
Under review as a conference paper at ICLR 2024

6 APPENDIX

6.1 PROBLEM DEFINICATION, PSEUDO-CODE AND MORE DISCUSSION OF TD

Problem definition Given teacher model Mh, downstream dataset D = {X,Y }. Train a student
model Mg that minimize the loss of

∑
(x,y)∈D Loss(yg = Mg(x), y).

We provide the pseudo code of our proposed Talking-model Distillation (TD) method in Algorithm 1.
Note that the state consistency loss LSC and message consistency loss LMC will only be applied on
m0

g and m0
h, which require input x being fed to both teacher and student. These two losses are used

to train encoders and decoders. They can be disabled in the later training stage. They can also be
optional (ablation results shown in Secion 6.5). Without these losses, teacher model doesn’t need to
access any input data x of downstream tasks.

Algorithm 1: Pseudo-Code of the proposed TD
Require: Trained teacher model Mh, initialized student model Mg (or a pretrained smaller model).

Initialized encoders (Eg , Eh) and decoders (Dg , Dh) for both teacher and students. Downstream
dataset D = {X,Y }. k iterations for interactive communication.

1: get x and y from D
2: L = 0.0 // Total loss.
3: yg, {sg; eg} = Mg(x)
4: m0

g = Eg({sg; eg})
5: yh, {sh; eh} = Mh(x)
6: m0

h = Eh({sh; eh})
7: // Adding state consistency and message consistency loss to train
8: // communication encoders/decoders.
9: L = L(y, yg) + w2LSC(m

0
g, Dh,m

0
h, Dg) + w3LMC(m

0
g,m

0
h)

10: for each iteration i in [0, k] do
11: {s′h; e′h} = Dh(m

i
g) // Teacher decodes message from student.

12: ẽh = Hh
lh+1,...,hh

(s′h) // Teacher interpreting step.
13: mi+1

h = Eg({s′h, ẽh}) // Teacher encodes returned message.
14: {s′g; e′g} = Dg(m

i+1
h ) // Student decodes returned message.

15: L = L+ w1Linteract({sg; eg}, {s′g; e′g}) // Interactive communication loss for iteration i.
16: ẽg = Hg

lg+1,...,hg
(s′g) // Student interpreting step for next iteration.

17: {sg; eg} = {s′g; ẽg} // set student state for next iteration.
18: mi+1

g = Eg({sg; eg}) // Student encodes message for next iteration.
19: end for
20: Use optimizer to update the model via total loss L.

Another design choice we made is to make the communication modules exactly the same between
teacher and student. This means teacher encoder and student encoder map their states into the
same embedding space: both encoders encode all hidden states (i.e., lower layer and higher layer
representations); and decoders decode message to all hidden states. However, for distillation, a
specialized design might further improve student performance. For example, message from student
to teacher only encodes lower layer representation. (Note that message from teacher to student
still needs to encode both lower layer and higher layer representations due to student does both
distillation and interpreting). In this paper, we intentionally keep the communication operations the
same between teacher and student due to the following reasons.

• Simplicity. We want to verify the concept of communication for knowledge distillation (KD)
and the effectiveness of introducing interactive communication to KD. Therefore, we adopt
the simple design to keep the communication mechanism the same between teacher and
student.

• Future work of multi-way communication. Communication can also happen between a
group of models besides two models. Therefore, it is straight-forward to extend the current

14



Under review as a conference paper at ICLR 2024

communication paradigm (both teacher and student adopt same communication mechanism)
to multi-way communication, e.g., multiple teachers, and/or multiple students.

• Future work of multi-way transfer learning. The communication algorithm we propose in
this paper can be applied not only in knowledge distillation, but also can be used as a generic
way for transferring knowledge among models. Therefore, it can be applied to two models
where they can learn from each other, e.g., between a large Vision Transformer Model and a
large language model. Therefore, communication can be used for transfer learning with the
unified design of communication encoder and decoder.

6.2 DATASET DESCRIPTION AND EXPERIMENT SETUP

MovieLens100k (Harper & Konstan, 2015) We use the MovieLens100K dataset included in
Tensorflow Dataset 1. It contains 100K movie ratings. We use ‘user_id’, ‘movie_id’, and ‘movie_title’
and ‘movie_genres’ as features. We split the data by timestamps. The 90% of the data with earlier
timestamps are used for training and 10% of the data with later timestamps are used for evaluation.
The time split for evaluation is more realistic than random split for recommendation tasks, since it
can capture problems such as user preference shifting overtime as well as cold-starting for new users.
We treat training using data from all genres as pre-training task and training on data with movies from
specific genres as downstream tasks. We evaluate downstream tasks for 8 most dense genres (with
more than 500 evaluation examples), and report the Root Mean Squared Error(RMSE) for rating
prediction.

CIFAR10 (Krizhevsky, 2009) We use the CIFAR10 dataset included in Tensorflow Dataset 2. It
contains 60,000 32*32 color images in 10 classes. We use the default training and test split, where
there are 50,000 images used for training and 10,000 images used for testing.

CIFAR100 (Krizhevsky, 2009) We use the CIFAR100 dataset included in Tensorflow Dataset 3.
It contains the same 60,000 23*32 color images as CIFAR10, but in 100 classes. We use the same
train and test split as CIFAR10.

ImageNet (Russakovsky et al., 2015) We use the ImageNet dataset described in Tensorflow
Dataset 4. It contains 1,281,168 images for training, 50,000 images for validation and 100,000 images
for test.

Teacher model For MovieLens tasks, the teacher model is a Multi-layer Perceptron (Gardner
& Dorling, 1998), with input dimension 300 (100 for ‘user_id’, 100 for ‘movie_id’, and 50 for
‘movie_title’ using bag-of-words and 50 for ‘movie_genres’ using bag-of-words). It has two relu
layers of 512 units and 256 units. The model size is tuned as hyper-parameters with a upper limit of
cost measured by number of flops, and the optimal teacher model size is below the upper limit.

For Image classification tasks, we use Vision Transformer (ViT) (Dosovitskiy et al., 2020) pre-trained
on ImageNet21k with available code 5, hyper-parameter setups and checkpoints 6. The teacher model
has 16 transformer layers.

Student model For MovieLens, we set student model size to be 1/4 as teacher model: two relu
layers of 128 units and 64 units, where we see significantly quality drop compared to teacher models.
For image classification tasks, student model only has 4 transformer layers. We find that using the
teacher model’s pre-trained weights as initialization for the 4 transformer layers and all other layers
results in better and more stable performance compared to random initialization.

1https://www.tensorflow.org/datasets/catalog/movielens
2https://www.tensorflow.org/datasets/catalog/cifar10
3https://www.tensorflow.org/datasets/catalog/cifar100
4https://www.tensorflow.org/datasets/catalog/imagenet2012
5https://github.com/google-research/vision_transformer
6https://huggingface.co/google/vit-base-patch32-224-in21k

15



Under review as a conference paper at ICLR 2024

Methods Genre 1 Genre 2 Genre 3 Genre 4

Train from Scratch 1.0102± 0.0003 1.0884± 0.0004 1.0555± 0.0000 1.0502± 0.0000
Teacher 1.0120± 0.0000 1.0854± 0.0000 1.0563± 0.0000 1.0689± 0.0000

LD 1.0083± 0.0000 1.1029± 0.0000 1.0601± 0.0000 1.0826± 0.0000
FD 1.0075± 0.0009 1.0997± 0.0030 1.0537± 0.0007 1.0791± 0.0005
FitNet 1.0018± 0.0000 1.1018± 0.0000 1.0534± 0.0000 1.0849± 0.0000
Hybrid 1.0015± 0.0008 1.0955± 0.0013 1.0517± 0.0012 1.0737± 0.0014
Our Method (TD) 0.9965± 0.0001 1.0908± 0.0002 1.0475± 0.0001 1.0761± 0.0002

Methods Genre 5 Genre 6 Genre 7 Genre 8

Train from Scratch 1.1609± 0.0000 1.1160± 0.0000 1.0038± 0.0000 1.0937± 0.0000
Teacher 1.1501± 0.0000 1.1090± 0.0000 1.0193± 0.0000 1.0660± 0.0000

LD 1.1964± 0.0000 1.1415± 0.0000 1.0088± 0.0000 1.0602± 0.0000
FD 1.1929± 0.0013 1.1269± 0.0029 1.0024± 0.0000 1.0527± 0.0036
FitNet 1.1873± 0.0000 1.1260± 0.0000 1.0032± 0.0000 1.0605± 0.0000
Hybrid 1.1843± 0.0008 1.1215± 0.0028 1.0076± 0.0009 1.0499± 0.0014
Our Method (TD) 1.1656± 0.0010 1.1050± 0.0000 1.0022± 0.0000 1.0485± 0.0013

Table 3: RMSE of rating prediction on MovieLens Genre 1 to Genre 8 (Dense to Sparse), compared
to baseline methods. bold numbers for the best improvement given a certain genre.

Encoder/Decoder For encoder and decoder, we use the dense-relu-dense model architecture, with
layer norm and dropout. We didn’t do extensive hyper-parameter search to choose the best model
size, instead, we manually pick relu layer size and message dimension to match the size between
teacher and student model. For MovieLens, encoder and decoder have a relu layer with 256 hidden
units, and the message dimensionality is 128. For ViT encoder and decoder have a relu layer with
512 hidden units and the message dimensionality is 512.

6.3 HYPER-PARAMETER TUNING

Model parameter For the teacher model on MovieLens, we tune the model size with a upper limit
of cost along with learning rate, dropout rate and number of train steps. We don’t tune the size of
student model, but tune student model’s learning rate, dropout rate and number of train steps. For
ViT, we use the reported hyper-parameter setup (Dosovitskiy et al., 2020), with fine-tuning steps set
to 20000.

Baseline methods For each of the baseline methods, we tune their KD loss weight combined with
the groundtruch loss weight. For Label Distillation (Hinton et al., 2015) (LD) it is the weight of
Llogit, For Feature Distillation (Heo et al., 2019) (FD), it is the weight of Lfeature. For FitNet
(Romero et al., 2014), it is the weight of Lfitnet. And for Hybrid Distillation (Zhu & Wang, 2021)
(Hybrid), we tune the weights of overall Llogit and Lfeature and report the best results.

Our method We tune the three weights w1, w2 and w3 for our method, which corresponds to
the weight of Linteract, LSC and LMC . We also tune the number of iterations for interactive
communication. For MovieLens, it is 0, 1, 2 or 3. And for ViT it is 0, 1 or 2. We report the results
with different iteration numbers in our ablation study in Section 4.3.

6.4 COMPUTATION RESOURCES

The training of MovieLens can be done on a CPU machine with less than 12 hours for all methods.
And the finetuning of ViT models runs on a 4-chip TPU, where all methods finish fine-tuning in 12
hours.

6.5 ADDITIONAL EXPERIMENTAL RESULTS

In this subsection, we include detailed experimental results. For experiments on MovieLens, both
teacher and student models are random initialized. For each result, we run the same setup 5 times and

16



Under review as a conference paper at ICLR 2024

Methods CIFAR10 CIFAR100 ImageNet

No Distillation 0.93678 0.74764 0.48683

LD 0.93709 0.76162 0.48576
FD 0.93565 0.74702 0.48615
FitNet 0.93586 0.75164 0.48828
Hybrid 0.93894 0.76213 0.48691
Our Method (TD) 0.94100 0.76562 0.49930

Table 4: Accuracy of image classification tasks, compared to baseline methods. bold numbers for the
best results on a dataset.

Methods Genre 1 Genre 2 Genre 3 Genre 4

No Interactions 1.0018± 0.0002 1.1016± 0.0002 1.0475± 0.0001 1.0767± 0.0000
1 iteration 0.9971± 0.0003 1.0908± 0.0002 1.0502± 0.0007 1.0783± 0.0002
2 to 3 iterations 0.9965± 0.0001 1.0921± 0.0005 1.0508± 0.0002 1.0761± 0.0002

Methods Genre 5 Genre 6 Genre 7 Genre 8

No Interactions 1.1864± 0.0014 1.1249± 0.0000 1.0022± 0.0000 1.0656± 0.0000
1 iteration 1.1667± 0.0008 1.1134± 0.0008 1.0033± 0.0002 1.0496± 0.0026
2 to 3 iterations 1.1663± 0.0016 1.1050± 0.0000 1.0039± 0.0004 1.0495± 0.0004

Table 5: RMSE of rating prediction on MovieLens Genre 1 to Genre 8 (Dense to Sparse), with
different number of iterations for interactive communication. bold numbers for the best results given
a certain genre.

report the mean RMSE with standard error. For experiments using image classification tasks, teacher
is pre-trained ViT and students are initialized using the learned weights from pre-trained teacher
(only the first four transformer layers), therefore the results have low variance and we only run each
setup once due to the limit of computation resources.

MovieLens100k per genre results Results (RMSE, lower is better) on MoiveLens are shown
in Table 3. From where we can see that our method outperforms baseline methods on 7 of the 8
genres. We also include the results of the teacher model, which is trained on all genres. The teacher
model is not fine-tuned to each downstream genre, and different genres can have very different data
distributions. Therefore, in some genres a model trained from scratch is better than the teacher model.
And distillation from teacher to student could even hurt the student’s performance for some genres.
This real challenge in recommendation tasks and many other downstream applications inspires us to
design the interactive communication process so that knowledge aligned with downstream tasks can
be transferred effectively. We can see that our method, though does not improve the student model on
some specific genres, can out-perform both teacher and student on most genres.

Vision Transformer results Results (classification accuracy, higher is better) for image classifica-
tion tasks are shown in Table 4. We can see that our method outperforms baseline methods on all
downstream tasks. Our improvement is most significant on ImageNet, which is a much more difficult
task compared to CIFAR10 and CIFAR100. Note that the pre-trained teacher cannot be directly
applied to downstream tasks, due to classification label mismatch, so we don’t report teacher’s results.
However, the fine-tuned results can be found in the ViT paper (Dosovitskiy et al., 2020) (0.98, 0.92,
0.81 for CIFAR10, CIFAR100 and ImageNet). We can see that there is still a huge gap between
teacher and student.

We want to point out that in this paper we don’t discuss the upper limit of the student model nor try
to close the gap between teacher and student. In our case, we expect the student with 4 transformer
layers to perform much worse than the teacher with 12 transformer layers. We want to verify that
by using the proposed interactive communication process, we can transfer more useful knowledge
from a powerful pre-trained foundation model to much smaller models for downstream applications,
compared to existing KD baseline methods.

17



Under review as a conference paper at ICLR 2024

Methods CIFAR10 CIFAR100 ImageNet

No Interactions 0.94089 0.76460 0.49873
1 iteration 0.94069 0.76511 0.49893
2 iterations 0.94100 0.76562 0.49930

Table 6: Accuracy of image classification tasks, with different number of iterations for interactive
communication. bold numbers for the best results on a dataset.

Methods Genre 1 Genre 2 Genre 3 Genre 4

No LMC 0.9965± 0.0001 1.0908± 0.0003 1.0481± 0.0010 1.0767± 0.0003
No LSC 0.9968± 0.0003 1.0916± 0.0004 1.0501± 0.0002 1.0763± 0.0002
Our Method(TD) 0.9965± 0.0001 1.0908± 0.0002 1.0475± 0.0001 1.0761± 0.0002

Methods Genre 5 Genre 6 Genre 7 Genre 8

No LMC 1.1683± 0.0007 1.1104± 0.0007 1.0035± 0.0000 1.0485± 0.0013
No LSC 1.1658± 0.0012 1.1058± 0.0002 1.0034± 0.0001 1.0494± 0.0004
Our Method(TD) 1.1656± 0.0010 1.1050± 0.0000 1.0022± 0.0000 1.0485± 0.0013

Table 7: RMSE of rating prediction on MovieLens Genre 1 to Genre 8 (Dense to Sparse), ablating
different losses. bold numbers for the best results given a certain genre.

Ablation of interactive communication We evaluate the effectiveness of interactive communica-
tion by changing the number of iterations for calculating the interactive communication loss Linteract.
Results on MovieLens are shown in Table 5 and results on image classification are shown in Table 6.
We can see that even without interactive communication, our method can outperform some baseline
methods. We think this is because the introduction of both LSC and LMC enables better alignment
between the student and teacher’s hidden states. It can be viewed as a combination of FitNet and
feature distillation. And by introducing interactive communication, we further improve the student
model.

Ablation of consistency losses We also evaluate the importance of the consistency losses we
introduced to help training the communication encoder and decoder. Results on MovieLens are
shown in Table 7 and results on image classification are shown in Table 9. For MovieLens, we can see
that both message consistency loss LMC and state consistency loss LSC are useful for most genres.
For ViT, we always add LMC since we observe that without LMC the communication encoder and
decoder is hard to train. And we see that LSC improves the model on CIFAR10 and CIFAR100 but
not ImageNet. We think applying Linteract with multiple iterations can train the communication
encoder and decoder reasonable well, therefore the consistency losses may not always be useful on
all downstream tasks.

Adding noises during communication Inspired by ideas in self-training and semi-supervised
learning (Xie et al., 2020), where noise can be added to input or representation to improve the
generalization and robustness of knowledge transfer, we also explored the option of adding noise in
the interpreting process. Specifically, we add a small Gaussian noise on s′h, which is the decoded
lower layer presentation for teacher model to interpret. Results on MovieLens are shown in Table 8
and results on image classification are shown in Table 9. We can see that adding noise can improve
performance on some downstream tasks but not all of them.

Separate training of encoder/decoder We also explored different ways of improving the learning
of communication encoder and decoder. One way is to introduce a ramp-up stage where only these
encoders and decoders are trained. To do this, we first train student model a few steps (1000 on
MovieLens) and then we freeze the student model and only train both teacher and student’s encoders
and decoders for another few steps (500 or 1000 on MovieLens). We report the results on MoiveLens
in Table 8, where we can see it does not necessarily improve the student model’s performance.
One reason is that introducing this ramp-up step will relatively reduce the train steps of end-to-end
training. Therefore, it requires more tuning on learning rate, train steps to identify improvement
with this training schema. To keep the experiment and algorithm design as simple as possible, in our

18



Under review as a conference paper at ICLR 2024

Methods Genre 1 Genre 2 Genre 3 Genre 4

Add Noise 0.9966± 0.0001 1.0910± 0.0002 1.0511± 0.0003 1.0762± 0.0003
No Noise 0.9966± 0.0002 1.0912± 0.0004 1.0475± 0.0001 1.0766± 0.0002

Train E∗, D∗ separately 1.0008± 0.0002 1.1066± 0.0001 1.0475± 0.0001 1.0812± 0.0000
Train together 0.9965± 0.0001 1.0908± 0.0002 1.0508± 0.0002 1.0761± 0.0002

Methods Genre 5 Genre 6 Genre 7 Genre 8

Add Noise 1.1663± 0.0009 1.1052± 0.0001 1.0033± 0.0001 1.0487± 0.0014
No Noise 1.1668± 0.0015 1.1051± 0.0002 1.0026± 0.0003 1.0504± 0.0012

Train E∗, D∗ separately 1.1782± 0.0002 1.1165± 0.0002 1.0022± 0.0000 1.0603± 0.0002
Train together 1.1656± 0.0010 1.1050± 0.0000 1.0061± 0.0001 1.0485± 0.0013

Table 8: RMSE of rating prediction on MovieLens Genre 1 to Genre 8 (Dense to Sparse), by adding
noise before teacher’s interpreting or separately training encoder/decoder.

Methods CIFAR10 CIFAR100 ImageNet

No LSC 0.94069 0.76398 0.49930
Add Noise 0.94089 0.76562 0.49917
No Noise 0.94100 0.76511 0.49930
Our Method(TD) 0.94100 0.76562 0.49930

Table 9: Accuracy of image classification tasks, ablating LSC or adding noises before teacher’s
interpreting.

experiments, we train everything (student model, both teacher and student’s encoders and decoders)
together in a single stage.

19


