
Unp
ub

lis
he

d work
ing

dra
ft.

Not
for

dis
tri

bu
tio

n.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Supplementary Materials:
Exploring Stable Meta-optimization Patterns via Differentiable

Reinforcement Learning for Few-shot Classification
Anonymous Authors

1 DETAILS OF CLASSIFIERS
We leverage three popular non-parametric classifiers in our approach:
ProtoNet[7], DSN[6], and MetaOptNet[4]. In the following, we de-
scribe the details of each classifier. We omit time step 𝑡 for simplicity.

ProtoNet[7]1 predicts the probability distribution directly on
the instance embeddings. Class prototypes are first computed via
averaging support samples in each class:

p𝑐 =
1
K

∑︁
(x𝑖 ,y𝑖 ) ∈S𝑐

ex𝑖 , (1)

where S𝑐 denotes samples from class 𝑐. Then the probability distri-
bution of a query sample x𝑞 is computed as:

𝑝 (y𝑞 = 𝑐 | x𝑞) =
exp(−𝑑 (ex𝑞 , p𝑐 ))∑
𝑐′ exp(−𝑑 (ex𝑞 , p𝑐′ ))

, (2)

where 𝑑 (·) denotes a distance function (e.g., Euclidean distance or
cosine distance) between the query sample and the prototype. We
use cosine distance in the model RMO-PN. The reward 𝑟 is defined
as:

𝑟 =
1

NM

∑︁
𝑐

log𝑝 (y𝑞 = 𝑐 | x𝑞). (3)

DSN[6]2 predicts the probability distribution with the subspace
projection distance. For class 𝑐, a new set of samples are first com-
puted as:

S̃𝑐 =
[
ex𝑐,1 − p𝑐 , · · · , ex𝑐,K − p𝑐

]
, (4)

where p𝑐 denotes the prototype of class 𝑐 calculated with Equation 1.
Then a class-specific projection matrix P𝑐 is calculated via truncated
singular value decomposition on S̃𝑐 . The distance from a query
sample x𝑞 to its projection onto P𝑐 is calculated as:

𝑑𝑐 (x𝑞) = − ∥ (𝐼 − P𝑐P⊤𝑐 ) (ex𝑞 − p𝑐 ) ∥2, (5)

where 𝐼 denotes the identity matrix. The probability distribution of
the query x𝑞 is defined as:

𝑝 (y𝑞 = 𝑐 | x𝑞) =
exp(𝑑𝑐 (x𝑞))∑
𝑐′ exp(𝑑𝑐′ (x𝑞))

. (6)

The distance between two subspaces P𝑖 and P𝑗 is defined as:

𝛿2 (P𝑖 , P𝑗 ) =∥ P𝑖P⊤𝑖 − P𝑗P⊤𝑗 ∥2𝐹
= 2𝑛 − 2 ∥ P⊤𝑖 P𝑗 ∥

2
𝐹 . (7)

To obtain more discriminative subspaces, we need to maximize
𝛿2 (P𝑖 , P𝑗 ), which is equal to minimize ∥ P⊤

𝑖
P𝑗 ∥2𝐹 . The reward 𝑟 is

defined as:

𝑟 =
1

NM

∑︁
𝑐

log 𝑝 (y𝑞 = 𝑐 | x𝑞) − 𝜆
∑︁
𝑖≠𝑗

∥ P⊤𝑖 P𝑗 ∥
2
𝐹 . (8)

1https://github.com/orobix/Prototypical-Networks-for-Few-shot-Learning-PyTorch
2https://github.com/chrysts/dsn_fewshot

The value of 𝜆 is set to 0.03. For 1-shot case, we generate a support
image for each class by data augmentation via flipping the support
image following Simon et al.[6].

MetaOptNet[4]3 predicts the probability distribution with convex
base learners. Lee et al.[4] utilizes a multi-class Support Vector
Machine (SVM) as the learner. A N -class SVM can be expressed as
𝜃 = {w𝑐 }N𝑐=1. The optimization problem of 𝜃 can be formulated as:

𝜃 = argmin
{w𝑐 }

min
{𝜀𝑖 }

1
2

∑︁
𝑐

∥ w𝑐 ∥2 +𝐶
∑︁
𝑖

𝜀𝑖 ,

s.t.

wy𝑖 · ex𝑖 −w𝑐 · ex𝑖 ⩾ 1 − 𝛿 (y𝑖 , 𝑐) − 𝜀𝑖 , ∀𝑖, 𝑐 (9)

where 𝑖 ∈ {1, · · · ,NK} and 𝑐 ∈ {1, · · · ,N }, 𝐶 is the regularization
item and 𝛿 (·) denotes the Kronecker delta function. Denote

w𝑐 (a𝑐 ) =
∑︁
𝑖

𝑎𝑐𝑖 ex𝑖 , ∀𝑐 (10)

the dual formulation of the objective in Equation 9 can be expressed
as:

max
{a𝑐 }

−1
2

∑︁
𝑐

∥ w𝑐 (a𝑐 ) ∥2 +
∑︁
𝑖

𝑎
y𝑖
𝑖
,

s.t.

𝑎
y𝑖
𝑖
⩽ 𝐶, 𝑎𝑐𝑖 ⩽ 0, ∀𝑐 ≠ y𝑖 ,∑︁

𝑐

𝑎𝑐𝑖 = 0, ∀𝑖 . (11)

This is a Quadratic Program (QP) over the dual variables {a𝑐 }N𝑐=1.
Following Lee et al.[4], we use the GPU-based differentiable QP
solver QPTH [1] to solve Equation 11. The gradients of 𝜃G, 𝜃𝑝 , and
𝜃𝑔 can be computed via applying the implicit function theorem on
the KKT conditions, provided by Barratt [2]. The reward 𝑟 is defined
as:

𝑟 = wy𝑞 · ex𝑞 − log
∑︁
𝑐

exp(w𝑐 · ex𝑞 ) . (12)

The value of 𝐶 is set to 0.1. The maximum iteration number of the
QP solver is set to 5. For RMO-MON, we use the feature maps
before the last global pooling layer of the backbone to calculate the
reward, following Lee et al.[4]. The dimension of the feature maps
used for classification is 1600 and 16000 for Conv-4 and ResNet-12,
respectively. The feature map is globally averaging pooled before
encoding the task state.

3https://github.com/kjunelee/MetaOptNet

Submission ID: 956. 2024-04-11 20:00. Page 1 of 1–3.

https://github.com/orobix/Prototypical-Networks-for-Few-shot-Learning-PyTorch
https://github.com/chrysts/dsn_fewshot
https://github.com/kjunelee/MetaOptNet


Unp
ub

lis
he

d work
ing

dra
ft.

Not
for

dis
tri

bu
tio

n.

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ACM MM, 2024, Melbourne, Australia Anonymous Authors

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

Table 1: Classification accuracy and 95% confidence interval on different values of T .

Backbone Model
Number of time step T

0 1 2 3 4 5 6

Conv-4
PN 71.25±0.16 73.18±0.16 74.33±0.16 74.84±0.16 74.97±0.16 75.11±0.16 74.94±0.16

DSN 71.96±0.18 73.16±0.17 74.43±0.17 75.39±0.17 75.98±0.17 76.32±0.16 76.91±0.16

MON 69.43±0.17 71.66±0.17 72.91±0.17 73.62±0.17 74.21±0.17 74.64±0.18 74.49±0.18

ResNet-12
PN 80.81±0.14 83.48±0.14 84.54±0.14 85.59±0.15 86.01±0.15 86.03±0.15 86.67±0.15

DSN 81.36±0.19 84.17±0.18 85.26±0.19 85.84±0.18 86.33±0.19 86.69±0.15 86.41±0.15

MON 80.46±0.17 82.72±0.17 84.19±0.18 84.72±0.18 85.26±0.18 85.52±0.15 85.65±0.15

ResNet-18
PN 82.19±0.14 84.52±0.15 85.73±0.15 85.61±0.15 85.92±0.15 86.32±0.15 86.12±0.15

DSN 82.60±0.17 84.89±0.15 86.19±0.15 86.84±0.15 87.35±0.15 87.54±0.16 87.13±0.15

Table 2: Classification accuracy on different values of γ.

Backbone
Discount factor γ

0.1 0.5 0.8 0.9 0.99
Conv-4 73.79 74.45 74.76 75.11 74.83
ResNet-12 85.01 85.25 85.94 86.03 85.21
ResNet-18 85.05 85.84 86.26 86.32 85.67

2 IMPLEMENTATION DETAILS
2.1 Backbone Architecture
For Conv-4, the network G1 contains two convolution blocks, where
each block is composed of {3*3 conv with 64 filters, BN, ReLU,
2*2 maxpool}, and the network G2 contains two convolution blocks,
where each block is composed of {3*3 conv with 64 filters, BN with
FiLM, ReLU, 2*2 maxpool}, following a global max-pooling layer.
For ResNet-12, denote Rk as a residual block consisted of three {3*3
conv with k filters, BN, LeakyReLU(0.1)}, RkA as Rk with a FiLM
layer inserted after the last BN layer, MP as a 2*2 max-pooling
layer, and DB(k, b) as a DropBlock layer with keep_rate=k and
block_size=b. The architecture of G1 is: R64-MP-DB(0.9, 1)-R160-MP-
DB(0.9, 1). The architecture of G2 is: R320A-MP-DB(0.9, 5)-R640A-
MP-DB(0.9, 5), with a global average pooling layer. For ResNet-18,
denote Rk as a residual block consisted of two {3*3 conv with k
filters, BN, ReLU}, RkA as Rk with a FiLM layer inserted after the
last BN layer. The architecture of G1 is: {3*3 conv with k filters,
BN, ReLU}-R64-R64-R128-R128. The architecture of G2 is: R256A-
R256A-R512A-R512A, with a global average pooling layer. For WRN-
28-10, denote Rk as a residual block consisted of two {BN, ReLU,
3*3 conv with k filters} with a dropout layer inserted between the
two blocks, RkA as Rk with a FiLM layer inserted after the last BN
layer. The architecture of G1 is: {3*3 conv with k filters}-R16-R16-
R16-R16-R160-R160-R160-R160. The architecture of G2 is: R320-
R320A-R320-R320A-R640-R640A-R640-R640A-BN, with a global av-
erage pooling layer.

2.2 Pre-training Strategy of Main Experiments
Following Ye et al. [9], we utilize the same pre-training strategy
to obtain initial weights of the backbones. The backbone is first
appended with a softmax layer and then trained to correctly classify
all the classes in training class split of the dataset using cross-entropy

Table 3: Classification accuracy on different values of D.

Backbone
Length of DND D

100 500 1000 2000 3000
Conv-4 74.07 74.60 74.79 75.11 74.78
ResNet-12 85.47 85.62 85.91 86.03 85.82
ResNet-18 85.65 85.74 85.89 86.32 86.10

loss. In this stage, we utilize random crop, color jittering, and random
flip to augment the training images. After training for 300 epochs,
we validate the few-shot classification performance of the model
on the validation split of dataset after each epoch. In validation, we
randomly sample 200 1-shot N-way few-shot tasks, where each task
contains one support sample and 15 queries per class for evaluation.
Here N is the number of classes in validation class split of dataset.
A nearest neighbor classifier is utilized to measure the accuracy. We
choose the weights of backbone with the best few-shot classification
performance on validation set. Then the weights are used to initialize
the backbone G1 and G2. In meta-training, the weights are optimized
together with the whole model.

2.3 Details of Ablation on DenseNet Backbone
We use the same network architecture of DenseNet-121 as in Sim-
pleShot [8]. We train the backbone with data augmentation for 90
epochs from scratch using the SGD optimizer to minimize the cross-
entropy loss on base classes. The learning rate is set to 0.1 and the
batch size is set to 256. On MiniImageNet, we scale the learning
rate by 0.1 at epoch 45 and 66 respectively. On TieredImageNet, we
scale the learning rate by 0.1 after every 30 epochs. In meta-training,
the whole model is meta-trained for 200 epochs, with each epoch
including 100 tasks. We use 600 randomly sampled tasks on valida-
tion set to choose the best model. During evaluation, the model is
tested over 10000 randomly sampled tasks on testing set. The values
of hyper-parameters are set as the same in the main experiments.

2.4 Details of Ablation with CNAPS and
Simple-CNAPS

Following [3, 5], we use ResNet-18 pre-trained on ImageNet as
backbone. In meta-training, we train the whole model for totally
110000 randomly sampled tasks, with 16 tasks per batch. We use

Submission ID: 956. 2024-04-11 20:00. Page 2 of 1–3.



Unp
ub

lis
he

d work
ing

dra
ft.

Not
for

dis
tri

bu
tio

n.

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Supplementary Materials:
Exploring Stable Meta-optimization Patterns via Differentiable Reinforcement Learning for Few-shot Classification ACM MM, 2024, Melbourne, Australia

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Adam optimizer with learning rate of 0.0005. We validate the model
every 1000 tasks with 200 randomly sampled tasks to choose the
best model. During evaluation, we use 600 tasks to measure the
classification accuracy, following Bateni et al. [3].

3 ADDITIONAL EXPERIMENTS
3.1 Selection of Hyper-parameters
We explore the impacts of hyper-parameter T , D, and γ on classi-
fication performance. The experiments are conducted under 5-shot
5-way on MiniImageNet. Table 1 lists the classification accuracy
with different values of T . It is observed that increasing T can lead to
performance gains on all three models. Our intuition is that increas-
ing the value of T can take stronger impact to model via accumulated
long-term reward. Table 3 lists the classification accuracy with dif-
ferent values of D. It can be seen that with the increase of D, the
model obtains better performance. While the value of D reaches
3000, the classification performance degrades. Our intuition is that
larger values of D make DND store past associations on a longer
time span to help the model learn generalizable patterns. But too
larger values of D can introduce much redundancy of associations,
leading to performance degradation. Table 2 lists the classification
accuracy with different values of γ. It can be seen that the best value
of γ is around 0.9. A proper value of γ is able to put an appropriate
penalty on uncertainty of future rewards, but too much or less values
can weaken the impact. According to the results, we set the value of
T , D, and γ as 5, 2000, and 0.9, respectively.

3.2 Visualization
We plot the curves of validation accuracy among 2-step RMO-PN
and 5-step RMO-PN (denoted as “2-step PN” and “5-step PN”,
respectively) with Conv-4 backbone across 2000 training epochs
in Figure 1. The experiments are conducted under 5-shot 5-way
with each epoch including 10 meta-tasks. For a fair comparison,
we augment ProtoNet with averaging to obtain task state and a
linear layer to learn the parameters 𝛾 and 𝛽 (denoted as “Baseline
PN”), which has similar quantity of learnable parameters with ours.
It can be seen that the variance of the curve of “5-step PN” is
observably lower comparing to “2-step PN” and “Baseline PN”.
“2-step PN” and “5-step PN” also have a faster convergence rate
than “Baseline PN”. This suggests that our strategy does contribute
on meta-training stability via exploring stable meta-optimization
patterns with differentiable RL.

REFERENCES
[1] Brandon Amos and J Zico Kolter. 2017. Optnet: Differentiable optimization as a

layer in neural networks. In ICML. 136–145.
[2] Shane Barratt. 2018. On the differentiability of the solution to convex optimization

problems. (2018). arXiv preprint arXiv:1804.05098.
[3] Peyman Bateni, Raghav Goyal, Vaden Masrani, Frank Wood, and Leonid Sigal.

2020. Improved few-shot visual classification. In CVPR. 14493–14502.
[4] Kwonjoon Lee, Subhransu Maji, Avinash Ravichandran, and Stefano Soatto. 2019.

Meta-learning with differentiable convex optimization. In CVPR. 10657–10665.
[5] James Requeima, Jonathan Gordon, John Bronskill, Sebastian Nowozin, and

Richard E Turner. 2019. Fast and flexible multi-task classification using conditional
neural adaptive processes. In NeurIPS, Vol. 32.

[6] Christian Simon, Piotr Koniusz, Richard Nock, and Mehrtash Harandi. 2020. Adap-
tive subspaces for few-shot learning. In CVPR. 4136–4145.

[7] Jake Snell, Kevin Swersky, and Richard Zemel. 2017. Prototypical networks for
few-shot learning. In NeurIPS, Vol. 30.

0 250 500 750 1000 1250 1500 1750 2000
Training Epoch

0.55

0.60

0.65

0.70

Va
lid

at
io

n 
Ac

cu
ra

cy

Accuracy on MiniImageNet

5-step PN
2-step PN
Baseline PN

0 250 500 750 1000 1250 1500 1750 2000
Training Epoch

0.45

0.50

0.55

0.60

0.65

0.70

0.75

Va
lid

at
io

n 
Ac

cu
ra

cy
Accuracy on TieredImageNet

5-step PN
2-step PN
Baseline PN

Figure 1: The classification accuracies of RMO-PN on validation
set against ProtoNet.

[8] Yan Wang, Wei-Lun Chao, Kilian Q Weinberger, and Laurens van der Maaten.
2019. Simpleshot: Revisiting nearest-neighbor classification for few-shot learning.
(2019). arXiv preprint arXiv:1911.04623.

[9] Han-Jia Ye, Hexiang Hu, De-Chuan Zhan, and Fei Sha. 2020. Few-shot learning
via embedding adaptation with set-to-set functions. In CVPR. 8808–8817.

Submission ID: 956. 2024-04-11 20:00. Page 3 of 1–3.


	1 Details of Classifiers
	2 Implementation Details
	2.1 Backbone Architecture
	2.2 Pre-training Strategy of Main Experiments
	2.3 Details of Ablation on DenseNet Backbone
	2.4 Details of Ablation with CNAPS and Simple-CNAPS

	3 Additional Experiments
	3.1 Selection of Hyper-parameters
	3.2 Visualization

	References

