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1 DETAILS OF CLASSIFIERS
We leverage three popular non-parametric classifiers in our approach:
ProtoNet[7], DSN[6], and MetaOptNet[4]. In the following, we de-
scribe the details of each classifier. We omit time step 𝑡 for simplicity.

ProtoNet[7]1 predicts the probability distribution directly on
the instance embeddings. Class prototypes are first computed via
averaging support samples in each class:

p𝑐 =
1
K

∑︁
(x𝑖 ,y𝑖 ) ∈S𝑐

ex𝑖 , (1)

where S𝑐 denotes samples from class 𝑐. Then the probability distri-
bution of a query sample x𝑞 is computed as:

𝑝 (y𝑞 = 𝑐 | x𝑞) =
exp(−𝑑 (ex𝑞 , p𝑐 ))∑
𝑐′ exp(−𝑑 (ex𝑞 , p𝑐′ ))

, (2)

where 𝑑 (·) denotes a distance function (e.g., Euclidean distance or
cosine distance) between the query sample and the prototype. We
use cosine distance in the model RMO-PN. The reward 𝑟 is defined
as:

𝑟 =
1

NM

∑︁
𝑐

log𝑝 (y𝑞 = 𝑐 | x𝑞). (3)

DSN[6]2 predicts the probability distribution with the subspace
projection distance. For class 𝑐, a new set of samples are first com-
puted as:

S̃𝑐 =
[
ex𝑐,1 − p𝑐 , · · · , ex𝑐,K − p𝑐

]
, (4)

where p𝑐 denotes the prototype of class 𝑐 calculated with Equation 1.
Then a class-specific projection matrix P𝑐 is calculated via truncated
singular value decomposition on S̃𝑐 . The distance from a query
sample x𝑞 to its projection onto P𝑐 is calculated as:

𝑑𝑐 (x𝑞) = − ∥ (𝐼 − P𝑐P⊤𝑐 ) (ex𝑞 − p𝑐 ) ∥2, (5)

where 𝐼 denotes the identity matrix. The probability distribution of
the query x𝑞 is defined as:

𝑝 (y𝑞 = 𝑐 | x𝑞) =
exp(𝑑𝑐 (x𝑞))∑
𝑐′ exp(𝑑𝑐′ (x𝑞))

. (6)

The distance between two subspaces P𝑖 and P𝑗 is defined as:

𝛿2 (P𝑖 , P𝑗 ) =∥ P𝑖P⊤𝑖 − P𝑗P⊤𝑗 ∥2𝐹
= 2𝑛 − 2 ∥ P⊤𝑖 P𝑗 ∥

2
𝐹 . (7)

To obtain more discriminative subspaces, we need to maximize
𝛿2 (P𝑖 , P𝑗 ), which is equal to minimize ∥ P⊤

𝑖
P𝑗 ∥2𝐹 . The reward 𝑟 is

defined as:

𝑟 =
1

NM

∑︁
𝑐

log 𝑝 (y𝑞 = 𝑐 | x𝑞) − 𝜆
∑︁
𝑖≠𝑗

∥ P⊤𝑖 P𝑗 ∥
2
𝐹 . (8)

1https://github.com/orobix/Prototypical-Networks-for-Few-shot-Learning-PyTorch
2https://github.com/chrysts/dsn_fewshot

The value of 𝜆 is set to 0.03. For 1-shot case, we generate a support
image for each class by data augmentation via flipping the support
image following Simon et al.[6].

MetaOptNet[4]3 predicts the probability distribution with convex
base learners. Lee et al.[4] utilizes a multi-class Support Vector
Machine (SVM) as the learner. A N -class SVM can be expressed as
𝜃 = {w𝑐 }N𝑐=1. The optimization problem of 𝜃 can be formulated as:

𝜃 = argmin
{w𝑐 }

min
{𝜀𝑖 }

1
2

∑︁
𝑐

∥ w𝑐 ∥2 +𝐶
∑︁
𝑖

𝜀𝑖 ,

s.t.

wy𝑖 · ex𝑖 −w𝑐 · ex𝑖 ⩾ 1 − 𝛿 (y𝑖 , 𝑐) − 𝜀𝑖 , ∀𝑖, 𝑐 (9)

where 𝑖 ∈ {1, · · · ,NK} and 𝑐 ∈ {1, · · · ,N }, 𝐶 is the regularization
item and 𝛿 (·) denotes the Kronecker delta function. Denote

w𝑐 (a𝑐 ) =
∑︁
𝑖

𝑎𝑐𝑖 ex𝑖 , ∀𝑐 (10)

the dual formulation of the objective in Equation 9 can be expressed
as:

max
{a𝑐 }

−1
2

∑︁
𝑐

∥ w𝑐 (a𝑐 ) ∥2 +
∑︁
𝑖

𝑎
y𝑖
𝑖
,

s.t.

𝑎
y𝑖
𝑖
⩽ 𝐶, 𝑎𝑐𝑖 ⩽ 0, ∀𝑐 ≠ y𝑖 ,∑︁

𝑐

𝑎𝑐𝑖 = 0, ∀𝑖 . (11)

This is a Quadratic Program (QP) over the dual variables {a𝑐 }N𝑐=1.
Following Lee et al.[4], we use the GPU-based differentiable QP
solver QPTH [1] to solve Equation 11. The gradients of 𝜃G, 𝜃𝑝 , and
𝜃𝑔 can be computed via applying the implicit function theorem on
the KKT conditions, provided by Barratt [2]. The reward 𝑟 is defined
as:

𝑟 = wy𝑞 · ex𝑞 − log
∑︁
𝑐

exp(w𝑐 · ex𝑞 ) . (12)

The value of 𝐶 is set to 0.1. The maximum iteration number of the
QP solver is set to 5. For RMO-MON, we use the feature maps
before the last global pooling layer of the backbone to calculate the
reward, following Lee et al.[4]. The dimension of the feature maps
used for classification is 1600 and 16000 for Conv-4 and ResNet-12,
respectively. The feature map is globally averaging pooled before
encoding the task state.

3https://github.com/kjunelee/MetaOptNet
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Table 1: Classification accuracy and 95% confidence interval on different values of T .

Backbone Model
Number of time step T

0 1 2 3 4 5 6

Conv-4
PN 71.25±0.16 73.18±0.16 74.33±0.16 74.84±0.16 74.97±0.16 75.11±0.16 74.94±0.16

DSN 71.96±0.18 73.16±0.17 74.43±0.17 75.39±0.17 75.98±0.17 76.32±0.16 76.91±0.16

MON 69.43±0.17 71.66±0.17 72.91±0.17 73.62±0.17 74.21±0.17 74.64±0.18 74.49±0.18

ResNet-12
PN 80.81±0.14 83.48±0.14 84.54±0.14 85.59±0.15 86.01±0.15 86.03±0.15 86.67±0.15

DSN 81.36±0.19 84.17±0.18 85.26±0.19 85.84±0.18 86.33±0.19 86.69±0.15 86.41±0.15

MON 80.46±0.17 82.72±0.17 84.19±0.18 84.72±0.18 85.26±0.18 85.52±0.15 85.65±0.15

ResNet-18
PN 82.19±0.14 84.52±0.15 85.73±0.15 85.61±0.15 85.92±0.15 86.32±0.15 86.12±0.15

DSN 82.60±0.17 84.89±0.15 86.19±0.15 86.84±0.15 87.35±0.15 87.54±0.16 87.13±0.15

Table 2: Classification accuracy on different values of γ.

Backbone
Discount factor γ

0.1 0.5 0.8 0.9 0.99
Conv-4 73.79 74.45 74.76 75.11 74.83
ResNet-12 85.01 85.25 85.94 86.03 85.21
ResNet-18 85.05 85.84 86.26 86.32 85.67

2 IMPLEMENTATION DETAILS
2.1 Backbone Architecture
For Conv-4, the network G1 contains two convolution blocks, where
each block is composed of {3*3 conv with 64 filters, BN, ReLU,
2*2 maxpool}, and the network G2 contains two convolution blocks,
where each block is composed of {3*3 conv with 64 filters, BN with
FiLM, ReLU, 2*2 maxpool}, following a global max-pooling layer.
For ResNet-12, denote Rk as a residual block consisted of three {3*3
conv with k filters, BN, LeakyReLU(0.1)}, RkA as Rk with a FiLM
layer inserted after the last BN layer, MP as a 2*2 max-pooling
layer, and DB(k, b) as a DropBlock layer with keep_rate=k and
block_size=b. The architecture of G1 is: R64-MP-DB(0.9, 1)-R160-MP-
DB(0.9, 1). The architecture of G2 is: R320A-MP-DB(0.9, 5)-R640A-
MP-DB(0.9, 5), with a global average pooling layer. For ResNet-18,
denote Rk as a residual block consisted of two {3*3 conv with k
filters, BN, ReLU}, RkA as Rk with a FiLM layer inserted after the
last BN layer. The architecture of G1 is: {3*3 conv with k filters,
BN, ReLU}-R64-R64-R128-R128. The architecture of G2 is: R256A-
R256A-R512A-R512A, with a global average pooling layer. For WRN-
28-10, denote Rk as a residual block consisted of two {BN, ReLU,
3*3 conv with k filters} with a dropout layer inserted between the
two blocks, RkA as Rk with a FiLM layer inserted after the last BN
layer. The architecture of G1 is: {3*3 conv with k filters}-R16-R16-
R16-R16-R160-R160-R160-R160. The architecture of G2 is: R320-
R320A-R320-R320A-R640-R640A-R640-R640A-BN, with a global av-
erage pooling layer.

2.2 Pre-training Strategy of Main Experiments
Following Ye et al. [9], we utilize the same pre-training strategy
to obtain initial weights of the backbones. The backbone is first
appended with a softmax layer and then trained to correctly classify
all the classes in training class split of the dataset using cross-entropy

Table 3: Classification accuracy on different values of D.

Backbone
Length of DND D

100 500 1000 2000 3000
Conv-4 74.07 74.60 74.79 75.11 74.78
ResNet-12 85.47 85.62 85.91 86.03 85.82
ResNet-18 85.65 85.74 85.89 86.32 86.10

loss. In this stage, we utilize random crop, color jittering, and random
flip to augment the training images. After training for 300 epochs,
we validate the few-shot classification performance of the model
on the validation split of dataset after each epoch. In validation, we
randomly sample 200 1-shot N-way few-shot tasks, where each task
contains one support sample and 15 queries per class for evaluation.
Here N is the number of classes in validation class split of dataset.
A nearest neighbor classifier is utilized to measure the accuracy. We
choose the weights of backbone with the best few-shot classification
performance on validation set. Then the weights are used to initialize
the backbone G1 and G2. In meta-training, the weights are optimized
together with the whole model.

2.3 Details of Ablation on DenseNet Backbone
We use the same network architecture of DenseNet-121 as in Sim-
pleShot [8]. We train the backbone with data augmentation for 90
epochs from scratch using the SGD optimizer to minimize the cross-
entropy loss on base classes. The learning rate is set to 0.1 and the
batch size is set to 256. On MiniImageNet, we scale the learning
rate by 0.1 at epoch 45 and 66 respectively. On TieredImageNet, we
scale the learning rate by 0.1 after every 30 epochs. In meta-training,
the whole model is meta-trained for 200 epochs, with each epoch
including 100 tasks. We use 600 randomly sampled tasks on valida-
tion set to choose the best model. During evaluation, the model is
tested over 10000 randomly sampled tasks on testing set. The values
of hyper-parameters are set as the same in the main experiments.

2.4 Details of Ablation with CNAPS and
Simple-CNAPS

Following [3, 5], we use ResNet-18 pre-trained on ImageNet as
backbone. In meta-training, we train the whole model for totally
110000 randomly sampled tasks, with 16 tasks per batch. We use

Submission ID: 956. 2024-04-11 20:00. Page 2 of 1–3.
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Adam optimizer with learning rate of 0.0005. We validate the model
every 1000 tasks with 200 randomly sampled tasks to choose the
best model. During evaluation, we use 600 tasks to measure the
classification accuracy, following Bateni et al. [3].

3 ADDITIONAL EXPERIMENTS
3.1 Selection of Hyper-parameters
We explore the impacts of hyper-parameter T , D, and γ on classi-
fication performance. The experiments are conducted under 5-shot
5-way on MiniImageNet. Table 1 lists the classification accuracy
with different values of T . It is observed that increasing T can lead to
performance gains on all three models. Our intuition is that increas-
ing the value of T can take stronger impact to model via accumulated
long-term reward. Table 3 lists the classification accuracy with dif-
ferent values of D. It can be seen that with the increase of D, the
model obtains better performance. While the value of D reaches
3000, the classification performance degrades. Our intuition is that
larger values of D make DND store past associations on a longer
time span to help the model learn generalizable patterns. But too
larger values of D can introduce much redundancy of associations,
leading to performance degradation. Table 2 lists the classification
accuracy with different values of γ. It can be seen that the best value
of γ is around 0.9. A proper value of γ is able to put an appropriate
penalty on uncertainty of future rewards, but too much or less values
can weaken the impact. According to the results, we set the value of
T , D, and γ as 5, 2000, and 0.9, respectively.

3.2 Visualization
We plot the curves of validation accuracy among 2-step RMO-PN
and 5-step RMO-PN (denoted as “2-step PN” and “5-step PN”,
respectively) with Conv-4 backbone across 2000 training epochs
in Figure 1. The experiments are conducted under 5-shot 5-way
with each epoch including 10 meta-tasks. For a fair comparison,
we augment ProtoNet with averaging to obtain task state and a
linear layer to learn the parameters 𝛾 and 𝛽 (denoted as “Baseline
PN”), which has similar quantity of learnable parameters with ours.
It can be seen that the variance of the curve of “5-step PN” is
observably lower comparing to “2-step PN” and “Baseline PN”.
“2-step PN” and “5-step PN” also have a faster convergence rate
than “Baseline PN”. This suggests that our strategy does contribute
on meta-training stability via exploring stable meta-optimization
patterns with differentiable RL.
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