
A Appendix

A.1 NAS Search Spaces

NASBench-1011 introduces a large and expressive search space with 423k unique convolutional
neural architectures and training statistics on CIFAR-10. NASBench-2012 contains the training
statistics of 15,625 architectures across three different datasets, including CIFAR-10, CIFAR-100,
and Tiny-ImageNet-16. Network Design Spaces (NDS) dataset3 [1] with PYCLS [2] codebase 4

provides trained neural networks from 11 search spaces including DARTS [3], AmoebaNet [4],
ENAS [5], NASNet [6], PNAS [7], ResNet [8], ResNeXt [9], etc. A search space with "-f" suffix
stands for a search space that has fixed number of layers and channels. The ResNeXt-A and ResNeXt-
B have different channel-number and group-convolution settings. NASBench-NLP5 [10] is an
NLP neural architecture search space, including 14k recurrent cells trained on the Penn Treebank
(PTB) [11] dataset.

A.2 Experiment Setup

For CNN architecture training, the learning rate is 1e−1 and the weight decay is 1e−5. Each
architecture is trained for 100 iterations on a single batch of data using SGD optimizer [12]. All the
convolutional architectures use the same setting. The size of the input images is h = w = 32 and the
size of output feature maps is h′ = w′ = 8. For RNN training, the learning rate is 1e−3, the weight
decay is 1.2e−6, the batch size b is 16, and the sequence length l is 8. Each architecture is trained for
100 iterations on a single batch of data using the Adam optimizer [13].

A.2.1 Regularized Evolutionary Algorithm

Algorithm 1 Regularized Evolutionary Algorithm in General
Initialize an empty population queue, Q_pop // The maximum population is P
Initialize an empty set, history // Will contain all visited individuals
for i = 1, 2, · · · , P do

new_individual← RandomInit()
new_individual.fitness← Eval(new_individual)
Enqueue(Q_pop, new_individual)// Add individual to the right of Q_pop
Add new_individual to history

end
// Evolve for T_iter
for i = 1, 2, · · · , T_iter do

Initialize an empty set, sample_set
for i = 1, 2, · · · , S do

Add an individual to sample_set from Q_pop without replacement.
// The individual stays in Q_pop

end
parent← the individual with best fitness in sample_set
child←Mutate(parent)
child.fitness← Eval(child)
Enqueue(Q_pop, child)
Add child to history
Dequeue(Q_pop)// Remove the oldest individual from the left of Q_pop

end
return the individual with best fitness in history

Regularized Evolutionary Algorithm [4] (RE) combines the tournament selection [14] with the aging
mechanism which remove the oldest individuals from the population each round. We show a general
form of RE in Alg. 1. Aging evolution aims to explore the search space more extensively, instead of

1https://github.com/google-research/nasbench
2https://github.com/D-X-Y/NAS-Bench-201
3https://github.com/facebookresearch/nds
4https://github.com/facebookresearch/pycls
5https://github.com/fmsnew/nas-bench-nlp-release

1

https://github.com/google-research/nasbench
https://github.com/D-X-Y/NAS-Bench-201
https://github.com/facebookresearch/nds
https://github.com/facebookresearch/pycls
https://github.com/fmsnew/nas-bench-nlp-release

focusing on the good models too early. Works [15, 16, 17] also suggest that the RE is suitable for
neural architecture search. Since we aim to develop a general NAS evaluator (as the fitness function
in RE), we conduct fair comparisons between GenNAS and other methods without fine-tuning or any
tricks (e.g., warming-up). Hence, we constantly use the setting P = 50, S = 10, T_iter = 400 for
all the search experiments.

A.2.2 Proxy Task Search

{'noise': {'type':'uniform','noise_level': 0.7},

'c1': 64,

'c2': 32,

'c3': 96,

'features':

{'1':

{'sin1D': {'level': 1.3, 'range': [...], 'local': True},

'sin2D': None,

'dot': {'level': 2.4, ‘partial’: 0.6, 'local': False},

'gdot': None,

'resize': {'level': 1.1}},

'2': ...,

'3': ...}} Minimum mutatable block

Mutation?

No

Yes
> 0.5?

{'level’: 0.3, 'range': [...], 'local’: False}
Yes

No

None

Figure 1: The configuration of a task in JSON style and the illustration of task mutation.

The configuration of a task is shown in Fig. 1. We introduce the detailed settings of different signal
bases. (1) Noise is chosen from standard Gaussian distribution (N (0, 1)) or uniform distribution
(U(−1, 1)). The generated noise maps are directly multiplied by the level which can be selected
from 0 to 1 with a step of 0.1. (2) Sin1D generates 2D synthetic feature maps using different
frequencies choosing from the range, which contains 10 frequencies sampled from [a, b], where a
and b are sampled from 0 to 0.5 with the constraint 0 < a < b < 0.5. (3) Sin2D uses the similar
setting as Sin1D, where both the fx and fy for a 2D feature map are sampled from the range.
(4) Ci can be selected from {16, 32, 48, 64, 96}. Other settings are already described in Section
3.1.2. During the mutation, each minimum mutatable block (including signal definitions and the
number of channels) has 0.2 probability to be regenerated as shown in Fig. 1. For RNN settings,
we search for both the input and output synthetic signal tensors. The dimension d is chosen from
{16, 32, 48, 64, 96}.

A.2.3 End-to-end NAS

In the end-to-end NAS, GenNAS is incorporated in the RE as the fitness function to explore the search
space. For NASBench-101, the mutation rate for each vertice is 1/|v| where |v| = 7. More details of
the search space NASBench-101 can be found in the original paper [16]. For NASBench-201, the
mutation rate for each edge is 1/|e| where |e| = 6. More details of the search space NASBench-101
can be found in the original paper [15]. For NDS ResNet series, the sub search space consists of
25000 sampled architectures from the whole search space. We apply mutation in RE by randomly
sampling 200 architectures from the sub search space and choosing the most similar architecture as
the child. For NASBench-NLP, we follow the work [10] by using the graph2vec [18] features find
the most similar architecture as the child.

A.3 Additional Experiments

A.3.1 Regression vs. Classification Using Same Training Samples

We study effectiveness of regression using 10 tasks searched on NASBench-101, varying the batch
size from 1 to 1024. The ranking correlation achieved by GenNAS using regression is plotted in
Fig. 2a. We also plot the classification task performances with single-batch data in Fig. 2b. Apparently,
using the same amount of data, the ranking correlation achieved by classification (ρ around 0.85) is
much worse than regression (ρ around 0.3).

A.3.2 Batch Sizes and Iterations

We show the effect of batch size by using 10 tasks searched on NASBench-101. We use batch
sizes varied from 1 to 1024 and plot the ranking results in Fig. 2a. We find that 16 as the batch

2

(a) Regression (GenNAS) ranking correlation averaged
from 10 searched tasks using different batch sizes.

(b) Classification task’s ranking correlation using the
same setting as (a).

(c) Classification accuracy vs. GenNS regression loss
with batch size 1.

(d) Classification accuracy vs. GenNS regression loss
with batch size 16.

(e) Classification accuracy vs. GenNS regression loss
with batch size 1024.

(f) 10 searched tasks’ ranking correlation on
NASBench-101 using different numbers of iterations.

Figure 2: (a) Regression (GenNAS) ranking correlation averaged from 10 searched tasks on
NASBench-101 in terms of Spearman’s ρ with batch size in {1, 16, 32, ..., 256, 512, 1024}. (b)
Classification task’s ranking correlation using the same amount of data in (a). (c) Classification
accuracy using a searched task on NASBench-101 with batch size as 1 on CIFAR-10. The y-axis is
the groundtruth (CIFAR-10 accuracy) and the x-axis is the GenNAS regression loss. (d) Similar to
(c), batch size as 16. (e) Similar to (c), batch size as 1024. (f) 10 searched tasks ranking performance
(in terms of Spearman’s ρ) on NASBench-101 using different iterations.

size is adequate for a good ranking performance. Also, we observe a small degradation when batch
size increases and then becomes stable as the batch size keeps increasing. Hence, We plot the
ranked architecture distribution with a searched task using 1, 16, 1024 as batch size respectively on
Fig. 2c, 2d, 2e. We observe that when only using a single image, the poor-performance architectures
can also achieve similar regression losses as the good architectures. It suggests that the task is too
easy to distinguish the differences among architectures. Also, 1024 as batch size leads to the higher
regression losses of best architectures. It suggests that a very challenging task is also hard for good

3

architectures to learn and may lead to slight ranking performance degradation. In addition, we plot
the ranking performance using different numbers of iterations in Fig. 2f. It shows that 100 iterations
is necessary for the convergence of ranking performance.

A.3.3 Sensitivity Studies of Random Seeds and Initialization

Table 1: Ranking correlation (Spearman’s ρ) analysis of different 10 seeds across three different search
spaces with the searched tasks on them respectively. For the NASBench-101, the 500 architecture
samples [19] are constantly used for evaluation. For DARTS and ResNet search spaces, 1000 samples
are randomly sampled with different seeds from the evaluated architecture sets provided by NDS [1].

Search Space 0 1 2 3 4 5 6 7 8 9 Average

NASBench-101 0.880 0.850 0.875 0.869 0.872 0.874 0.877 0.863 0.872 0.872 0.870±0.008
DARTS 0.809 0.899 0.861 0.831 0.841 0.836 0.851 0.841 0.885 0.861 0.850±0.025
ResNet 0.860 0.853 0.841 0.810 0.865 0.877 0.874 0.804 0.808 0.803 0.840±0.029

Random Seeds. We rerun the 3 searched tasks on their target search spaces (NASBench-101,
DARTS, ResNet) for 10 runs with different random seeds. The results are shown in Table 1. GenNAS
demonstrates its robustness across different random seeds.

Table 2: Ranking correlation (Spearman’s ρ) analysis of 10 searched tasks on NASBench-101 with
different initialization methods.

Weight init Bias init 0 1 2 3 4 5 6 7 8 9 Average

Default Default 0.835 0.860 0.860 0.878 0.835 0.810 0.859 0.832 0.816 0.828 0.841±0.021
Kaiming Default 0.844 0.854 0.857 0.856 0.832 0.818 0.854 0.746 0.829 0.811 0.830±0.032
Xavier Default 0.856 0.881 0.863 0.874 0.849 0.825 0.865 0.830 0.838 0.851 0.853±0.018
Default Zero 0.867 0.882 0.854 0.880 0.848 0.847 0.874 0.808 0.848 0.850 0.856±0.021
Kaiming Zero 0.845 0.842 0.856 0.861 0.828 0.821 0.846 0.770 0.823 0.823 0.831±0.025
Xavier Zero 0.859 0.876 0.869 0.879 0.839 0.842 0.861 0.828 0.846 0.843 0.854±0.016

Initialization. We perform an experiment to evaluate the effects of different initialization for 10
searched tasks on NASBench-101. For the weights, we use the default PyTorch initialization, Kaiming
initialization [20], and Xavier initialization [21]. For the bias, we use the default PyTorch initialization
and zeroized initialization. The results are shown in Table 2. We observe that for some specific
tasks (e.g., task 7), Kaiming initialization may lead to lower ranking correlation. Also, zeroized bias
initialization slightly increases the ranking correlation. However, overall, GenNAS shows stable
performance across different initialization methods.

A.3.4 Kendall Tau and Retrieving Rates

For the sample experiments on NASBench-101/201/NLP and NDS, we report the performance of
our methods compared to other efficient NAS approaches’ in Table 3 by Kendall τ [22]. We define

the retrieving rate@topK as #{Pred@TopK∩GT@TopK}
#{GT@TopK} , where # is the operator of cardinality,

GT@TopK and Pred@TopK are the set of architectures that are ranked in the top-K of groundtruths
and predictions respectively. We report the retrieving rate@Top10% for all the search spaces in
Table 4. Moreover, we report the retrieving rate@Top5%-Top50% for GenNAS-COMBO and
GenNAS-N on NASBench-101 with other 1000 random sampled architectures in Table 5.

A.3.5 End-to-end NAS Architectures

Here we visualize all the ImageNet DARTS cell architectures: searched by GenNAS-combo, searched
by GenNAS-D14 in Fig 3 and Fig 4 respectively.

A.3.6 GPU Performance

We use the PyTorch 1.5.0 [26], on a desktop with I7-6700K CPU, 16 GB RAM and a GTX 1080
Ti GPU (11GB GDDR5X memory) to evaluate the GPU performance of GenNAS. The results are
shown in Table 6.

4

c_{k-2}

0

skip_connect 1

skip_connect

3

dil_conv_5x5

c_{k-1}

skip_connect

2dil_conv_5x5

sep_conv_5x5

dil_conv_5x5

sep_conv_3x3

c_{k}

(a) Normal cell

c_{k-2}

0

skip_connect

1

sep_conv_3x3

2

avg_pool_3x3

3
avg_pool_3x3

c_{k-1}

sep_conv_5x5

skip_connect

sep_conv_3x3

dil_conv_3x3

c_{k}

(b) Reduce cell

Figure 3: Cell architectures (normal and reduce) searched by GenNAS-combo

c_{k-2}

0
dil_conv_3x3

1sep_conv_3x3

2

sep_conv_5x5 3

sep_conv_5x5

c_{k-1}

skip_connect

sep_conv_5x5

sep_conv_3x3

c_{k}

dil_conv_5x5

(a) Normal cell

c_{k-2}

0
avg_pool_3x3

1

sep_conv_5x5
2dil_conv_3x3

3

sep_conv_3x3

c_{k-1}

sep_conv_3x3

sep_conv_3x3

avg_pool_3x3
c_{k}

skip_connect

(b) Reduce cell

Figure 4: Cell architectures (normal and reduce) searched by GenNAS-D14

Table 3: GenNAS’ ranking correlation evaluation comparing with other efficient NAS approaches
using the Kendall τ .

NASBench-101
Dataset NASWOT synflow GenNAS

[23] [24] single combo search-N
CIFAR-10 0.27 0.24 0.59 0.66 0.7
ImgNet 0.36 0.14 0.47 0.54 0.53

NASBench-201
Dataset NASWOT synflow jacob_cov snip EcoNAS GenNAS

[25] single combo search-N
CIFAR-10 0.6 0.52 0.59 0.41 0.62 0.57 0.67 0.71
CIFAR-100 0.63 0.57 0.53 0.46 0.57 0.52 0.63 0.65
ImgNet16 0.6 0.54 0.56 0.44 0.57 0.53 0.61 0.67

Neural Design Spaces
Dataset NAS-Space NASWOT synflow GenNAS

single combo search-N search-D search-R
CIFAR-10 DARTS 0.48 0.3 0.3 0.45 0.52 0.68 0.63

DARTS-f 0.21 0.09 0.36 0.43 0.37 0.42 0.36
Amoeba 0.21 0.06 0.36 0.47 0.5 0.59 0.53
ENAS 0.39 0.13 0.39 0.49 0.48 0.63 0.59

ENAS-f 0.31 0.2 0.46 0.55 0.49 0.53 0.48
NASNet 0.3 0.02 0.4 0.5 0.47 0.58 0.52
PNAS 0.36 0.17 0.22 0.37 0.42 0.57 0.52

PNAS-f 0.09 0.18 0.31 0.38 0.39 0.38 0.33
ResNet 0.19 0.14 0.23 0.38 0.38 0.38 0.64

ResNeXt-A 0.46 0.32 0.4 0.5 0.6 0.45 0.65
ResNeXt-B 0.4 0.43 0.17 0.3 0.37 0.38 0.52

ImageNet DARTS 0.49 0.14 0.43 0.52 0.52 0.66 0.48
DARTS-f 0.13 0.25 0.49 0.57 0.48 0.51 0.42
Amoeba 0.33 0.17 0.46 0.53 0.55 0.62 0.5
ENAS 0.51 0.12 0.4 0.47 0.4 0.63 0.48

NASNet 0.39 0.01 0.36 0.42 0.37 0.5 0.43
PNAS 0.45 0.11 0.19 0.27 0.31 0.45 0.3

ResNeXt-A 0.52 0.28 0.61 0.7 0.56 0.44 0.69
ResNeXt-B 0.45 0.21 0.53 0.65 0.39 0.43 0.67

NASBench-NLP
Dataset GenNAS

single combo search
PTB 0.43 0.55 0.63

5

Table 4: GenNAS’ retrieving rate@top10% comparing with other efficient NAS approaches. For the
NASBench-101 we use the set of 500 architectures that sampled by Liu, et al. [19] for obtaining the
ImageNet groundtruth.

NASBench-101
Dataset number NASWOT synflow GenNAS

of samples [23] [24] single combo search-N
CIFAR-10 500 32% 28% 58% 64% 68%
ImgNet 500 36% 14% 52% 54% 64%

NASBench-201
Dataset number NASWOT synflow jacob_cov snip EcoNAS GenNAS

of samples [25] single combo search-N
CIFAR-10 1000 43% 48% 27% 27% 52% 43% 36% 53%
CIFAR-100 1000 48% 47% 23% 36% 47% 46% 46% 58%
ImgNet16 1000 49% 43% 33% 32% 41% 48% 40% 51%

Neural Design Spaces
Dataset number NAS-Space NASWOT synflow GenNAS

of samples single combo search-N search-D search-R
CIFAR-10 1000 DARTS 29% 10% 16% 43% 45% 59% 49%

1000 DARTS-f 1% 5% 22% 33% 18% 22% 23%
1000 Amoeba 20% 4% 20% 39% 45% 50% 40%
1000 ENAS 31% 6% 25% 48% 41% 57% 48%
1000 ENAS-f 28% 2% 34% 45% 42% 38% 37%
1000 NASNet 33% 7% 27% 38% 46% 52% 43%
1000 PNAS 24% 9% 21% 39% 46% 44% 37%
1000 PNAS-f 6% 4% 21% 27% 31% 25% 22%
1000 ResNet 7% 4% 38% 44% 38% 54% 64%
1000 ResNeXt-A 28% 25% 25% 61% 53% 52% 58%
1000 ResNeXt-B 21% 30% 10% 13% 36% 40% 71%

ImageNet 121 DARTS 17% 0% 50% 58% 55% 58% 18%
499 DARTS-f 8% 4% 33% 27% 35% 39% 24%
124 Amoeba 33% 0% 50% 42% 58% 58% 41%
117 ENAS 36% 9% 18% 18% 45% 55% 45%
122 NASNet 33% 0% 42% 50% 42% 33% 33%
119 PNAS 10% 9% 45% 36% 45% 55% 9%
130 ResNeXt-A 31% 8% 67% 67% 50% 33% 75%
164 ResNeXt-B 38% 13% 38% 50% 33% 38% 64%

NASBench-NLP
Dataset number grad norm snip grasp fisher synflow GenNAS

of samples single combo search
PTB 1000 10% 10% 4% - 22% 38% 38% 47% 63%

Table 5: Retrieving rate@top5%-top50% of GenNAS-combo/N on 1000 randomly sampled architec-
tures on NASBench-101.

Method @top5% @top10% @top20% @top30% @top40% @top50%
GenNAS-combo 0.6 0.6 0.73 0.74 0.79 0.82
GenNAS-N 0.56 0.58 0.66 0.76 0.80 0.85

Table 6: Evaluations of GenNAS’ GPU performance. We test GenNAS with 6 different batch sizes
from 16 to 96. "A/B" denotes: A (second) as the average one-iteration run time for the search space,
and B (GB or gigabyte) as the GPU memory usage. "OOM" means some large models may lead to
the out-of-memory issue for the target GPU.

Search Space B-size 16 B-size 32 B-size 48 B-size 64 B-size 80 B-size 96

NASBench-101 0.023/0.78 0.023/0.92 0.023/1.12 0.022/1.22 0.023/1.41 0.023/1.56
NASBench-201 0.020/0.77 0.020/0.93 0.021/1.12 0.020/1.24 0.020/1.46 0.020/1.62
DARTS 0.049/1.92 0.056/3.39 0.069/5.07 0.088/6.88 0.103/7.62 OOM
DARTS-f 0.077/1.42 0.088/2.21 0.104/3.30 0.122/3.79 0.145/5.15 0.171/6.07
Amoeba 0.080/2.53 0.103/4.38 0.128/6.60 0.159/9.25 0.194/6.85 OOM
ENAS 0.059/2.40 0.076/4.31 0.090/5.84 0.115/7.78 0.140/9.15 OOM
ENAS-f 0.095/1.67 0.111/2.58 0.134/3.70 0.159/4.54 0.186/6.31 0.216/7.53
NASNet 0.061/2.23 0.073/3.77 0.094/5.83 0.116/6.87 0.140/8.68 0.160/9.30
PNAS 0.074/2.52 0.097/4.36 0.121/6.53 0.155/8.23 0.189/9.42 OOM
PNAS-f 0.114/1.69 0.143/2.67 0.173/4.03 0.208/4.83 0.250/6.24 0.293/7.45
ResNet 0.016/1.28 0.016/1.54 0.016/2.05 0.016/2.34 0.016/2.34 0.016/2.77
ResNeXt-A 0.025/1.65 0.025/2.82 0.026/4.55 0.027/6.86 0.028/9.75 0.029/5.92
ResNeXt-B 0.022/1.98 0.022/3.47 0.023/5.63 0.024/7.33 0.027/9.51 0.029/5.95
NASBench-NLP 0.029/0.90 0.029/0.90 0.029/0.90 0.029/0.90 0.029/0.93 0.029/0.94

6

References
[1] Ilija Radosavovic, Justin Johnson, Saining Xie, Wan-Yen Lo, and Piotr Dollár. On network

design spaces for visual recognition. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 1882–1890, 2019.

[2] Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, and Piotr Dollár. Design-
ing network design spaces. In CVPR, 2020.

[3] Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search.
arXiv preprint arXiv:1806.09055, 2018.

[4] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. Regularized evolution for image
classifier architecture search. In Proceedings of the aaai conference on artificial intelligence,
volume 33, pages 4780–4789, 2019.

[5] Hieu Pham, Melody Guan, Barret Zoph, Quoc Le, and Jeff Dean. Efficient neural architecture
search via parameters sharing. In International Conference on Machine Learning, pages
4095–4104. PMLR, 2018.

[6] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learning transferable
architectures for scalable image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 8697–8710, 2018.

[7] Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei,
Alan Yuille, Jonathan Huang, and Kevin Murphy. Progressive neural architecture search. In
Proceedings of the European conference on computer vision (ECCV), pages 19–34, 2018.

[8] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[9] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. Aggregated residual
transformations for deep neural networks. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 1492–1500, 2017.

[10] Nikita Klyuchnikov, Ilya Trofimov, Ekaterina Artemova, Mikhail Salnikov, Maxim Fedorov,
and Evgeny Burnaev. Nas-bench-nlp: neural architecture search benchmark for natural language
processing. arXiv preprint arXiv:2006.07116, 2020.

[11] Mitchell Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz. Building a large annotated
corpus of english: The penn treebank. 1993.

[12] Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of
initialization and momentum in deep learning. In International conference on machine learning,
pages 1139–1147. PMLR, 2013.

[13] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[14] David E Goldberg and Kalyanmoy Deb. A comparative analysis of selection schemes used in
genetic algorithms. In Foundations of genetic algorithms, volume 1, pages 69–93. Elsevier,
1991.

[15] Xuanyi Dong and Yi Yang. Nas-bench-201: Extending the scope of reproducible neural
architecture search. arXiv preprint arXiv:2001.00326, 2020.

[16] Chris Ying, Aaron Klein, Eric Christiansen, Esteban Real, Kevin Murphy, and Frank Hutter.
Nas-bench-101: Towards reproducible neural architecture search. In International Conference
on Machine Learning, pages 7105–7114. PMLR, 2019.

[17] Yukang Chen, Gaofeng Meng, Qian Zhang, Shiming Xiang, Chang Huang, Lisen Mu, and
Xinggang Wang. Renas: Reinforced evolutionary neural architecture search. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 4787–4796,
2019.

7

[18] Annamalai Narayanan, Mahinthan Chandramohan, Rajasekar Venkatesan, Lihui Chen, Yang
Liu, and Shantanu Jaiswal. graph2vec: Learning distributed representations of graphs. arXiv
preprint arXiv:1707.05005, 2017.

[19] Chenxi Liu, Piotr Dollár, Kaiming He, Ross Girshick, Alan Yuille, and Saining Xie. Are labels
necessary for neural architecture search? In European Conference on Computer Vision, pages
798–813. Springer, 2020.

[20] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification. In Proceedings of the IEEE
international conference on computer vision, pages 1026–1034, 2015.

[21] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedfor-
ward neural networks. In Proceedings of the thirteenth international conference on artificial
intelligence and statistics, pages 249–256. JMLR Workshop and Conference Proceedings, 2010.

[22] Maurice G Kendall. A new measure of rank correlation. Biometrika, 30(1/2):81–93, 1938.

[23] Joseph Mellor, Jack Turner, Amos Storkey, and Elliot J Crowley. Neural architecture search
without training. arXiv preprint arXiv:2006.04647, 2020.

[24] Mohamed S Abdelfattah, Abhinav Mehrotra, Łukasz Dudziak, and Nicholas D Lane. Zero-cost
proxies for lightweight nas. arXiv preprint arXiv:2101.08134, 2021.

[25] Dongzhan Zhou, Xinchi Zhou, Wenwei Zhang, Chen Change Loy, Shuai Yi, Xuesen Zhang,
and Wanli Ouyang. Econas: Finding proxies for economical neural architecture search. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
11396–11404, 2020.

[26] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-
performance deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-
Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems 32,
pages 8024–8035. Curran Associates, Inc., 2019.

8

	Appendix
	NAS Search Spaces
	Experiment Setup
	Regularized Evolutionary Algorithm
	Proxy Task Search
	End-to-end NAS

	Additional Experiments
	Regression vs. Classification Using Same Training Samples
	Batch Sizes and Iterations
	Sensitivity Studies of Random Seeds and Initialization
	Kendall Tau and Retrieving Rates
	End-to-end NAS Architectures
	GPU Performance

