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Exploring Stable Meta-optimization Patterns via Differentiable
Reinforcement Learning for Few-shot Classification

Anonymous Authors

ABSTRACT
Existing few-shot learning methods generally focus on designing
exquisite structures of meta-learners for learning task-specific prior
to improve the discriminative ability of global embeddings. How-
ever, they often ignore the importance of learning stability in meta-
training, making it difficult to obtain a relatively optimal model.
From this key observation, we propose an innovative generic differ-
entiable Reinforcement Learning (RL) strategy for few-shot clas-
sification. It aims to explore stable meta-optimization patterns in
meta-training by learning generalizable optimizations for produc-
ing task-adaptive embeddings. Accordingly, our differentiable RL
strategy models the embedding procedure of feature transforma-
tion layers in meta-learner to optimize the gradient flow implicitly.
Also, we propose a memory module to associate historical and
current task states and actions for exploring inter-task similarity.
Notably, our RL-based strategy can be easily extended to various
backbones. In addition, we propose a novel task state encoder to en-
code task representation, which fully explores inner-task similarities
between support set and query set. Extensive experiments verify that
our approach can improve the performance of different backbones
and achieve promising results against state-of-the-art methods in
few-shot classification. Our code is available at an anonymous site:
https://anonymous.4open.science/r/db8f0c012/.

CCS CONCEPTS
• Computing methodologies → Image representations.

KEYWORDS
few-shot classification, differentiable reinforcement learning, stable
meta-optimization.

1 INTRODUCTION
Few-shot learning [1, 18, 30, 42, 55] aims to explore generalizable
visual knowledge from seen classes in training and then utilize the
learned knowledge to correctly recognize unseen classes where only
a few labeled samples are available. Few-shot learning has attracted
ever-increasing interest in industrial and academic communities due
to its various applications.

Generally, existing methods [20, 28, 32, 53] often rely on design-
ing exquisite structures of meta-learner for generating discriminative
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(b) Overview of our approach.

Figure 1: (a) The illustration of our motivation. Unstable pat-
terns of meta-learner can lead to wrong optimization direction,
causing extra gradient descent computation. (b) Overview of our
differentiable RL strategy for modeling generalizable patterns
of producing transformation layer parameters.

global embeddings of images to achieve promising performance. Re-
cently, exploring task-specific prior for meta-tasks has been proven
as an efficient way to generate discriminative global embeddings. To
this end, existing methods [5, 36, 55] usually adopt task-adapting
strategies to model the task-specific prior. Ye et al. [55] modeled
the task-adapting strategy as non-linear transformations on the sup-
port set. Qiao et al. [36] formulated the task-adapting process as
a quadratic programming problem on sample-wise distance con-
straints. Baik et al. [5] proposed to implicitly guide the embedding
procedure via optimizations of task-specific loss functions. Despite
the improvement of these methods, the meta-training process still
suffers from severe problems, such as high variance [4] and noisy
gradients [43]. These problems can lead to unstable optimization
patterns in meta-training and cause wrong optimization direction,
finally affecting the performance, as illustrated in Figure 1(a).
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Figure 2: The details of our approach. We describe the transaction from time step 𝑡 to 𝑡 + 1. The policy module, consisting of a GRU
cell with a FC layer, takes the state of the current time step 𝑡 as input and outputs the parameters of the transformation layer (i.e., scale
𝛾 and shift 𝛽) as action A𝑡 . The state of the current time step 𝑡 is the concatenation of the current task state E𝑡 and previous action A𝑡−1.
The memory module enables rapid storage and retrieval of associations between task state E𝑡 and hidden state h𝑡 of action A𝑡 .

Prior approaches of reinforcement learning, including training
sample augment [9] and spatial attention enhancement [17], have
proven their effectiveness in improving the performance of few-shot
learning tasks. However, these methods mainly straightforwardly
utilize RL in the pre-training stage, and they often suffer from un-
stable training and huge computational cost. This is because they
model the environment as a non-differentiable black box, resulting
in the training process requiring lots of trials and errors. Moreover,
black-box RL is prone to underfit on unseen tasks outside of distribu-
tion [29]. For the meta-training stability, Anantha et al. [3] modeled
the meta-learner as the agent of RL to learn the task-adaptive loss
surface of base-learner for exploiting stable loss patterns. However,
Anantha et al. [3] aims to stabilize the inner loop. In contrast, their
approach is still limited to the outer loop since the environment lacks
differentiability. Applying RL with a differentiable environment is
proven to be efficient in robotics [29], control [14], and navigation
[10], by the ability to stabilize optimization process and improve
generalization on unseen tasks. This inspires us to utilize the pros
of differentiable RL to overcome the flaws of black-box RL-based
approaches (e.g., optimization instability, and huge computational
cost) in few-shot learning.

Highly inspired by differentiable RL [14, 29], we propose a
generic differentiable RL-based meta-optimization strategy for few-
shot classification (named Reinforced Meta-Optimization, RMO),
as shown in Figure 1(b). Our method aims to explore stable meta-
optimization patterns in meta-training for improving the discrim-
inative ability of task-adaptive embeddings. Hence, we design a

differentiable RL policy to model the embedding procedure of trans-
formation layers in meta-learner for implicitly optimizing the gra-
dient flow. Specifically, we model the policy as a Gated Recurrent
Unit (GRU) to learn generalizable optimization patterns across meta-
tasks. To this end, we propose a memory module, modeled as a
Differentiable Neural Dictionary (DND), to associate historical and
current task states and actions for exploring inter-task similarity
and boosting the learning of policy. In addition, we propose a novel
task state encoder to encode task state for fully exploring inner-task
similarity between supports and queries. We conduct experiments
with various backbones and classifiers on three popular datasets. The
results verify that our method can consistently improve the perfor-
mance on different backbones and achieve promising results against
state-of-the-art transductive methods in few-shot classification.

Overall, the contributions are summarized as follows:

(1) We propose a generic differentiable RL-based few-shot learn-
ing strategy to explore stable meta-optimization patterns for
meta-training. Our approach can be easily extended to various
backbones, including ConvNet, ResNet, WRN, and DenseNet.

(2) We propose a novel task state encoder to encode task repre-
sentation, enabling information adaptation and fully exploring
inner-task similarities between support set and query set.

(3) Extensive experiments verify that our approach consistently
improves the performance on various backbones and achieves
promising results against state-of-the-art transductive methods
in few-shot classification.
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2 RELATED WORK
2.1 Few-shot Classification
Meta-learning has been proven to be an effective way to address the
few-shot classification problem [18, 24, 30, 57, 59]. These methods
often train a meta-learner using diverse meta-tasks sampled from a
task distribution to capture common patterns across the tasks. The
design of a meta-learner can include learning task-adapted represen-
tations [24, 30, 55], exploring inner-task correlations [18, 36], and
utilizing text-modal knowledge [32, 51]. Introducing transformation
layers into the network has proven efficient in learning task-specific
representations. These methods include feature map modulation
[30, 46], non-linear adaptation [55], task-level projection [57], and
learning task-specific loss functions [5]. While these methods always
tend to design complicated structures of meta-learner [17], they ig-
nore the importance of stable optimization patterns in meta-training.
These methods often suffer from overfitting in meta-training and
need careful parameter tuning [30].

2.2 Stable Optimization for Few-shot Learning
MAML [12] is a powerful algorithm introducing meta-learning into
diverse problems, including few-shot classification. It aims to learn
optimizations to adapt to unseen tasks with few available training
samples. However, MAML-based methods suffer from some prob-
lems, including training instability [4], permutation sensitivity [54],
and memorization overfitting [56]. Solutions for MAML’s shortcom-
ings have been well studied. Ye et al. [54] proposed to initialize the
classification weights with one single weight vector to overcome the
permutation sensitivity problem in few-shot classification. Simon
et al. [43] proposed to scale the noisy gradients of meta-learner
via low-rank approximation to stabilize the meta-training. However,
these methods mainly focus on improving the generic meta-learning
algorithms. In few-shot learning, the stable optimization patterns in
meta-training need further studying.

2.3 Reinforced Few-shot Learning
Reinforcement Learning has been proven effective in addressing
the few-shot learning problem. Chu et al. [9] proposed to utilize
maximum-entropy RL to learn the cropping trajectories of training
images. Hong et al. [17] proposed to utilize the RL strategy to
optimize spatial attention of feature maps. However, these methods
only utilized the RL strategy into the pre-training stage, and these
methods are still limited by the shortcomings of RL (e.g. unstable
training and huge computational cost). On training stability of few-
shot learning, Anantha et al. [3] proposed to learn the scale of
gradients of base-learner task-dependently via RL to explore stable
loss patterns in meta-training. However, this work only studied the
optimization stability of the inner loop in meta-training, and for the
outer loop, this method is still limited by the shortcomings of RL
since the environment is modeled as a black box.

3 METHOD
Our approach (as shown in Figure 2) mainly consists of a policy
module, a memory module, and a task state encoder. We describe
each module and the optimization strategy of our whole method in
the following subsections.

Problem statement. In the meta-training phase, the model faces
a set of tasks. Each task is represented as a N -way K-shot problem
with N classes sampled from the seen class set S (i.e., classes in
training set) and K labeled samples per class, which composes the
support set. Besides, M unlabeled samples are sampled per class
as the query set. We denote the support set as S = {xi, yi}NKi=1 and
the query set as Q = {xi}NK+NMi=NK+1 with the instance xi and the label
yi ∈ S. In validation and evaluation, the N classes are sampled from
the unseen class set U (i.e., classes in the validation set and testing
set). Note that S∩U = ∅. The goal is to find an optimal function 𝑓 that
correctly classifies the test sample x𝑡𝑒𝑠𝑡 via ŷ𝑡𝑒𝑠𝑡 = 𝑓 (x𝑡𝑒𝑠𝑡 ; S) ∈ U.

Model design. First, we describe how the Feature-wise Linear
Modulation (FiLM) layer [33] transforms the feature map. The learn-
able parameters of a FiLM layer include scale 𝛾 and shift 𝛽, where
𝛾, 𝛽 ∈ R𝑐 . We split the backbone network G into two parts, where
G1 is the unchanged part and G2 is the part where a FiLM layer
is inserted after the last Batch Normalization (BN) layer in each
convolution block. An intermediate feature map e′x = G1 (x) of an
input image x is first obtained. Denote z ∈ Rℎ∗𝑤∗𝑐 is the activa-
tion of e′x produced by the BN layer in G2. Then z is modulated
as: 𝑧ℎ,𝑤,𝑐 = 𝛾𝑐 ∗ 𝑧ℎ,𝑤,𝑐 + 𝛽𝑐 , where 𝑧ℎ,𝑤,𝑐 ∈ ẑ, 𝑧ℎ,𝑤,𝑐 ∈ z, and 𝑐
denotes the number of channels. This modulation is applied in each
block of G2. At last, the part G2 outputs the embedding ex ∈ R𝑑 of
input image x, denoted as ex = G2 (e′x;𝛾, 𝛽). Denote 𝜃G as the set
of all learnable parameters of G. Different from previous methods
[30, 39], we model the learning process of parameters 𝛾 and 𝛽 with
differentiable RL to optimize the gradient flow of the meta-learner.
We describe how we model this process with the key elements of
differentiable RL in the following.
State. RL is an iterative process where the policy takes the cur-
rent state as input and picks up an action in each time step. Denote
𝑡 = 1, · · · , T as the current time step and T as the total number
of time steps. The next state S𝑡+1 is obtained from a differentiable
transition function: S𝑡+1 = Φ(S𝑡 ,A𝑡 ). We model the state S𝑡 as the
concatenation of current task state E𝑡 and previous action A𝑡−1. We
depict how we obtain the task state E𝑡 via task state encoder in Sec-
tion 3.3. Task State Encoder.
Action. In each time step, the policy outputs an action based on the
current task state. We model the action A𝑡 as the concatenation of
parameters 𝛾𝑡 and 𝛽𝑡 . Here 𝛾𝑡 and 𝛽𝑡 denotes the values of 𝛾 and 𝛽
in time step 𝑡 , respectively. We depict how the action A𝑡 is picked
up in Section 3.1. Policy Module.
Reward. The environment rewards the quality of the action to guide
the RL model. The reward 𝑟𝑡 is calculated with a differentiable
function: 𝑟𝑡 = Ψ(S𝑡 ,A𝑡 ). We model the current reward 𝑟𝑡 as the
classification loss calculated by the classifier. We depict how the
reward 𝑟𝑡 is calculated in Section 3.4. Optimization Strategy.

3.1 Policy Module
We model the policy module as a minimal gated unit [60], a variant of
GRU with one single forget gate, to improve efficiency and reduce
the number of parameters. In each time step 𝑡 , the embeddings{
e𝑡x, x ∈ S ∪ Q

}
are first transformed into the task state E𝑡 , then

concatenated with previous action A𝑡−1 to form input state S𝑡 . Define
𝛾0 = 1 and 𝛽0 = 0, where 1 and 0 are two vectors filled with 1 and 0.
The GRU cell takes S𝑡 as input and outputs the action A𝑡 = {𝛾𝑡 , 𝛽𝑡 }
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Figure 3: Overview of the task state encoder, which consists of a
self-attention module followed by an average pooling layer.

via the following equations:

f𝑡 = 𝜎 (W𝑓 · [h𝑡−1, S𝑡 ] + b𝑓 ),

h̃𝑡 = tanh(Wℎ · [f𝑡 ⊙ h𝑡−1, S𝑡 ] + bℎ),

h𝑡 = (1 − f𝑡 ) ⊙ h𝑡−1 + f𝑡 ⊙ h̃𝑡 ,

(1)

where 𝜎 (·) and tanh(·) denote the sigmoid and hyperbolic tangent
activation function, respectively, and ⊙ denotes the Hadamard prod-
uct. Then h𝑡 is taken by a fully connected layer without bias to get
the mean 𝜇𝑡 : 𝜇𝑡 = W𝑢 ·h𝑡 . The action A𝑡 is sampled from the normal
distribution: A𝑡 ∼ N(𝜇𝑡 , 1). The value of h0 is initialized to 0 for
each task.

3.2 Memory Module
Inspired by the idea of episodic control [34, 40], we model the
memory module as a DND to explore inter-task similarity, enabling
rapid storage and retrieve of associations between task state E𝑡 and
hidden state h𝑡 of action A𝑡 . The key and value of DND denote
task state E𝑡 and hidden state h𝑡 , respectively. Then the new h𝑡 is
calculated using the following equations:

f𝑡 = 𝜎 (W𝑓 · [h𝑡−1, S𝑡 ] + b𝑓 ),

h̃𝑡 = tanh(Wℎ · [f𝑡 ⊙ h𝑡−1, S𝑡 ] + bℎ),
r𝑡 = tanh(W𝑟 · [h𝑡−1, S𝑡 ] + b𝑟 ),

h𝑡 = (1 − f𝑡 ) ⊙ h𝑡−1 + f𝑡 ⊙ h̃𝑡 + r𝑡 ⊙ tanh(h𝑒𝑝 ),

(2)

where h𝑒𝑝 denotes the hidden state from DND: h𝑒𝑝 = 𝐷𝑁𝐷
[
E′𝑡
]
,

and E′𝑡 denotes the matched key of current E𝑡 using a distance
metric. We choose E′𝑡 using top-1 cosine similarity with stored

E𝑡 : 𝑑 (E′𝑡 , E𝑡 ) =
E′𝑡 ·E𝑡

∥E′𝑡 ∥ ∥E𝑡 ∥
. Finally, h𝑡 and E𝑡 are stored to DND:

𝐷𝑁𝐷 [E𝑡 ] = h𝑡 . Denote 𝜃𝑝 as the set of all learnable parameters of
policy module and D as the number of memory units in DND.

3.3 Task State Encoder
The architecture of the task state encoder is shown in Figure 3. Unlike
previous methods [30, 39] that only consider inner-task information
from the support set, we utilize a single-head self-attention module
to explore inner-task similarities between support set and query
set. Here, we omit time step 𝑡 for simplicity. First, we obtain class
representations by averaging the support samples in each class: ē𝑐 =
1
K
∑

(x𝑖 ,y𝑖 ) ∈S𝑐 ex𝑖 , where S𝑐 denotes the support samples in 𝑐-th
class, and 𝑐 = 1, · · · ,N . Define S̄e = {ē𝑐 }N𝑐=1 and Qe =

{
ex𝑖

}
x𝑖 ∈Q.

We construct the query, key, and value using the following equation:

Q = f𝑞
𝜃
(Qe),K = f𝑘

𝜃
(S̄e),V = f𝑣

𝜃
(S̄e), (3)

Algorithm 1 Training procedure of our approach.

Require: Seen class set S, classifier 𝑓𝑚
1: while training do
2: Sample N-way K-shot task (S,Q) from S
3: Compute e0

x = G(x;𝛾0, 𝛽0) for all x ∈ S ∪ Q
4: Compute L𝑐 for all x𝑡𝑒𝑠𝑡 ∈ Q with 𝑓𝑚
5: Reset h0 = 0
6: for all 𝑡 = 1, · · · , T do
7: Compute S𝑡 = {E𝑡 , 𝛾𝑡−1, 𝛽𝑡−1} for all e𝑡−1

x
8: Compute A𝑡 = {𝛾𝑡 , 𝛽𝑡 } for S𝑡
9: Compute e𝑡x = G(x;𝛾𝑡 , 𝛽𝑡 ) for all x ∈ S ∪ Q

10: Compute 𝑟𝑡 for all x𝑡𝑒𝑠𝑡 ∈ Q with 𝑓𝑚
11: end for
12: Compute L𝑟 for all {𝑟𝑡 }T𝑡=1
13: Update parameters 𝜃G, 𝜃𝑝 , and 𝜃𝑔 with L𝑡𝑜𝑡𝑎𝑙
14: end while
15: return Parameters 𝜃G, 𝜃𝑝 , and 𝜃𝑔

where the support classes and query samples are mapped by three
linear projections, f𝑞

𝜃
, f𝑘
𝜃

, and f𝑣
𝜃

, respectively. The calculation of
task state E is formulated as:

˜𝜓Q = softmax ( QK𝑇
√
𝑑

)V,

𝜓Q = 𝜏 (Q + f𝑜
𝜃
( ˜𝜓Q )),

E = AvgPool(𝜓Q ),

(4)

where f𝑜
𝜃

is a linear projection and 𝜏 denotes the sequence of dropout
[45] and layer normalization [52]. Finally, E is calculated via the
average pooling operation, denoted by AvgPool(·). Denote 𝜃𝑔 as the
set of all learnable parameters of the task state encoder.

3.4 Training Strategy
We choose 3 popular classifiers: ProtoNet [44], DSN [42], and
MetaOptNet [23]. The corresponding models are named RMO-PN,
RMO-DSN, and RMO-MON, respectively. Denote the predicted
probability distribution of test sample (x𝑞, y𝑞) as 𝑝 (ŷ𝑞 = y𝑞 |
ex𝑞 ; f𝑚), where f𝑚 denotes the classifier. We first define the classifi-
cation loss as:

L𝑐 = − log𝑝 (ŷ𝑞 = y𝑞 | G(x𝑞 ;𝛾0, 𝛽0)) . (5)

Then, in each time step 𝑡 , the log-probability is calculated as the
reward:

𝑟𝑡 = log𝑝 (ŷ𝑞 = y𝑞 | G(x𝑞 ;𝛾𝑡 , 𝛽𝑡 )) . (6)

The goal is to maximize the accumulated rewards {𝑟𝑡 }𝑇𝑡=1. Denote γ
as the discount factor. We define the reinforcement loss as:

L𝑟 =
T∑︁
𝑡=1

log π(A𝑡 | S𝑡 )R𝑡 , (7)

where R𝑡 =
∑T−𝑡
𝑘=0 γ𝑘 r𝑡+𝑘 denotes a discounted accumulated reward,

π ∼ N(𝜇𝑡 , 1). The total loss is defined as:

L𝑡𝑜𝑡𝑎𝑙 = L𝑐 + 𝜌L𝑟 , (8)

where 𝜌 is a scalar hyper-parameter. The pseudocode of our approach
is described in Algorithm 1.
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Table 1: Few-shot 5-way classification accuracy and 95% confi-
dence interval on MiniImageNet dataset.

Model Backbone 1-shot 5-shot

ProtoNet[44] Conv-4 52.61±0.20 71.33±0.16

TEAM[36] Conv-4 56.57 72.04
EPNet[41] Conv-4 59.32±0.88 72.95±0.64

Curvature+T[13] Conv-4 58.29±0.22 73.93±0.16

DSN-MR[42] Conv-4 55.88±0.90 70.50±0.68

ALFA+MeTAL[5] Conv-4 57.75±0.38 74.10±0.43

AIM[22] Conv-4 61.90±0.57 74.55±0.38

RMO-PN Conv-4 61.50±0.20 75.11±0.16

RMO-MON Conv-4 60.15±0.20 74.64±0.18

RMO-DSN Conv-4 62.52±0.20 76.32±0.16

ProtoNet[44] ResNet-12 62.39±0.21 80.53±0.14

MetaOptNet[23] ResNet-12 62.64±0.61 78.63±0.46

DSN-MR[42] ResNet-12 64.60±0.72 79.51±0.50

CAN+T[18] ResNet-12 67.19±0.55 80.64±0.35

Curvature+T[13] ResNet-12 71.79±0.23 83.00±0.17

ALFA+MeTAL[5] ResNet-12 66.61±0.28 84.40±0.44

LR+ICI[50] ResNet-12 66.80 79.26
EPNet[41] ResNet-12 66.50±0.89 81.06±0.60

RMO-PN ResNet-12 71.21±0.20 86.03±0.15

RMO-MON ResNet-12 69.71±0.22 85.52±0.15

RMO-DSN ResNet-12 73.74±0.20 86.69±0.15

TEAM[36] ResNet-18 60.07 75.90
TIM-GD[7] ResNet-18 73.9 85.0
LaplacianShot[61] ResNet-18 72.11±0.19 82.31±0.14

Oblique+T[35] ResNet-18 77.20±0.36 87.11±0.42

RMO-PN ResNet-18 75.31±0.20 86.32±0.15

RMO-DSN ResNet-18 77.85±0.20 87.54±0.16

BD-CSPN[26] WRN-28-10 70.31±0.93 81.89±0.60

AIM[22] WRN-28-10 71.22±0.57 82.25±0.34

LaplacianShot[61] WRN-28-10 74.86±0.19 84.13±0.14

EPNet[41] WRN-28-10 70.74±0.85 84.34±0.53

TIM-GD[7] WRN-28-10 77.8 87.4
Oblique+T[35] WRN-28-10 80.64±0.34 89.39±0.39

RMO-PN WRN-28-10 79.27±0.19 87.81±0.16

RMO-DSN WRN-28-10 81.08±0.20 89.97±0.16

4 EXPERIMENTS
4.1 Datasets
We evaluate our approach on 3 benchmark datasets: MiniImageNet
[47], TieredImageNet [38], and CUB-200-2011 [48]. MiniImageNet
and TieredImageNet are two subsets of ImageNet [11] dataset. MiniI-
mageNet dataset contains 100 categories with 600 images per cate-
gory. Following the splits provided by Ravi et al. [37], we split the
100 categories into 64, 16, and 20 categories for training, validation,
and evaluation, respectively. TieredImageNet is a large-scale dataset

Table 2: Few-shot 5-way classification accuracy and 95% confi-
dence interval on TieredImageNet dataset.

Model Backbone 1-Shot 5-Shot

ProtoNet[44] Conv4 52.28±0.21 71.34±0.18

TPN[27] Conv-4 59.91±0.94 73.30±0.75

EPNet[41] Conv-4 59.97±0.95 73.91±0.75

ALFA+MeTAL[5] Conv-4 60.29±0.37 75.88±0.29

RMO-PN Conv-4 62.10±0.20 77.80±0.19

RMO-MON Conv-4 61.82±0.21 76.24±0.19

RMO-DSN Conv-4 63.39±0.20 78.84±0.18

ProtoNet[44] ResNet-12 68.23±0.23 84.03±0.16

MetaOptNet[23] ResNet-12 65.99±0.72 81.56±0.53

DSN-MR[42] ResNet-12 67.39±0.82 82.85±0.56

CAN+T[18] ResNet-12 73.21±0.58 84.93±0.38

Curvature+T[13] ResNet-12 77.19±0.24 86.18±0.15

ALFA+MeTAL[5] ResNet-12 70.29±0.40 86.17±0.35

EPNet[41] ResNet-12 76.53±0.87 87.32±0.64

LR+ICI[50] ResNet-12 80.79 87.92
RMO-PN ResNet-12 80.29±0.23 87.54±0.16

RMO-MON ResNet-12 79.44±0.25 87.09±0.19

RMO-DSN ResNet-12 81.11±0.23 88.22±0.16

TIM-GD[7] ResNet-18 79.9 88.5
LaplacianShot[61] ResNet-18 78.98±0.21 86.39±0.16

Oblique+T[35] ResNet-18 83.73±0.36 90.46±0.46

RMO-PN ResNet-18 82.05±0.23 88.67±0.16

RMO-DSN ResNet-18 84.03±0.23 90.86±0.16

BD-CSPN[26] WRN-28-10 78.74±0.95 86.92±0.63

LaplacianShot[61] WRN-28-10 80.18±0.21 87.56±0.15

EPNet[41] WRN-28-10 78.50±0.91 88.36±0.57

TIM-GD[7] WRN-28-10 82.1 89.8
Oblique+T[35] WRN-28-10 85.22±0.34 91.35±0.42

RMO-PN WRN-28-10 83.66±0.22 89.23±0.18

RMO-DSN WRN-28-10 85.54±0.22 91.72±0.18

containing 351, 97, and 160 categories for training, validation, and
evaluation, respectively. The CUB-200-2011 dataset contains 200
categories with a total number of 11788 images. Following the pro-
tocol of Hilliard et al. [16], we split the dataset into 100, 50, and 50
categories for training, validation, and evaluation, respectively.

4.2 Implementation Details
We utilize 4 commonly used backbones in few-shot learning: Conv-4
[21], ResNet-12 [15], ResNet-18 [15], and WRN-28-10 [58]. The
backbone takes a 3×84×84 image as input. For Conv-4, the Adam
optimizer is utilized. For ResNets and WRN, the SGD optimizer
is utilized with momentum of 0.9 and weight decay of 0.0005. We
insert a FiLM layer after the last BN layer in the convolution blocks
of the backbone. The parameters 𝛾𝑡 and 𝛽𝑡 of each FiLM layer are
concatenated to form the action A𝑡 . The value of T , D, and γ is set
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Table 3: Few-shot 5-way classification accuracy and 95% confi-
dence interval on the CUB-200-2011 dataset.

Model Backbone 1-Shot 5-Shot

ProtoNet[44] Conv-4 63.72±0.22 81.50±0.15

EPNet[41] Conv-4 65.94±0.93 78.80±0.64

TEAM[36] Conv-4 75.71 86.04
BD-CSPN[26] Conv-4 75.10 87.25
Curvature+T[13] Conv-4 76.69±0.21 89.30±0.12

RMO-PN Conv-4 75.96±0.23 87.56±0.15

RMO-MON Conv-4 74.28±0.25 85.54±0.17

RMO-DSN Conv-4 77.26±0.24 88.73±0.16

ProtoNet[44] ResNet-12 66.09±0.92 82.50±0.58

BD-CSPN[26] ResNet-12 84.90 90.22
EPNet[41] ResNet-12 82.85±0.81 91.32±0.41

LR+ICI[50] ResNet-12 88.06 92.53
RMO-PN ResNet-12 84.60±0.21 91.39±0.12

RMO-MON ResNet-12 83.32±0.26 90.31±0.18

RMO-DSN ResNet-12 86.79±0.21 92.82±0.13

ProtoNet[44] ResNet-18 72.99±0.88 86.65±0.51

TEAM[36] ResNet-18 80.16 87.17
TIM-GD[7] ResNet-18 82.2 90.8
LaplacianShot[61] ResNet-18 80.96 88.68
Oblique+T[35] ResNet-18 85.87 94.97
RMO-PN ResNet-18 86.46±0.23 93.69±0.14

RMO-DSN ResNet-18 87.57±0.23 95.16±0.14

BD-CSPN[26] WRN-28-10 87.45 91.74
EPNet[41] WRN-28-10 87.75±0.70 94.03±0.33

RMO-PN WRN-28-10 86.76±0.22 93.67±0.13

RMO-DSN WRN-28-10 88.56±0.22 95.27±0.13

Table 4: Few-shot 5-way classification accuracy and 95% confi-
dence interval with DenseNet backbone.

Method
MiniImageNet TieredImageNet

1-shot 5-shot 1-shot 5-shot
SimpleShot[49] 65.77±0.19 82.23±0.13 71.20±0.22 86.33±0.15

LaplacianShot[61] 75.57±0.19 84.72±0.13 80.30±0.20 87.93±0.15

RAP-LaplacianShot[17] 75.58±0.20 85.63±0.13 - -

ICA+MSP[25] 77.06±0.26 84.99±0.14 84.29±0.25 89.31±0.15

RMO-PN 78.26±0.19 84.92±0.14 85.15±0.21 89.25±0.15

RMO-DSN 79.83±0.19 86.47±0.13 86.09±0.20 91.16±0.15

to 5, 2000, and 0.9, respectively. The value of 𝜌 is set to 2∑T
𝑖=1 𝑖

. First,

we pre-train the backbone following the settings of the prior work
[55]. Then, the whole model is meta-trained for 200 epochs, with
each epoch including 100 randomly sampled tasks. We scale the
learning rate of weights of the backbone by 0.1 in meta-training. In
validation, we use 600 randomly sampled tasks to choose the best
model. During evaluation, we report the classification accuracy and
95% interval confidence over 10000 randomly sampled tasks. Each

Table 5: Few-shot 5-way classification accuracy comparing to
CNAPS and Simple-CNAPS. “In.” denotes “inductive”.

Method
MiniImageNet TieredImageNet

1-shot 5-shot 1-shot 5-shot
CNAPS[39] 77.99 87.31 75.12 86.57
Simple-CNAPS[6] 82.16 89.80 78.29 89.01
RMO-PN (In.) 80.93 89.21 77.75 89.25
RMO-DSN (In.) 83.12 90.76 79.35 90.16

task includes 15 query samples per class in all settings. We take the
averaged results using 3 different random seeds. The learning rate is
set to 0.002 and 0.001 for ConvNet and three ResNets, respectively.
We scale the initial learning rate by 0.2 after every 30 epochs in meta-
training. Our code is based on PyTorch [31], and all experiments are
conducted using an NVIDIA RTX A6000 GPU. More details are
provided in Supplementary Material.

4.3 Main Results
Table 1, Table 2, and Table 3 list the results of our method on
MiniImageNet, TieredImageNet, and CUB-200-2011, respectively.
We mainly compare our approach with the previous state-of-the-art
transductive few-shot learning approaches, including Curvature [13],
TEAM [36], Oblique [35], EPNet [41], TIM [7], ICI [50], Lapla-
cianShot [61], and BD-CSPN [26]. It can be seen that our approach
shows consistent improvements over other transductive few-shot
learning approaches on all three datasets using the four backbones.
For example, under 1-shot and 5-shot on MiniImageNet with ResNet-
12, our approach shows on average +2.3%, +5.8%, and +4.2% perfor-
mance gains comparing to Curvature [13], CAN [18], and MeTAL
[5], respectively. On TieredImageNet with ResNet-12, our approach
shows on average +3.0%, +5.6%, and +6.4% performance gains
comparing to the above three methods. On CUB-200-2011, our ap-
proach also shows on average +2.9% and +4.8% performance gains
with TIM [7] and EPNet [41], respectively. The promising results
suggest that our approach makes it easier to reach a better local
optima on the loss surface of the meta-training phase via exploring
stable meta-optimization patterns, thus improving the discriminative
ability of global embeddings.

4.4 Ablation Study
In this section, we first explore hyper-parameters’ impacts on the
proposed strategy. Then, we analyze the impacts of different modules
on classification performance. Besides, we extend our strategy to
the DenseNet backbone. Furthermore, we conduct experiments on
the challenging cross-domain and generalized few-shot tasks. For
simplicity, “PN”, “DSN”, and “MON” denote RMO-PN, RMO-DSN,
and RMO-MON, respectively.

Selection of hyper-parameters. We describe how we choose the
value of hyper-parameter T , D, and γ in Supplementary Material.

Impacts of different modules. We analyze the impact of each
module, i.e., policy, memory, and task state encoder (denoted as
“GRU”, “DND”, and “SATT”, respectively). The experiments are
conducted under 5-shot 5-way on MiniImageNet. Relative results
are listed in Table 6. To show the effects of differentiable RL and
memory mechanism, we replace GRU and DND with two FC layers
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Table 6: Classification accuracy and 95% confidence interval on different combinations of the modules in our approach.

Settings

SATT GRU DND
Conv-4 ResNet-12 ResNet-18

PN DSN MON PN DSN MON PN DSN
✓ 72.33±0.16 73.29±0.18 71.27±0.17 82.76±0.14 83.16±0.18 82.19±0.18 84.74±0.15 84.66±0.15

✓ 73.18±0.16 73.60±0.17 72.21±0.17 83.17±0.15 83.72±0.19 83.30±0.17 84.39±0.15 85.30±0.15

✓ ✓ 73.86±0.16 74.42±0.17 73.03±0.17 83.91±0.15 84.63±0.20 84.21±0.17 84.91±0.15 85.86±0.15

✓ ✓ 74.61±0.16 75.64±0.17 73.81±0.17 85.37±0.15 85.86±0.19 84.97±0.17 85.65±0.15 86.73±0.15

✓ ✓ ✓ 75.11±0.16 76.32±0.16 74.64±0.18 86.03±0.15 86.69±0.15 85.52±0.15 86.32±0.15 87.54±0.16

Table 7: Few-shot 5-way classification accuracy and 95% con-
fidence interval on cross-domain task: MiniImageNet → CUB-
200-2011 dataset.

Setups Backbone 1-Shot 5-Shot

ProtoNet[44] ResNet-18 - 62.02±0.70

SimpleShot[49] ResNet-18 48.56 65.63
MetaOptNet[23] ResNet-12 44.79±0.75 64.98±0.68

LaplacianShot[61] ResNet-18 55.46 66.33
ALFA+MeTAL[5] ResNet-12 - 70.22±0.14

Centroid[2] ResNet-18 46.85±0.75 70.37±1.02

TIM-GD[7] ResNet-18 - 71.0
Oblique+T[35] ResNet-18 - 74.11
RMO-PN ResNet-18 54.67±0.18 73.58±0.18

RMO-DSN ResNet-18 56.82±0.18 74.64±0.16

Table 8: Classification accuracy and 95% confidence interval on
generalized few-shot task. “In.” denotes “inductive”.

Setup Model SEEN UNSEEN COMBINED

1-shot

ProtoNet[44] 41.73±0.03 48.64±0.20 35.69 ±0.03

FEAT[55] 43.94±0.03 49.72±0.20 40.50 ±0.03

RMO-PN (In.) 48.00±0.04 53.68±0.19 43.61 ±0.04

RMO-MON (In.) 46.96±0.04 52.21±0.19 42.80 ±0.03

RMO-DSN (In.) 49.34±0.04 54.16±0.19 44.02 ±0.03

5-shot

ProtoNet[44] 41.06±0.03 64.94±0.17 38.04 ±0.02

FEAT[55] 44.94±0.03 65.33±0.16 41.68 ±0.03

RMO-PN (In.) 49.56±0.03 68.37±0.19 44.52 ±0.05

RMO-MON (In.) 48.71±0.03 67.54±0.18 43.50 ±0.04

RMO-DSN (In.) 50.40±0.03 69.02±0.17 45.13 ±0.04

to learn the parameters 𝛾 and 𝛽. To show the effects of information
adaptation from query set when constructing task state, we replace
SATT with an averaging operation, i.e., obtaining the task state via
averaging the mean vectors represented by each class as Oreshkin et
al. [30]. It can be observed that the differentiable RL strategy and
memory mechanism bring about +3% performance improvement,
comparing to learning FiLM layer parameters with FC layers. Be-
sides, the information adaptation from query set also shows about
+2% performance improvement.

Table 9: Time complexity of the three models.

Models Classifier Total
RMO-PN 𝑂 (𝑁𝐾𝑑 ) 𝑂 (𝑇 (𝑁𝐾 )2𝑑 )
RMO-DSN 𝑂 (𝑁𝐾𝑑2 ) 𝑂 (𝑚𝑎𝑥 (𝑇𝑁𝐾𝑑2,𝑇 (𝑁𝐾 )2𝑑 ) )
RMO-MON 𝑂 (𝑑3 ) 𝑂 (𝑇𝑑3 )

Table 10: Standard deviations of the loss function.

Setting → 5-way 1-shot
Backbone PN DSN MON RMO-PN RMO-DSN RMO-MON
Conv-4 0.266 0.308 0.251 0.128 0.165 0.191
ResNet-12 0.108 0.101 0.178 0.036 0.016 0.053
ResNet-18 0.127 0.102 0.201 0.042 0.015 0.041
Setting → 5-way 5-shot
Backbone PN DSN MON RMO-PN RMO-DSN RMO-MON
Conv-4 0.382 0.405 0.252 0.158 0.168 0.183
ResNet-12 0.059 0.085 0.108 0.037 0.016 0.052
ResNet-18 0.054 0.035 0.067 0.034 0.013 0.041

Time complexity. The time complexity in each time step for
SATT, GRU, and DND are 𝑂 ((𝑁𝐾)2𝑑), 𝑂 (𝑑2), and 𝑂 (D𝑑), respec-
tively. The total time complexities of the three models are listed in
Table 9. Here we assume 𝑑3 ≫ (𝑁𝐾)2 ≫ D ≫ 𝑑 .

Standard deviation of loss function. The standard deviation of
the loss function can verify the stabilizing effects of our approach.
We calculate the standard deviation of the loss function in the last
100 epochs. The experiments are conducted under 5-way 5-shot and
5-way 1-shot on MiniImageNet. Table 10 lists the results. It can
be seen that our three models achieve lower standard deviations
comparing to the three baseline models [23, 42, 44].

DenseNet backbone performance. Following the settings of
Lichtenstein et al. [25], we measure the performance of our ap-
proach with DenseNet [19] backbone. Specifically, we insert a FiLM
layer after the last BN layer in each dense block of DenseNet-121.
The backbone is first pre-trained following the protocol of prior
work [49]. The experiments are conducted under 5-way 5-shot and
5-way 1-shot on MiniImageNet and TieredImageNet. Relative re-
sults are listed in Table 4. Our approach outperforms previous state-
of-the-art transductive methods by about +1.8%, including RAP-
LaplacianShot [17] and TAFSSL [25]. This suggests our approach
also contributes to dense connection-based backbones. More details
are provided in Supplementary Material.

Comparisons with typical task-adaptive methods. We compare
the few-shot classification performance of our approach with two
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Figure 4: Visualization of the values of parameters 𝛾 and 𝛽. We depict the boxplots of 𝛾 and 𝛽 respectively for the last convolution block
of Conv-4 backbone before the last max-pooling layer.

typical state-of-the-art approaches using FiLM layers: CNAPS [39]
and Simple-CNAPS [6]. For a fair comparison, we utilize ResNet-18
pre-trained on ImageNet as backbone, and we insert a FiLM layer
after the last BN layer in each residual block of ResNet-18. The
model is meta-trained following the settings in Simple-CNAPS [6].
Since the works [6, 39] are inductive methods, we utilize only the
support samples when calculating the task state (i.e., use all support
samples as query instead of all query samples). Relative results
are listed in Table 5. Our method outperforms Simple-CNAPS by
about +1% on average on MiniImageNet and TieredImageNet. This
suggests our method also takes impacts with feature-rich backbones,
comparing to directly learning parameters of FiLM layers. More
details are provided in Supplementary Material.

Cross-domain few-shot classification performance. Following
the splits introduced by Chen et al. [8], we meta-train the model
on the entire MiniImageNet dataset (i.e., training set, validation
set, and testing set), then meta-test the model on the test split of
CUB-200-2011 dataset. Relative results are listed in Table 7. We
show obvious improvements in our approach under both 1-shot
and 5-shot settings compared to other state-of-the-art cross-domain
methods. This suggests that the differentiable RL strategy contributes
to improving the discriminative ability of task-specific embeddings
even when a domain gap exists.

Generalized few-shot classification performance. Following
the splits of Ye et al. [55], we first train the model only on seen
classes S of MiniImageNet dataset under 1-shot 5-way and 5-shot
5-way. Then we evaluate the model with three criteria: UNSEEN
evaluates the 5-way classification accuracy only on unseen classes
U; SEEN evaluates the 64-way classification accuracy only on seen
classes S; COMBINED evaluates the 69-way mixed classification
accuracy on both seen and unseen classes. We use the inductive
versions of our method in the experiments. Relative results are listed
in Table 8. Our method shows about +4.3% and +6.9% performance
gains against FEAT [55] and ProtoNet [44] respectively on the 3

evaluation criteria. This suggests that our approach also contributes
to not forgetting previously learned class knowledge.

Visualization. We depict the statistical distributions, represented
as boxplots, of the parameters 𝛾 and 𝛽 in each time step 𝑡 across
different meta-tasks in Figure 4. We visualize the parameters 𝛾 and
𝛽 for the last convolution block of Conv-4 backbone. It can be
observed that the parameters 𝛾 and 𝛽 have larger influence on the
embedding procedure with longer time steps. Further, it can be seen
that the generated parameter values vary among different tasks to a
larger extent when the time step goes longer, especially at the last
time step T . This suggests that the model learns to adapt to each
meta-task generally across time steps via differentiable RL. Besides,
we plot the curves of validation accuracy on MiniImageNet and
TieredImageNet among our models and ProtoNet. The results are
reported in Supplementary Material.

5 CONCLUSION
This work proposes a generic differentiable RL-based meta optimiza-
tion strategy for few-shot learning, aiming to explore stable meta-
optimization patterns in meta-training. Due to the differentiability
of the environment, our approach can avoid the flaws of black-box
RL. This approach is a new way of introducing RL strategy into
few-shot learning. The approach contains a policy equipped with
the memory for learning generalizable optimizations of embedding
procedure across unseen tasks. In addition, we propose a task state
encoder to adapt information from the query set to the support set
for fully exploring inner-task similarities. Our strategy can be easily
applied to various backbones, including ConvNet, ResNet, WRN,
and DenseNet. Our method also shows promising results on the chal-
lenging cross-domain and generalized few-shot classification tasks.
Lastly, this work shows the huge benefits of exploring stable patterns
in meta-learning, however it has limitations on model complexity.
Future work includes studying the model efficiency and applying
this approach to multiple downstream tasks.
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