAIPG exclusively employs on-policy policy
gradients to harmonize with the factorized Q-function, thereby achieving both low variance and low
bias. Specifically, while IPG samples trajectories over behavior policy β, MAIPG relies on on-policy
trajectories of π as stipulated in equation (14) for theoretical underpinning. Furthermore, MAIPG
incorporates a factorized Q-function, distinguishing it from IPG’s use of a single off-policy critic
for Q-function estimation. Along the line of control variate in RL, Q-prop (Gu et al. (2016)) firstly
introduces an off-policy critic as a control variate. Additionally, (Liu et al. (2017)) introduce a more
general action-dependent baseline function to improve sample efficiency. However, as pointed out in
(Tucker et al. (2018)), the action-dependent baseline does not reduce variance over a state-dependent
baseline in commonly tested benchmark domains.

6 EXPERIMENTS

In this section, we provide empirical results of MAIPG on three widely adopted cooperative multi-
agent benchmarks, including the Multi-agent Particle Environment (MPE) (Lowe et al. (2017)),
StarCraftII Multi-agent Challenge (SMAC) (Samvelyan et al. (2019)) and Google Research Football
(GRF) (Kurach et al. (2020)). Full experimental setups and details can be found in Appendix D.

6.1 PERFORMANCE ON BENCHMARKS

0.0 0.2 0.4 0.6 0.8 1.0
steps 1e6

1

2

3

4

5

6

7

R V
ar

Qjoint

Qmix

Figure 1: The relative variance RVar
on spread task of MPE.

Multi-agent Particle Environment (MPE): Considering that
this environment is relatively simple, we utilize it to evaluate
the effectiveness of the factorized Q-function as a control vari-
ate, where we calculate the term RVar = Var(A−Q)/VarA to
provide a measure of the relative scale of variance reduction.
If RVar < 1, it indicates that the variance is reduced, whereas
RVar ≥ 1 means that the control variate Q actually increases
the variance. As shown in Fig. 1, with the dashed black line
representing RVar = 1, the joint Q-function exhibits significant
growth in RVar before convergence. In contrast, the factorized
Q-function consistently maintains a small value of RVar, thereby
effectively reducing variance. This suggests that, compared to
the joint Q-function which is hard to learn and may contribute to
increased variance, the factorized Q-function can serve as a superior control variate. We also conduct
experiments on several scenarios which can be found in Appendix D.2.

StarCraftII Multi-Agent Challenge (SMAC): We conducted a comparison of our method with
two on-policy methods: MAPPO and HAPPO (Kuba et al. (2021)), as well as a commonly used
off-policy baseline, QMIX. The evaluation was performed on ten maps of SMAC. As shown in Fig. 2,
MAIPG achieves results better than the two on-policy methods, and in most case, it performs better
or comparably to the off-policy method QMIX. We also include the results of FACMAC in Appendix
D.2.

Google Research Football (GRF): We evaluate our algorithm with MAPPO and HAPPO in five
GRF academy scenarios, including: 3v.1, counterattack easy and hard, corner, and run-pass-shoot.
The QMIX is not involved due to its inferior performance reported in Yu et al. (2022a). The
results, depicted in Fig. 3, demonstrate that MAIPG achieves superior performance to other methods
in all settings. The experimental results on these benchmarks show that MAIPG achieves stable
performance and superior efficiency compared to the state-of-the-art methods.

8

Under review as a conference paper at ICLR 2024

0.0 0.4 0.8 1.2 1.6 2.0
0.0

0.2

0.4

0.6

0.8

1.0
1c3s5z

MAPPO
MAIPG
QMIX
HAPPO

0.0 0.4 0.8 1.2 1.6 2.0
0.0

0.2

0.4

0.6

0.8

1.0
2s3z

0.0 0.4 0.8 1.2 1.6 2.0
0.0

0.2

0.4

0.6

0.8

1.0
3s_vs_4z

0.0 0.6 1.2 1.8 2.4 3.0
0.0

0.2

0.4

0.6

0.8

1.0
2c_vs_64zg

0.0 0.6 1.2 1.8 2.4 3.0
0.0

0.2

0.4

0.6

0.8

1.0
3s_vs_5z

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0
8m_vs_9m

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0
10m_vs_11m

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0
3s5z

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0
corridor

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0
MMM2

Figure 2: Mean evaluation win rate of MAIPG, MAPPO, QMIX, HAPPO in the SMAC domain, where the unit
of x-axis is 1M steps and y-axis represents the test win rate.

0 5 10 15 20 25
0.0

0.2

0.4

0.6

0.8

1.0
academy 3 vs 1 with keeper

MAPPO
MAIPG
HAPPO

0 5 10 15 20 25
0.0

0.2

0.4

0.6

0.8

1.0
academy counterattack easy

0 5 10 15 20 25
0.0

0.2

0.4

0.6

0.8

1.0
academy counterattack hard

0 5 10 15 20 25
0.0

0.2

0.4

0.6

0.8

1.0
academy run pass and shoot with keeper

0 5 10 15 20 25
0.0

0.2

0.4

0.6

0.8

1.0
academy corner

Figure 3: Mean evaluation win rate of MAIPG, MAPPO and HAPPO in the GRF domain, where the unit of
x-axis is 1M steps and y-axis represents the test win rate.

6.2 ABLATION STUDY

0.0 0.4 0.8 1.2 1.6 2.0
steps 1e6

0

1

2

3

4

5

6

7

Gr
ad

ie
nt

 v
ar

ia
nc

e

= 0
= 0.3,qmix
= 0.3,vdn
= 0.5,qmix
= 0.5,vdn

a

0.0 0.2 0.4 0.6 0.8 1.0
steps 1e7

0.0

0.2

0.4

0.6

0.8

1.0

te
st

 w
in

 ra
te

= 0
= 0.3, qmix
= 0.3,vdn
= 0.5,qmix
= 0.5,vdn

b

Figure 4: Ablation studies for different weight parameters and
factorization structures on (a) 2s3z and (b) corridor.

In this subsection, we conduct abla-
tion studies to investigate the impact
of different weight parameters and fac-
torization structures on gradient vari-
ance and performance. For these ex-
periments, we select two SMAC maps
as our test cases. Fig.4a illustrates
the variance of three different weight
parameters, namely ν = 0, 0.3, 0.5,
when used with QMIX’s and VDN’s
factorization structure, respectively.
We can observe that the original policy gradient (ν = 0) exhibits high variance. However, as
the weight parameter ν increases, the variance decreases, confirming the effectiveness of variance
reduction in MAIPG. Furthermore, for a fixed ν value, the use of VDN’s structure resulted in lower
variance compared to QMIX, which can be attributed to the complexity of the Q-function. On the
other hand, Fig. 4 shows the performance of different ν values and structures. We can observe that
both QMIX and VDN structures achieved satisfactory results with appropriate values of ν. It is worth
noting that the performance of VDN with ν = 0.5 is worse than the baseline. This may be attributed
to the introduction of excessive bias caused by the weight parameter and structure. These results
highlight the inherent bias-variance trade-offs associated with MAIPG.

7 CONSLUSION AND FUTURE WORKS

This paper focuses on mitigating the variance associated with multi-agent policy gradient methods.
Our approach involves combining policy gradient and value function decomposition by employing
a convex combination of joint and factorized value functions, resulting in multi-agent interpolated
policy gradient (MAIPG). Theoretical analysis demonstrates that MAIPG effectively reduces variance,
and the utilization of the factorized value function holds promise for minimizing bias. Experimental
results further support these findings. However, it is important to note that in this work, we were
unable to achieve an unbiased compatible factorized function, which we consider as a potential
avenue for future research.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Akshat Agarwal, Sumit Kumar, and Katia Sycara. Learning transferable cooperative behavior in
multi-agent teams. arXiv preprint arXiv:1906.01202, 2019.

Craig Boutilier. Planning, learning and coordination in multiagent decision processes. In TARK,
volume 96, pp. 195–210. Citeseer, 1996.

Imre Csiszár and János Körner. Information theory: coding theorems for discrete memoryless systems.
Cambridge University Press, 2011.

Christian Schroeder de Witt, Tarun Gupta, Denys Makoviichuk, Viktor Makoviychuk, Philip HS
Torr, Mingfei Sun, and Shimon Whiteson. Is independent learning all you need in the starcraft
multi-agent challenge? arXiv preprint arXiv:2011.09533, 2020.

Yuandong Ding, Mingxiao Feng, Guozi Liu, Wei Jiang, Chuheng Zhang, Li Zhao, Lei Song, Houqiang
Li, Yan Jin, and Jiang Bian. Multi-agent reinforcement learning with shared resources for inventory
management. arXiv preprint arXiv:2212.07684, 2022.

Jakob Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and Shimon Whiteson.
Counterfactual multi-agent policy gradients. In Proceedings of the AAAI conference on artificial
intelligence, volume 32, 2018.

Shixiang Gu, Timothy Lillicrap, Zoubin Ghahramani, Richard E Turner, and Sergey Levine. Q-prop:
Sample-efficient policy gradient with an off-policy critic. arXiv preprint arXiv:1611.02247, 2016.

Shixiang Shane Gu, Timothy Lillicrap, Richard E Turner, Zoubin Ghahramani, Bernhard Schölkopf,
and Sergey Levine. Interpolated policy gradient: Merging on-policy and off-policy gradient
estimation for deep reinforcement learning. Advances in neural information processing systems,
30, 2017.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International conference
on machine learning, pp. 1861–1870. PMLR, 2018a.

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash
Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al. Soft actor-critic algorithms and
applications. arXiv preprint arXiv:1812.05905, 2018b.

Pablo Hernandez-Leal, Michael Kaisers, Tim Baarslag, and Enrique Munoz De Cote. A sur-
vey of learning in multiagent environments: Dealing with non-stationarity. arXiv preprint
arXiv:1707.09183, 2017.

Shariq Iqbal and Fei Sha. Actor-attention-critic for multi-agent reinforcement learning. In Interna-
tional conference on machine learning, pp. 2961–2970. PMLR, 2019.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. arXiv
preprint arXiv:1611.01144, 2016.

Landon Kraemer and Bikramjit Banerjee. Multi-agent reinforcement learning as a rehearsal for
decentralized planning. Neurocomputing, 190:82–94, 2016.

Jakub Grudzien Kuba, Ruiqing Chen, Muning Wen, Ying Wen, Fanglei Sun, Jun Wang, and Yaodong
Yang. Trust region policy optimisation in multi-agent reinforcement learning. arXiv preprint
arXiv:2109.11251, 2021.

Karol Kurach, Anton Raichuk, Piotr Stańczyk, Michał Zając, Olivier Bachem, Lasse Espeholt, Carlos
Riquelme, Damien Vincent, Marcin Michalski, Olivier Bousquet, et al. Google research football:
A novel reinforcement learning environment. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 34, pp. 4501–4510, 2020.

Hao Liu, Yihao Feng, Yi Mao, Dengyong Zhou, Jian Peng, and Qiang Liu. Action-depedent control
variates for policy optimization via stein’s identity. arXiv preprint arXiv:1710.11198, 2017.

10

Under review as a conference paper at ICLR 2024

Ryan Lowe, Yi I Wu, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel, and Igor Mordatch. Multi-agent
actor-critic for mixed cooperative-competitive environments. Advances in neural information
processing systems, 30, 2017.

Frans A Oliehoek and Christopher Amato. A concise introduction to decentralized POMDPs. Springer,
2016.

Frans A Oliehoek, Matthijs TJ Spaan, and Nikos Vlassis. Optimal and approximate q-value functions
for decentralized pomdps. Journal of Artificial Intelligence Research, 32:289–353, 2008.

Georgios Papoudakis, Filippos Christianos, Lukas Schäfer, and Stefano V Albrecht. Benchmark-
ing multi-agent deep reinforcement learning algorithms in cooperative tasks. arXiv preprint
arXiv:2006.07869, 2020.

Bei Peng, Tabish Rashid, Christian Schroeder de Witt, Pierre-Alexandre Kamienny, Philip Torr,
Wendelin Böhmer, and Shimon Whiteson. Facmac: Factored multi-agent centralised policy
gradients. Advances in Neural Information Processing Systems, 34:12208–12221, 2021.

Tabish Rashid, Mikayel Samvelyan, Christian Schroeder De Witt, Gregory Farquhar, Jakob Foerster,
and Shimon Whiteson. Monotonic value function factorisation for deep multi-agent reinforcement
learning. The Journal of Machine Learning Research, 21(1):7234–7284, 2020.

Mikayel Samvelyan, Tabish Rashid, Christian Schroeder De Witt, Gregory Farquhar, Nantas Nardelli,
Tim GJ Rudner, Chia-Man Hung, Philip HS Torr, Jakob Foerster, and Shimon Whiteson. The
starcraft multi-agent challenge. arXiv preprint arXiv:1902.04043, 2019.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In International conference on machine learning, pp. 1889–1897. PMLR,
2015a.

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-dimensional
continuous control using generalized advantage estimation. arXiv preprint arXiv:1506.02438,
2015b.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin Riedmiller.
Deterministic policy gradient algorithms. In International conference on machine learning, pp.
387–395. Pmlr, 2014.

Kyunghwan Son, Daewoo Kim, Wan Ju Kang, David Earl Hostallero, and Yung Yi. Qtran: Learning to
factorize with transformation for cooperative multi-agent reinforcement learning. In International
conference on machine learning, pp. 5887–5896. PMLR, 2019.

Charles Stein. Approximate computation of expectations. IMS, 1986.

Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vinicius Zambaldi, Max
Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z Leibo, Karl Tuyls, et al. Value-decomposition
networks for cooperative multi-agent learning. arXiv preprint arXiv:1706.05296, 2017.

Wesley Suttle, Zhuoran Yang, Kaiqing Zhang, Zhaoran Wang, Tamer Başar, and Ji Liu. A multi-agent
off-policy actor-critic algorithm for distributed reinforcement learning. IFAC-PapersOnLine, 53(2):
1549–1554, 2020.

Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient methods
for reinforcement learning with function approximation. Advances in neural information processing
systems, 12, 1999.

George Tucker, Surya Bhupatiraju, Shixiang Gu, Richard Turner, Zoubin Ghahramani, and Sergey
Levine. The mirage of action-dependent baselines in reinforcement learning. In International
conference on machine learning, pp. 5015–5024. PMLR, 2018.

11

Under review as a conference paper at ICLR 2024

Jianhao Wang, Zhizhou Ren, Terry Liu, Yang Yu, and Chongjie Zhang. Qplex: Duplex dueling
multi-agent q-learning. arXiv preprint arXiv:2008.01062, 2020a.

Jianhao Wang, Zhizhou Ren, Beining Han, Jianing Ye, and Chongjie Zhang. Towards understanding
cooperative multi-agent q-learning with value factorization. Advances in Neural Information
Processing Systems, 34:29142–29155, 2021a.

Tong Wang, Jiahua Cao, and Azhar Hussain. Adaptive traffic signal control for large-scale scenario
with cooperative group-based multi-agent reinforcement learning. Transportation research part C:
emerging technologies, 125:103046, 2021b.

Yihan Wang, Beining Han, Tonghan Wang, Heng Dong, and Chongjie Zhang. Off-policy multi-agent
decomposed policy gradients. arXiv preprint arXiv:2007.12322, 2020b.

Ermo Wei and Sean Luke. Lenient learning in independent-learner stochastic cooperative games. The
Journal of Machine Learning Research, 17(1):2914–2955, 2016.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Reinforcement learning, pp. 5–32, 1992.

Tian Xu, Ziniu Li, and Yang Yu. Error bounds of imitating policies and environments. Advances in
Neural Information Processing Systems, 33:15737–15749, 2020.

Yaodong Yang, Rui Luo, Minne Li, Ming Zhou, Weinan Zhang, and Jun Wang. Mean field multi-
agent reinforcement learning. In International conference on machine learning, pp. 5571–5580.
PMLR, 2018.

Chao Yu, Akash Velu, Eugene Vinitsky, Jiaxuan Gao, Yu Wang, Alexandre Bayen, and Yi Wu. The
surprising effectiveness of ppo in cooperative multi-agent games. Advances in Neural Information
Processing Systems, 35:24611–24624, 2022a.

Wenhan Yu, Terence Jie Chua, and Jun Zhao. Asynchronous hybrid reinforcement learning for
latency and reliability optimization in the metaverse over wireless communications. arXiv preprint
arXiv:2212.14749, 2022b.

Kaiqing Zhang, Zhuoran Yang, Han Liu, Tong Zhang, and Tamer Basar. Fully decentralized multi-
agent reinforcement learning with networked agents. In International Conference on Machine
Learning, pp. 5872–5881. PMLR, 2018.

Tianhao Zhang, Yueheng Li, Shuai Li, Qiwei Ye, Chen Wang, and Guangming Xie. Decentralized
circle formation control for fish-like robots in the real-world via reinforcement learning. In 2021
IEEE International Conference on Robotics and Automation (ICRA), pp. 8814–8820. IEEE, 2021a.

Tianhao Zhang, Yueheng Li, Chen Wang, Guangming Xie, and Zongqing Lu. Fop: Factorizing
optimal joint policy of maximum-entropy multi-agent reinforcement learning. In International
Conference on Machine Learning, pp. 12491–12500. PMLR, 2021b.

Ming Zhou, Jun Luo, Julian Villela, Yaodong Yang, David Rusu, Jiayu Miao, Weinan Zhang,
Montgomery Alban, Iman Fadakar, Zheng Chen, Aurora Chongxi Huang, Ying Wen, Kimia
Hassanzadeh, Daniel Graves, Dong Chen, Zhengbang Zhu, Nhat M. Nguyen, Mohamed Elsayed,
Kun Shao, Sanjeevan Ahilan, Baokuan Zhang, Jiannan Wu, Zhengang Fu, Kasra Rezaee, Peyman
Yadmellat, Mohsen Rohani, Nicolas Perez Nieves, Yihan Ni, Seyedershad Banijamali, Alexan-
der Imani Cowen-Rivers, Zheng Tian, Daniel Palenicek, Haitham Bou-Ammar, Hongbo Zhang,
Wulong Liu, Jianye Hao, and Jun Wang. Smarts: Scalable multi-agent reinforcement learning
training school for autonomous driving. In Conference on Robot Learning, 2020.

Tong Zhou, Dunbing Tang, Haihua Zhu, and Zequn Zhang. Multi-agent reinforcement learning
for online scheduling in smart factories. Robotics and Computer-Integrated Manufacturing, 72:
102202, 2021.

12

Under review as a conference paper at ICLR 2024

A OMITTED PROOFS

A.1 CONVEX COMBINATION FOR VALUE-BASED METHOD

In Section 3, we discovered that employing a convex combination, as shown in (8), may not effectively
balance the bias and variance for value-based methods. To further illustrate this point, let’s consider
the Bellman operator T Q

D introduced in Section 4.2

argmin
Q̂∈Q

E(s,a)∼D

(
r + γmax

a′

(
(1− ν)Q(s′, a′) + νQ̂(s′, a′)

)
− (1− ν)Q(s, a)− νQ̂(s, a)

)2

.

where Q represents the unfactorized value function and Q̂ represents the factorized value function,
and we use the one-step TD target. However, this formulation presents two problems. Firstly, we
encounter difficulties in finding an action a′ that maximizes the interpolated Q-function (1−ν)Q+νQ̂.
Secondly, we can observe that Q = Qπ/(1− ν) and Q̂ = 0 form an optimal solution. This implies
that the factorized function may not be adequately learned, raising concerns about its effectiveness.

Another approach would be to learn the two Q-functions separately through their own Bellman
equations. However, this renders the additional joint Q-function redundant, as the individual Q-
functions are only associated with the factorized Q-function. Overall, applying an interpolated
Q-function in value-based methods is not as straightforward as it is in policy-based methods. This
necessitates further investigation in future research to better understand and address these challenges.

A.2 OMITTED PROOFS IN SECTION 3.1

Proposition 1 (multi-agent interpolated policy gradient). Given (8), the policy gradient can be
written as

∇θJ(θ) = (1− ν)Es∼dπρ ,a∼π
[
∇logπ(a|s)Qπ(s, a)

]
+ νEs∼dµρ

[
∇µ(s)∇Qµ(s, a)|a=µ(s)

]
(17)

Proof. The gradient with respect to the interpolated value function is

∇Vjt(s0) = ∇Ea∼π[Qjt(s0, a)]
= (1− ν)∇Ea∼π

[
Qπ(s0, a)

]
+ ν∇Qµ(s0, µ(s0)).

According to the stochastic policy gradient theorem and deterministic policy gradient theorem, we
have

∇Ea∼π
[
Qπ(s0, a)

]
=

1

1− γ
Es∼dπs Ea∼π

[
∇ log π(a|s)Qπ(s, a)

]
and

∇Qµ(s0, µ(s0)) =
1

1− γ
Es∼dµs0

[
∇µ(s)∇Qµ(s, a)|a=µ(s)

]
Therefore, we get the policy gradient over some initial state distribution ρ

∇θJ(θ) = Es0∼ρ
[
∇Vjt(s0)

]
= (1− ν)Es∼dπρ ,a∼π

[
∇ log π(a|s)Qπ(s, a)

]
+ νEs∼dµρ

[
∇µ∇Qµ(s, a)|a=µ(s)

]
,

(18)

where we ignored the coefficient (1− γ)−1.

A.3 OMITTED PROOFS IN SECTION 4.1

Proposition 2. If πθi is reparameterizable and can be expressed as ai = fθi(s, ξ), with some random
noise ξi drawn from distribution π(ξi), we can derive

Eπ(a|s)
[
∇θ log π(a|s)Q(s, a)

]
= Eπ(a,ξ|s)

[
∇θfθ(s, ξ)∇aQ(s, a)

]
(19)

then we have

∇θJ(θ) = (1− ν)Edπρ ,π
[
∇ log π(a|s)

(
Â(s, a, τ)− Q̂(s, a)

)]
+ Edπρ

[
∇µ∇Q̂(s, a)|a=µ(s)

]
(20)

13

Under review as a conference paper at ICLR 2024

Proof. We follow the proof of Liu et al. (2017) that we let ai = fθi(s, ξ + i) + ξ′, where ξ′ is
Gaussian noiseN (0, h2) and later we will take h→ 0+. The joint distribution of (ai, ξi) given s can
be written as

πi(ai, ξi|s) = πi(ai|ξi, s)π(ξi) ∝ exp
(
− 1

h2
(ai − fi(s, ξi))2

)
π(ξi)

Then we have

∇θi log πi(ai, ξi|s) =
1

h2
∇θifθi(s, ξi)(ai − fθi(s, ξi))

= −∇θifθi(s, ξi)∇ai log πi(ai, ξi|s)
Multiplying both sides with ϕ(s, ai) and taking the expectation yield

Eπi(ai,ξi|s)
[
∇θi log πi(ai, ξi|s)ϕ(s, ai)

]
= −Eπi(ai,ξi|s)

[
∇θifi(s, ξi)∇ai log πi(ai, ξi|s)ϕ(s, ai)

]
= Eπi(ξi)

[
∇θifi(s, ξi)Eπi(ai|ξi,s)

[
−∇ai log πi(ai, ξi|s)ϕ(s, ai)

]]
= Eπi(ξi)

[
∇θifi(s, ξi)Eπi(ai|ξi,s)

[
∇aiϕ(s, ai)

]]
= Eπi(ai,ξi|s)

[
∇θifi(s, ξi)∇aiϕ(s, ai)

]
(21)

where the third equality comes from Stein’s identity (Stein (1986)):

Eπ
[
∇a log π(a|s)ϕ(s, a) +∇aϕ(s, a)

]
= 0, ∀s

On the other hand,

Eπi(ai,ξi|s)
[
∇θi log πi(ai, ξi|s)ϕ(s, ai)

]
= Eπi(ai,ξi|s)

[
∇θi log πi(ai|s)ϕ(s, ai)

]
+ Eπi(ai,ξi|s)

[
∇θi log πi(ξi|s, a)ϕ(s, ai)

]
= Eπi(ai,ξi|s)

[
∇θi log πi(ai|s)ϕ(s, ai)

]
+ Eπi(ai|s)

[
Eπi(ξi|s,ai)

[
∇θi log πi(ξi|s, a)

]
ϕ(s, ai)

]
= Eπi(ai|s)

[
∇θi log πi(ai|s)ϕ(s, ai)

]
.

(22)
By combining (21) and (22) we have

Eπi(ai|s)
[
∇θi log πi(ai|s)ϕ(s, ai)

]
= Eπi(ai,ξi|s)

[
∇θifi(s, ξi)∇aiϕ(s, ai)

]
(23)

Using (15), the j-th element of column vector Eπ(a|s)
[
∇θ log π(a|s)Q(s, a)

]
has the form:(

Eπ(a|s)
[
∇θ log π(a|s)Q(s, a)

])
i
=

(
Eπ(a|s)

[∑
i

∇θ log π(ai|s)Q(s, a)
])
j

=
(∑

i

Eπ(ai|s)
[
∇θ log π(ai|s)Eπ(a−i|s)

[
Q(s, a)

]])
j

=
(∑

i

Eπi(ai|s)
[
∇θ log π(ai|s)ϕ(s, ai)

])
j

= Eπj(aj |s)
[
∇θj log πj(aj |s)ϕ(s, aj)

]
,

(24)

where we let ϕ(s, ai) = Eπ−i(a−i|s)
[
Q(s, a)

]
.

Noticing that ∇aQ(s, a) = (∇a1Q(s, a), ...,∇anQ(s, a)) and ∇θfθ(s, ξ) is a diagonal
Jacobian matrix with diagonal element ∇θifi(s, ξi), the j-th element of column vector
Eπ(a,ξ|s)

[
∇θf(s, ξ)∇aQ(s, a)

]
has the form:(

Eπ(a,ξ|s)
[
∇θf(s, ξ)∇aQ(s, a)

])
j
= Eπ(a,ξ|s)

[
∇θjfj(s, ξj)∇ajQ(s, a)

]
= Eπ(ai,ξi|s)

[
∇θfi(s, ξi)∇aiEπ−i(a−i|s)

[
Q(s, a)

]]
= Eπj(aj ,ξj |s)

[
∇θjfj(s, ξj)∇ajϕ(s, aj)

] (25)

Combining (23), (24) and (25), we get (19). Therefore, we can rewrite (10) as following

∇θJ(θ) = (1− ν)Es∼dπρ ,a∼π
[
∇ log π(a|s)

(
Qπ(s, a)− Q̂(s, a)

)]
+ Es∼dπρ

[
∇µ∇Q̂(s, a)|a=µ(s)

]

14

Under review as a conference paper at ICLR 2024

A.4 OMITTED PROOFS IN SECTION 4.2

Lemma 1. For two policies π and π′ we have that

|V π(ρ)− V π
′
(ρ)| ≤ 2

(1− γ)2
Es∼dπρ [DTV (π, π

′)] (26)

The proof of Lemma 1 can be found in Xu et al. (2020), where we assume that the reward |r| ∈ [0, 1]
for convenience.
Proposition 3 (Genral bounds for MAIPG). If δ = maxs,a

∣∣Qµ(s, a) − Q̂(s, a)
∣∣, ϵ =

maxs
∣∣ log π(µ(s)|s)∣∣, we have

∣∣J(π)− Ĵ(π)∣∣ ≤ 2
√
2ϵ

(1− γ)2
ν + νδ

Proof. We overload notation and write V π(ρ) = Es0∼ρ
[
V π(s0)

]
, then∣∣J(π)− Ĵ(π)∣∣ = ∣∣V π(ρ)− Vjt(ρ)∣∣

=
∣∣Es0∼ρ,a∼π[Qπ(s0, a)]− (1− ν)Es0∼ρ,a∼π

[
Qπ(s0, a)

]
− νEs0∼ρ

[
Q̂(s0, µ(s0))

]∣∣
=ν

∣∣Es0∼ρ,a∼π[Qπ(s0, a)]− Es0∼ρ
[
Qµ(s0, µ(s0))

]
+ Es0∼ρ

[
Qµ(s0, µ(s0))− Q̂(s0, µ(s0))

]∣∣
≤ν

∣∣V π(ρ)− V µ(ρ)∣∣+ νEs0∼ρ
[∣∣Qµ(s0, µ(s0))− Q̂(s0, µ(s0))

∣∣].
(27)

Using the result of Lemma 1, we get∣∣V π(ρ)− V µ(ρ)∣∣ ≤ 2

(1− γ)2
Es∼dπρ [DTV (π, π

′)]

≤ 2

(1− γ)2
√
2Es∼dπρ

[
DKL

(
π(·|s), µ(s)

)]
=

2
√
2

(1− γ)2
√
−Es∼dπρ

[
log π

(
µ(s)|s

)]
≤ 2

√
2ϵ

(1− γ)2
ν,

where the second inequality follows Pinsker’s inequality (Csiszár & Körner (2011)) and Jensen’s
inequality.

Considering that
∣∣Qµ(s0, µ(s0))− Q̂(s0, µ(s0))

∣∣ ≤ maxs,a
∣∣Qµ(s, a)− Q̂(s, a)

∣∣ = δ, we get

∣∣J(π)− Ĵ(π)∣∣ ≤ 2
√
2ϵ

(1− γ)2
ν + νδ,

which completes the proof.

Proposition 4 (Bounds for linear function class). Assume ∇aQµ(s, a) is L-Lipschitz and there exist
σ such that for any s,

∑
a/∈D(µ(s),σ) π(a|s) ≤ σ2, where D(µ(s), σ) denotes the set {a|∥a−µ(s)∥2 ≤

σ}. Then we have ∣∣J(π)− Ĵ(π)∣∣ ≤ 2
√
2ϵ

(1− γ)2
ν + νc

√
Lσe

ϵ
2 ,

where c is a constant.

Proof. According to (27), it suffices to prove that∣∣Es∼ρ[Qµ(s, µ(s))− Q̂(s, µ(s))
]∣∣ ≤ c√Lσe ϵ

2 .

We consider the Taylor expansion with Lagrange remainder of Qµ(s, a), namely,

Qµ(s, a) = Qµ(s, µ(s)) +∇aQµ(s, a)|a=µ(s)(a− µ(s)) +
1

2
∇2
aQ

µ(s, aξ)∥a− µ(s)∥22.

15

Under review as a conference paper at ICLR 2024

The Lipschitz continuity give that

∥∇aQµ(s, a)−∇a′Qµ(s, a′)∥2 ≤ L∥a− a′∥2.

Therefore, for ∀a, a′ ∈ D(µ(s), σ),

∥Qµ(s, a)−Qµ(s, µ(s))−∇aQµ(s, a)|a=µ(s)(a− µ(s))∥ ≤
1

2
Lσ2.

This implies that the first order Taylor expansion can approximate Qµ with remainder of O(Lσ2) if
a ∈ D. For a /∈ D, we have

∥Qµ(s, a)−Qµ(s, µ(s))−∇aQµ(s, a)|a=µ(s)(a− µ(s))∥ ≤ L
√
mn,

where we assume that a ∈ [−1, 1]mn and mn is the dimension of joint action as used in Section 4.3.
In fact, we can always normalize actions into [−1, 1] for any task. We can also derive the Taylor
expansion of Qµ in terms of Qi:

Qµ = c0 +
∑
i

λiQi +
∑
i,j

λijQiQj + ...,

where λi = ∂Qµ

∂Qi
, λij = 1

2
∂2Qµ

∂Qi∂Qj
and c0 is a constant. Considering that the same order Taylor

expansions have the same order of reminders. We have for ∀a ∈ D,

∥Qµ(s, a)− c−
∑
i

λiQi(s, ai)∥ ≤ c1Lσ2,

where c1 is a constant. Therefor, there exist linear function Q(s, a) such that the MSE problem 14
saticifies∑
s

dπρ (s)
∑
a

π(a|s)
(
Qµ(s, a)−Q(s, a)

)2
=

∑
s

dπρ (s)
(∑
a∈D

+
∑
a/∈D

)
π(a|s)

(
Qµ(s, a)−Q(s, a)

)2
≤ c1Lσ2 + Lσ2

√
mn

≤ c2Lσ2,

where c2 is another constant. As a consequence, the minimizer Q̂ of the MSE problem 14 will have
the error less than c2Lσ2, namely

c2Lσ
2 ≥

∑
s

dπρ (s)
∑
a

π(a|s)
(
Qµ(s, a)− Q̂(s, a)

)2
≥

∑
s

dπρ (s)π(µ(s)|s)
(
Qµ(s, µ(s))− Q̂(s, µ(s))

)2
≥

∑
s

Es0∼ρ
[
(1− γ)

∞∑
t=0

Prπ(st = s|s0)π(µ(s)|s)
(
Qµ(s, µ(s))− Q̂(s, µ(s))

)2]
≥ (1− γ)Es0∼ρ

[
π(µ(s0)|s0)

(
Qµ(s0, µ(s0))− Q̂(s0, µ(s0))

)2]
≥ (1− γ)e−ϵEs0∼ρ

[(
Qµ(s0, µ(s0))− Q̂(s0, µ(s0))

)2]
≥ (1− γ)e−ϵ

(
Es0∼ρ

[
Qµ(s0, µ(s0))− Q̂(s0, µ(s0))

])2

.

We then get
∣∣Es0∼ρ[Qµ(s0, µ(s0))− Q̂(s0, µ(s0))

]∣∣ ≤ c3√Lσe ϵ
2 which completes the proof.

A.5 OMITTED PROOFS IN SECTION 4.3

Proposition 5 (Compatible Function Approximation under CTDE). A function approx-
imator Qw(s, a) is compatible with a joint stochastic policy πθ(a|s), i.e. ∇θJ(θ) =
Edπρ ,π

[
∇θ log πθ(a|s)Qw(s, a)

]
, if

1. ∇wQw(s, a) = ∇θ log πθ(a|s) = (∇θ1 log πθ1(a1|s), ...,∇θn log πθn(an|s))T and

2. w minimises the mean-squared error, MSE(θ, w) = Edπρ ,π
[(
Qπ(s, a)−Qw(s, a)

)2]
.

16

Under review as a conference paper at ICLR 2024

Algorithm 1. MAIPG with recurrent neural network

1: Initialize policy networks πθ, state-value networks V φ, action-value networks Qψ = [Qψi

i]ni=1
and a mixing network Mω

2: Initialize target networks: ψ′ = ψ, ω′ = ω
3: while step ≤ step_max do
4: set data buffer D = {}
5: for j = 1 to batch_size do
6: τ = [] empty list
7: initialize hidden states for πθ, V φ and Qψ
8: Generate a trajectory and store it in τ
9: Compute advantage estimate Â via GAE on τ

10: Compute target value V̂ on τ
11: Compute target value M̂ via TD(λ) on τ
12: Split trajectory τ into chunks of length L
13: for l = 1 to T//L do
14: D = D

⋃
(τ [l : l + T], Â[l : l + T], V̂ [l : l + T], M̂ [l : l + T])

15: end for
16: end for
17: for mini-batch k = 1, ...,K do
18: b← random mini-batch from D with all agent data
19: for each data chunk c in the mini-batch b do
20: update RNN hidden states for π,V and Q from first hidden state in data chunk
21: end for
22: end for
23: Adam updates θ,φ,ψ and ω with mini-batch b using the computed target values and the

gradients described in 10
24: if step mod d = 0 then
25: Update target networks: ψ′ = αψ + (1− α)ψ′, ω′ = αω + (1− α)ω′

26: end if
27: end while

Proof. If w minimises the MSE then the gradient of it w.r.t. w must be zero. We then use the fact
that, by condition 1,∇wQw(s, a) = ∇θ log πθ(a|s),

∇wMSE(θ, w) = 0

Edπρ ,π
[(
Qπ(s, a)−Qw(s, a)

)
∇θ log πθ(a|s)

]
= 0

Then we have

Edπρ ,π
[
Qw(s, a)∇θ log πθ(a|s)

]
= Edπρ ,π

[
Qπ(s, a)∇θ log πθ(a|s)

]

B ALGORITHM

In this section, we present the pseudo code of our algorithms, as shown in Algorithm 1.

C COMPATIBLE FUNCTION APPROXIMATION FOR DETERMINISTIC POLICY

The compatible function approximation for deterministic policy is similar to the proposition 5 for
stochastic policy.

Proposition 6 (Compatible Function Approximation for deterministic policy). A function ap-
proximator Qw(s, a) is compatible with a joint deterministic policy µθ(s), i.e. ∇θJ(θ) =
E
[
∇θµθ(s)∇aQw(s, a)|a=θ(s)

]
, if

17

Under review as a conference paper at ICLR 2024

1. ∇aQw(s, a)|a=µθ(s) = ∇θµθ(s)Tw = diag{∇θiµi(s)}Tw and

2. w minimises the mean− squared error, MSE(θ, w) = E
[
ϵ(s; θ, w)T ϵ(s; θ, w)

]
where

ϵ(s; θ, w) = ∇aQw(s, a)|a=µθ(s) −∇aQµ(s, a)|a=µθ(s)

Proof. The second equality of condition 1 comes from the fact that ∇θµθ is a diagonal Jacobian
matrix with elements ∇θiµi(s), where we write µθ = (µθ1 , ..., µθ1)

n as a column vector. If w
minimises the MSE then the gradient of ϵ2 w.r.t. w must be zero. We then use the fact that, by
condition 1, ∇wϵ(s; θ, w) = ∇θµ(s),

∇wMSE(θ, w) = 0

E
[
∇θµ(s)ϵ(s; θ, w)

]
= 0

Then we have

E
[
∇θµ(s)∇aQw(s, a)|a=µθ(s)

]
= E

[
∇θµ(s)∇aQµ(s, a)|a=µθ(s)

]

Similarly, we can always find compatible function approximator of the form Qw(s, a) = (a −
µθ(s))

T∇θµθ(s) + V (s) that satisfies condition 1, and it can be rewritten as Qw(s, a) =∑
iQi(s, ai) + V (s) where Qi(s, ai) = (ai − µθi(s))T∇θiµi(s).

D EXPERIMENTAL DETAILS

D.1 IMPLEMENTATION

Our implementation is based on the MAPPO’s code base. We keep the same structures and hyper-
parameters, and only turn our weight parameter ν across the different tasks. Note that if we set
ν = 0, our algorithm is identical to MAPPO. As for the structure of the additional Q-network, we use
the same architecture as the state value network. The mixing network for the QMIX’s factorization
structure we used, is the same as QMIX, which is a fully-connected hyper-network with two 64-
dimensional hidden layers with eLU activation. The hyper-parameters in different benchmarks are
basically default setting in MAPPO as presented in Table 1, Table 2, Table 3 and Table 4.

Table 1: Common hyper-parameters used across all environments.

hyperparameters value hyperparameters value hyperparameters value

gamma 0.99 optimizer Adam actor hidden dim 64
gae lamda 0.95 td lamda 0.8 value hidden dim 64

num mini-batch 1 ppo-clip 0.2 Q hidden dim 64
max grad norm 10 activation ReLU hidden layer 1MLP+1GRU

D.2 SETUPS AND ADDITIONAL RESULTS

All the learning curves in the experiments are plotted based on several runs with different random
seeds using mean and standard deviation. Specifically, MAIPG and MAPPO are averaged over at
least ten seeds, and HAPPO and QMIX are averaged over three to five seeds.

Multi-agent Particle Environment (MPE): The global state is formed by a concatenation of all
agents’ local observation since MPE does not provide it. We consider the three fully cooperative
tasks: spread, line and formation (Agarwal et al. (2019)). The result is shown in Fig. 5, where we set
num_agents = 5 for the three tasks. The weight parameter is set to 0.05 since the reward in MPE is
not normalized while the advantage function in (10) is normalized.

StarCraftII Multi-agent Challenge: Building upon the popular real-time strategy game StarCraft
II, SMAC offers a wide range of battle scenarios that require agents to exhibit strategic thinking,
coordination, and adaptability. The game environment presents intricate maps, diverse unit types,
and challenging objectives, all of which contribute to the complexity of the tasks. In this paper,

18

Under review as a conference paper at ICLR 2024

Table 2: Hyperparameters used in MPE.

hyperparameters value hyperparameters value

actor lr 7e-4 weight parameter 0.05
critic lr 7e-4 episode length 25

rollout threads 128 epoch 10

Table 3: Hyperparameters used in SMAC.

hyperparameters value hyperparameters value

actor lr 5e-4 critic lr 5e-4
weight parameter simple:0.4, hard:0.3, super hard:0.3 rollout threads 8

epoch simple:5, hard:10, super hard:15 episode length 400

Table 4: Hyperparameters used in GRF.

hyperparameters value hyperparameters value

actor lr 5e-4 episode length 400
critic lr 5e-4 rollout threads 50
epoch 15 weight parameter 0.5

0.0 0.2 0.4 0.6 0.8 1.0
steps 1e7

420

400

380

360

340

320

300

280

re
wa

rd
s

spread
MAPPO
MAIPG

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
steps 1e6

1.8

1.6

1.4

1.2

1.0

0.8

0.6

re
wa

rd
s

1e1 line

MAPPO
MAIPG

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
steps 1e6

1.4

1.3

1.2

1.1

1.0

0.9

0.8
re

wa
rd

s
1e1 formation

MAPPO
MAIPG

Figure 5: Mean evaluation win rate of MAIPG, MAPPO in the MPE domain.

all experiments on StarCraft II utilize the default reward and observation settings of the SMAC
benchmark. We pause the training every episode and evaluate 32 episodes with individual policies to
measure win rate of each algorithm. For each random seed, we pause the training every episode and
evaluate 32 episodes with individual policies to measure win rate of each algorithm. Moreover, we
provide additional results including FACMAC in Fig.6.

Google Research Football: GRF offers a set of cooperative multi-agent challenges that involve
teams of agents playing against teams of bots in various football scenarios. The primary objective in
these scenarios is for the agents to score goals against the opposing team. In GRF, each agent has
access to complete information about the environment state through their local observations. In this
paper, the dense-reward setting in GRF is employed, where all agents share a single reward. This
reward is computed as the sum of individual agents’ dense rewards. To evaluate the performance of
the agents, the success rate is calculated based on 100 rollouts of the game.

19

Under review as a conference paper at ICLR 2024

0.0 0.4 0.8 1.2 1.6 2.0
0.0

0.2

0.4

0.6

0.8

1.0
1c3s5z

MAPPO
MAIPG
QMIX
HAPPO
FACMAC

0.0 0.4 0.8 1.2 1.6 2.0
0.0

0.2

0.4

0.6

0.8

1.0
2s3z

0.0 0.4 0.8 1.2 1.6 2.0
0.0

0.2

0.4

0.6

0.8

1.0
3s_vs_4z

0.0 0.6 1.2 1.8 2.4 3.0
0.0

0.2

0.4

0.6

0.8

1.0
2c_vs_64zg

0.0 0.6 1.2 1.8 2.4 3.0
0.0

0.2

0.4

0.6

0.8

1.0
3s_vs_5z

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0
8m_vs_9m

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0
10m_vs_11m

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0
3s5z

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0
corridor

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0
MMM2

Figure 6: Mean evaluation win rate of MAIPG, MAPPO, QMIX, HAPPO and FACMAC in the SMAC domain,
where the unit of x-axis is 1M steps and y-axis represents the test win rate.

.

20

	Introduction
	Background
	Preliminaries
	Stochastic and Deterministic Policy Gradient
	Value Factorization Methods

	Method
	Multi-Agent Interpolated Policy Gradient
	Practical Algorithm

	Theoretical Analysis
	The Factorized Q-Function as a Control Variate
	Performance Bounds for MAIPG
	Compatible Function Approximation in MARL

	Related Works
	Experiments
	Performance on Benchmarks
	Ablation Study

	Conslusion and Future Works
	Omitted Proofs
	Convex Combination for Value-Based Method
	Omitted Proofs in Section 3.1
	Omitted Proofs in Section 4.1
	Omitted Proofs in Section 4.2
	Omitted Proofs in Section 4.3

	Algorithm
	Compatible Function Approximation for Deterministic Policy
	Experimental Details
	Implementation
	Setups and Additional Results

