29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

Supplementary Materials:
Exploring Stable Meta-optimization Patterns via Differentiable
Reinforcement Learning for Few-shot Classification

Anonymous Authors

1 DETAILS OF CLASSIFIERS

We leverage three popular non-parametric classifiers in our approach:
ProtoNet[7], DSN[6], and MetaOptNet[4]. In the following, we de-
scribe the details of each classifier. We omit time step ¢ for simplicity.

ProtoNet[7]' predicts the probability distribution directly on
the instance embeddings. Class prototypes are first computed via
averaging support samples in each class:

Pe= D,)
(xi,y1) €Se
where S; denotes samples from class c. Then the probability distri-
bution of a query sample x4 is computed as:
exp(~d(ex,s pe))
o exp(—d(ex, per))’

pyg=clxq) =)
q q Z

where d(-) denotes a distance function (e.g., Euclidean distance or

cosine distance) between the query sample and the prototype. We

use cosine distance in the model RMO-PN. The reward r is defined

as:

1
"= g 2 0eP0a = e xg) 3)

DSNI[6]? predicts the probability distribution with the subspace
projection distance. For class ¢, a new set of samples are first com-
puted as:

Sz:‘ = [exm —Po " sCxex T Pc] > 4
where p, denotes the prototype of class ¢ calculated with Equation 1.
Then a class-specific projection matrix P is calculated via truncated
singular value decomposition on S.. The distance from a query
sample x4 to its projection onto P is calculated as:

dc(xq) =- - PCPZ)(exq = Pc) ||2’ (%)

where I denotes the identity matrix. The probability distribution of
the query x4 is defined as:

eXp(dc(Xq))
(yg=c|xq) = =————F—. (6)
Pa =0 = 5 exp(de (xq))
The distance between two subspaces P; and P; is defined as:
8% (P, Pj) =|| P;P] —P;PT ||%
=2n-2| PP;|%.)

To obtain more discriminative subspaces, we need to maximize
52(P;, P;), which is equal to minimize || Pl.TPj ||%. The reward r is
defined as:

1
"= S 2 10eP (g = %9 —A;j BRI ®

Uhttps://github.com/orobix/Prototypical-Networks- for- Few- shot- Learning- Py Torch
Zhtps://github.com/chrysts/dsn_fewshot

Submission ID: 956. 2024-04-11 20:00. Page 1 of 1-3.

The value of A is set to 0.03. For 1-shot case, we generate a support
image for each class by data augmentation via flipping the support
image following Simon et al.[6].

MetaOptNet[4]3 predicts the probability distribution with convex
base learners. Lee et al.[4] utilizes a multi-class Support Vector
Machine (SVM) as the learner. A N-class SVM can be expressed as
0= {wc}}c\[: 1- The optimization problem of ¢ can be formulated as:

1
0 = argmin min — E | we |2 +C E £,
{wep {e} 25 ;

s.t.

Wy,

i

ey, —We-ex, > 1-08(yi,c)—¢, Vic 9)

where i € {1,--- ,NK} and c € {1,---,N}, C is the regularization
item and &(-) denotes the Kronecker delta function. Denote

we(a®) =) afex,, Ve (10)

1

the dual formulation of the objective in Equation 9 can be expressed
as:

1) Vi
max —-— || we(a) ||° + al’,
{a%} 2 Zc: =
S.t.

a?i <C,

Zag =0, Vi (11)

c

a;i <0, Ve#yi,

This is a Quadratic Program (QP) over the dual variables {ac}jcvzl.

Following Lee et al.[4], we use the GPU-based differentiable QP
solver QPTH [1] to solve Equation 11. The gradients of 0, 8p, and
6 can be computed via applying the implicit function theorem on
the KKT conditions, provided by Barratt [2]. The reward r is defined
as:

r=wy, - €x, —logZeXp(wc~exq). (12)
c

The value of C is set to 0.1. The maximum iteration number of the
QP solver is set to 5. For RMO-MON, we use the feature maps
before the last global pooling layer of the backbone to calculate the
reward, following Lee ef al.[4]. The dimension of the feature maps
used for classification is 1600 and 16000 for Conv-4 and ResNet-12,
respectively. The feature map is globally averaging pooled before
encoding the task state.

3htps://github.com/kjunelee/MetaOptNet

60

96

98

99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115

116

https://github.com/orobix/Prototypical-Networks-for-Few-shot-Learning-PyTorch
https://github.com/chrysts/dsn_fewshot
https://github.com/kjunelee/MetaOptNet

117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141

=

142
143
144
145
146
147
148
149
150
151
152
153

155
156

158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174

ACM MM, 2024, Melbourne, Australia

Anonymous Authors

Table 1: Classification accuracy and 95% confidence interval on different values of T.

Number of time step T

Backbone Model) i 3 3 7 3 3
PN 71258016 73.18:0.16 74.33:0.16 74.84:0.16 74.97:0.16 75.1120.16 74.94%0.16
Conv-4 DSN 71.96£0.18 73.16£0.17 74.43+0.17 7539+0.17 7598017 7632016 76.91%0.16
MON | 6943017 71.66£017 7291017 73.62¢0.17 74212017 74.64+0.18 74.49+0.18
PN 80.81%0.14 83.48+0.14 84.54%0.14 85.59+0.15 86.01x0.15 86.03x0.15 86.67+0.15
ResNet-12 DSN 81.36:0.19 84.17:0.18 85.26:0.19 85.8410.18 86.33:0.19 86.69+0.15 86.41+0.15
MON | 80.46+0.17 82.72+0.17 84.19+0.18 84.72+0.18 85.26+0.18 85.5240.15 85.65+0.15
ResNet-18 PN 82.19+0.14 84.52+0.15 85.73+0.15 85.61+0.15 85.92+0.15 86.32+0.15 86.12+0.15
DSN 82.60+0.17 84.89+0.15 86.19+0.15 86.84+0.15 87.35+0.15 87.540.16 87.13%0.15

Table 2: Classification accuracy on different values of y.

Discount factor y
Backbone 0.1 05 038 0.9 0.99
Conv-4 73.79 74.45 74.76 75.11 74.83
ResNet-12 85.01 85.25 85.94 86.03 85.21
ResNet-18 85.05 85.84 86.26 86.32 85.67

2 IMPLEMENTATION DETAILS
2.1 Backbone Architecture

For Conv-4, the network G contains two convolution blocks, where
each block is composed of {3*3 conv with 64 filters, BN, ReLU,
2*2 maxpool}, and the network Gy contains two convolution blocks,
where each block is composed of {3*3 conv with 64 filters, BN with
FiLM, ReLU, 2*#2 maxpool}, following a global max-pooling layer.
For ResNet-12, denote Rk as a residual block consisted of three {3*3
conv with k filters, BN, LeakyReLU(0.1)}, RKA as Rk with a FiLM
layer inserted after the last BN layer, MP as a 2*2 max-pooling
layer, and DB(k,b) as a DropBlock layer with keep_rate=k and
block_size=b. The architecture of G; is: R64-MP-DB(9.9, 1)-R160-MP-
DB(0.9, 1). The architecture of G2 is: R320A-MP-DB(0.9, 5)-R640A-
MP-DB(9.9, 5), with a global average pooling layer. For ResNet-18,
denote Rk as a residual block consisted of two {3*3 conv with k
filters, BN, ReL U}, RKA as Rk with a FiLM layer inserted after the
last BN layer. The architecture of Gi is: {3*3 conv with k filters,
BN, ReLLU}-R64-R64-R128-R128. The architecture of Gy is: R256A-
R256A-R512A-R512A, with a global average pooling layer. For WRN-
28-10, denote Rk as a residual block consisted of two { BN, ReL.U,
3*3 conv with k filters} with a dropout layer inserted between the
two blocks, RkA as Rk with a FILM layer inserted after the last BN
layer. The architecture of Gy is: {3*3 conv with k filters}-R16-R16-
R16-R16-R160-R160-R160-R160. The architecture of Gy is: R320-
R320A-R320-R320A-R640-R640A-R640-R640A-BN, with a global av-
erage pooling layer.

2.2 Pre-training Strategy of Main Experiments

Following Ye et al. [9], we utilize the same pre-training strategy
to obtain initial weights of the backbones. The backbone is first
appended with a softmax layer and then trained to correctly classify
all the classes in training class split of the dataset using cross-entropy

Table 3: Classification accuracy on different values of D.

Length of DND D
Backbone 100 500 1000 2000 3000
Conv-4 7407 7460 7479 75.11 7478
ResNet-12 | 8547 8562 8591 8603 85.82
ResNet-18 | 8565 8574 8580 8632 86.10

loss. In this stage, we utilize random crop, color jittering, and random
flip to augment the training images. After training for 300 epochs,
we validate the few-shot classification performance of the model
on the validation split of dataset after each epoch. In validation, we
randomly sample 200 1-shot N-way few-shot tasks, where each task
contains one support sample and 15 queries per class for evaluation.
Here N is the number of classes in validation class split of dataset.
A nearest neighbor classifier is utilized to measure the accuracy. We
choose the weights of backbone with the best few-shot classification
performance on validation set. Then the weights are used to initialize
the backbone G; and Gy. In meta-training, the weights are optimized
together with the whole model.

2.3 Details of Ablation on DenseNet Backbone

We use the same network architecture of DenseNet-121 as in Sim-
pleShot [8]. We train the backbone with data augmentation for 90
epochs from scratch using the SGD optimizer to minimize the cross-
entropy loss on base classes. The learning rate is set to 0.1 and the
batch size is set to 256. On MinilmageNet, we scale the learning
rate by 0.1 at epoch 45 and 66 respectively. On TieredImageNet, we
scale the learning rate by 0.1 after every 30 epochs. In meta-training,
the whole model is meta-trained for 200 epochs, with each epoch
including 100 tasks. We use 600 randomly sampled tasks on valida-
tion set to choose the best model. During evaluation, the model is
tested over 10000 randomly sampled tasks on testing set. The values
of hyper-parameters are set as the same in the main experiments.

2.4 Details of Ablation with CNAPS and
Simple-CNAPS
Following [3, 5], we use ResNet-18 pre-trained on ImageNet as
backbone. In meta-training, we train the whole model for totally
110000 randomly sampled tasks, with 16 tasks per batch. We use
Submission ID: 956. 2024-04-11 20:00. Page 2 of 1-3.

175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232

233
234
235
236
237
238
239
240
241
242
243

279
280
281
282
283
284
285
286
287
288
289
290

Supplementary Materials:

Exploring Stable Meta-optimization Patterns via Differentiable Reinforcement Learning for Few-shot Classification

Adam optimizer with learning rate of 0.0005. We validate the model
every 1000 tasks with 200 randomly sampled tasks to choose the
best model. During evaluation, we use 600 tasks to measure the
classification accuracy, following Bateni et al. [3].

3 ADDITIONAL EXPERIMENTS
3.1 Selection of Hyper-parameters

We explore the impacts of hyper-parameter T, D, and y on classi-
fication performance. The experiments are conducted under 5-shot
5-way on MinilmageNet. Table 1 lists the classification accuracy
with different values of T. It is observed that increasing T can lead to
performance gains on all three models. Our intuition is that increas-
ing the value of T can take stronger impact to model via accumulated
long-term reward. Table 3 lists the classification accuracy with dif-
ferent values of D. It can be seen that with the increase of D, the
model obtains better performance. While the value of D reaches
3000, the classification performance degrades. Our intuition is that
larger values of D make DND store past associations on a longer
time span to help the model learn generalizable patterns. But too
larger values of D can introduce much redundancy of associations,
leading to performance degradation. Table 2 lists the classification
accuracy with different values of y. It can be seen that the best value
of y is around 0.9. A proper value of y is able to put an appropriate
penalty on uncertainty of future rewards, but too much or less values
can weaken the impact. According to the results, we set the value of
T, D, and y as 5, 2000, and 0.9, respectively.

3.2 Visualization

We plot the curves of validation accuracy among 2-step RMO-PN
and 5-step RMO-PN (denoted as “2-step PN” and “5-step PN”,
respectively) with Conv-4 backbone across 2000 training epochs
in Figure 1. The experiments are conducted under 5-shot 5-way
with each epoch including 10 meta-tasks. For a fair comparison,
we augment ProtoNet with averaging to obtain task state and a
linear layer to learn the parameters y and § (denoted as “Baseline
PN”), which has similar quantity of learnable parameters with ours.
It can be seen that the variance of the curve of “S-step PN is
observably lower comparing to ‘“2-step PN” and “Baseline PN”.
“2-step PN and “5-step PN also have a faster convergence rate
than “Baseline PN”. This suggests that our strategy does contribute
on meta-training stability via exploring stable meta-optimization
patterns with differentiable RL.

REFERENCES

[1] Brandon Amos and J Zico Kolter. 2017. Optnet: Differentiable optimization as a
layer in neural networks. In ICML. 136-145.

[2] Shane Barratt. 2018. On the differentiability of the solution to convex optimization
problems. (2018). arXiv preprint arXiv:1804.05098.

[3] Peyman Bateni, Raghav Goyal, Vaden Masrani, Frank Wood, and Leonid Sigal.

2020. Improved few-shot visual classification. In CVPR. 14493-14502.

Kwonjoon Lee, Subhransu Maji, Avinash Ravichandran, and Stefano Soatto. 2019.

Meta-learning with differentiable convex optimization. In CVPR. 10657-10665.

[5] James Requeima, Jonathan Gordon, John Bronskill, Sebastian Nowozin, and

Richard E Turner. 2019. Fast and flexible multi-task classification using conditional

neural adaptive processes. In NeurlPS, Vol. 32.

Christian Simon, Piotr Koniusz, Richard Nock, and Mehrtash Harandi. 2020. Adap-

tive subspaces for few-shot learning. In CVPR. 4136-4145.

Jake Snell, Kevin Swersky, and Richard Zemel. 2017. Prototypical networks for

few-shot learning. In NeurIPS, Vol. 30.

Submission ID: 956. 2024-04-11 20:00. Page 3 of 1-3.

[4

[6

[7

ACM MM, 2024, Melbourne, Australia

Accuracy on MinilmageNet

Tk ey T Y A g i L AU AT T
0.701
>
o
o
3 0.651
(S}
(o}
<
c
o
S
3
= 0.60
>
0.551
—— 5-step PN
—— 2-step PN
—— Baseline PN
0 250 500 750 1000 1250 1500 1750 2000
Training Epoch
Accuracy on TieredlmageNet
0.75 1
\‘ 4‘
0.701 |
>
19
© 0.65 -
]
|9
19
<
C
© 0.60+
=
©
o
©
Z 0551
0.50 1
—— 5-step PN
—— 2-step PN
—— Baseline PN
0.45 A

0 250 500 750 1000 1250 1500 1750 2000
Training Epoch

Figure 1: The classification accuracies of RMO-PN on validation
set against ProtoNet.

[8] Yan Wang, Wei-Lun Chao, Kilian Q Weinberger, and Laurens van der Maaten.
2019. Simpleshot: Revisiting nearest-neighbor classification for few-shot learning.

(2019). arXiv preprint arXiv:1911.04623.
[9] Han-Jia Ye, Hexiang Hu, De-Chuan Zhan, and Fei Sha. 2020. Few-shot learning
via embedding adaptation with set-to-set functions. In CVPR. 8808-8817.

292
293
294
295
296
297
298

339

	1 Details of Classifiers
	2 Implementation Details
	2.1 Backbone Architecture
	2.2 Pre-training Strategy of Main Experiments
	2.3 Details of Ablation on DenseNet Backbone
	2.4 Details of Ablation with CNAPS and Simple-CNAPS

	3 Additional Experiments
	3.1 Selection of Hyper-parameters
	3.2 Visualization

	References

