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A SAFE SPOT SEARCH ALGORITHM

A.1 PROOF OF LEMMA 1

Since z, € Be(zs), we have

Uzs,c(x0)) < sup U(xq,c(x,)) = h(xs) < —1og(0.5). (1)

Let C(x) be the softmax probability of . Equation (1)) implies C(zs)c(z,) > 0.5, i.e., c(zs) =
¢(x,). Finally, we have

h(zs) = (s, c(zo)) + S;lup Uzq,c(xs))

= Uzs, c(20)) + sup £(za, () . e(ws) = (o))
< 2sup £(zq, c(2,)) (. l(ws, c(w0)) < supg, £(2q, c(0)))
= 2h(zs).

O

B COMPUTING UPDATE GRADIENT WITH SECOND-ORDER DERIVATIVES

B.1 PROOF OF LEMMA 2

It is enough to compute the Jacobian of ﬁ By the quotient rule, we have
gll2
Q( g ) _lgllz- H—=g-(Vallgl2)”
9z \llgll2 lgll3
H - (Ve T
_ g ( ||29H2) ) 2)
lgll2 lgll3
Now, we compute V. ||g|2. Since ||g]|3 = (g, g), we have
2llgllz - Vellglla = Valg, ) = 2H - g. €)

Plugging Equation (3) into Equation (2)), we have
9 ( g ) H g (Vallgll2)"
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since H is symmetric, and it completes the proof. [
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Figure 1: The norm of update gradient at each iteration during safe spot search with the first-order
approximation and with the exact computation using second-order derivatives in the CIFAR-10 test
set. The approximate gradient update finds a safe spot for the image, while the exact gradient update
does not.

B.2 PROOF OF PROPOSITION 1

T
Note that P = I — (L) ( J ) is a projection map onto a hyperplane whose normal vector is

lgllz/ \llgll2
ﬁ. Since a projection map is a contraction map, we have
2
T T H T
Haf :H(z+a.<z_< g >< g )) ) a (- By Lemma 2)
ligllz/ \llgll2 lgll2 2
HT T\ T
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gll2 Hgllz 2
T\ T
= |lall, + «- H( < > ( ) ) llall (.- H is symmetric)
: HgH ligllz/ \ligll2 2
= |lall, + a- ol H lally (. P is a contraction map)
which completes the proof. O

B.3 EXPERIMENTS ON SECOND-ORDER DERIVATIVES

Here, we evaluate the performance of the safe spot search with exact gradient computation using
second-order derivatives, compared to the approximate gradient update. We experiment on the
naturally trained CIFAR-10 model. We consider a /5 threat model with e = 0.5. The experimental
settings are the same as in Section 4.1, except that we randomly sample 1,000 images from the test
set. We tune the learning rate 3 within a range of {0.01, 0.005,0.001, 0.0005} and choose the best
B = 0.005. Table[I|shows the result. We observe that using second-order derivatives rather degrades
the performance of the safe spot search.

To examine whether the exact gradient computation exhibits exploding gradient behavior, we also
measure the /5 norm of update gradient at each step for both the methods. Figure[I|shows that the
safe spot search with the exact gradient computation results in unstable update gradients, in contrast
to the approximate gradient update.
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Method Clean accuracy  Adyv. accuracy
First-order 96.3% 62.0%
Second-order 95.8% 55.2%

Table 1: Classification accuracy under 5 threat with e = 0.5 on a naturally trained CIFAR-10 model.

C IMPLEMENTATION DETAILS

We fix MAXITER = 100, T = 20, & = €/4 on all settings. We set N = 5 on naturally trained
classifiers to stabilize the safe spot update procedure, while N = 1 is sufficient for robust classifiers.
On /, threat model, we transform x,-centered J-ball space to R™ via tanh transformation and use
RMSProp optimizer (Hinton et al.,[2012) to update safe spots. On /5 threat model, we use projected
gradient descent method as default.

C.1 EXPERIMENTS ON CIFAR-10 AND IMAGENET

CIFAR-10 We train the models for 200 epochs with an initial learning rate of 0.1, decayed with a
factor of 0.1 on epoch 100 and 150. We use SGD optimizer with weight decay 2E — 4, momentum
0.9, and batch size 128. The ADV model (Madry et al.,[2017) is trained with 10-step PGD with a
step size of €/4.

We take full 10,000 images from CIFAR-10 test set and generate safe spots. On ¢, threat model
with ¢ = 8/255, we set the learning rate 5 = 0.1, and on ¢ threat model with ¢ = 3.0, we set
B = 0.001. Each $ is chosen by tuning between range of {1.0,0.5,0.1,0.05,0.01,0.001} and
{0.1,0.01,0.001,0.0001, 0.00001}.

ImageNet We resize and crop the test images to 224 x 224. For the natural and ADV models, we
use pre-trained models provided by Pytorch and [Engstrom et al.|(2019). We additionally train Fast
model from |Wong et al.|(2020), a naturally trained model applying the same training techniques, and
the safe spot-aware model S-FGSM-+Fast. For these Fast-type models, we follow the hyper-parameter
settings from the original paper, except that we omit phase 3 and double the number of epochs in
phase 2 since phase 3 uses 288 x 288 sized images. On S-FGSM+Fast, we tune the step size of
S-FGSM to ¢/2.

We randomly sample 10,000 images from the test set and generate safe spots. We consider two £,
threat models with € € {4/255,8/255}, and one ¢ threat model with € = 3.0. On the /., threat
models, /3 is set to 0.05 and 0.1 respectively, where each 3 is chosen by tuning between range of
{1.0,0.5,0.1,0.05,0.01}. On the ¢5 threat model, we set 3 to 0.01 for the natural model and 0.1 for
the ADV model. We tuned 3 between range of {0.1,0.01,0.001, 0.0001, 0.00001}.

C.2 EXPERIMENTS ON RANDOMIZED SMOOTHING

We use the same network structures from Section 4.1 and 4.2. The Gaussian model is trained with
Gaussian noise drawn from N(0, 21). For the Gaussian model on ImageNet, we use the pre-trained
model provided by [Cohen et al.|(2019).

To evaluate the empirical robustness of smoothed classifiers, we set the noise level o to 0.05 for
the natural model, and 0.1 for the Gaussian model on CIFAR-10. For ImageNet, o is set to 0.12
for the natural model and 0.25 for the Gaussian model. The PGD settings are the same as in the
experiments for base classifiers, except that we set random starts N = 1 on both the classifiers. We
take 5 Gaussian samples for safe image generation and 50 Gaussian samples for evaluation.

To measure the certified robustness of smoothed classifiers, we set noise levels to be larger than those
used in evaluating the empirical robustness since a larger o leads to larger certified radii. We set o to
0.25 and 1.0 for the Gaussian models in CIFAR-10 and ImageNet, respectively.

For class prediction, we take 50 Gaussian samples and choose the most probable class by a majority
vote. In the case of the natural model, however, the standard accuracy can be reduced when evaluating
with randomized smoothing since it is not trained to be robust against Gaussian noise. Therefore,
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given an original image x,, we first predict the class of the image without randomized smoothing, then
create a safe spot xs from x, with the predicted class, and evaluate x; with randomized smoothing.
For certification, we take 100,000 Gaussian samples.

For CIFAR-10, the learning rate 3 is set to 0.001 for the natural model and 0.005 for the Gaussian
model. We tune the learning rate within a range of {0.01,0.005,0.001,0.0005,0.0001}. For Ima-
geNet, the learning rate f3 is set to 0.05 for the natural model and 0.1 for the Gaussian model. we
tune the learning rate within a range of {1.0,0.5,0.1,0.05,0.01}.

C.3 SAFE SPOT OUT-OF-DISTRIBUTION DETECTION HISTOGRAM

We use the S-PGD+ADV model trained with CIFAR-10 dataset and use LSUN as the out-of-
distribution dataset. For all images, we regard the prediction labels as the ground truth labels. In
the left plot, we measure the original image’s cross-entropy loss value. On the right plot, we first
generate a safe spot from an image, perturb it with a 20-step untargeted PGD attack, and then
measure the cross-entropy loss. The dotted line shows the detection threshold when the true positive
rate is set to 95%, where we treat out-of-distribution samples as positive. The histograms show
that the in-distribution examples are much more likely to have safe spots in the vicinity than the
out-of-distribution samples. In fact, the false positive rate at 95% true positive rate (FPR95), where
the lower value indicates a better separation between in-distribution and out-of-distribution samples,
is lower when using perturbed safe spots. Concretely, the detection algorithm using the original
images obtains FPR95 of 50.32% while using the perturbed safe spots obtains FPR9S5 of 32.16%.

Figure [2] shows the loss values histograms when using other out-of-distribution datasets, SVHN,
CIFAR-100, and TinyImageNet. We observe that the perturbed safe spot’s loss value is a better metric
to detect out-of-distribution samples than the original image’s loss value for all the datasets.

D MORE SAFE SPOT EVALUATIONS

D.1 IMAGENET RESULTS UNDER /5 THREAT

Table 2| shows the ImageNet results under ¢ threat model with e = 3.0. Similar to the results on the
£+ threat model, our algorithm can find safe spots for most correctly classified images for the robust
classifier.

Method
None S-FGSM S-PGD S-Full

Natural 75.63%/00.11% 75.14%/01.13% 75.63%/01.31% 75.63%/10.14%
ADV  56.73%/33.19% 56.73%/54.94% 56.73%/55.28% 56.73%/56.20%

Model

Table 2: Classification accuracy under ¢ threat with e = 3.0 on ImageNet. (clean acc./adv acc.)

D.2 CERTIFIED ROBUSTNESS

Table [3] shows the certified robustness results on the smoothed Gaussian model. We find that our
algorithm also improves the certified robustness on both the CIFAR-10 and ImageNet datasets.

Method Method
Model None S-Full Model None S-Full

Gaussian + Smoothing  82.84/55.58  84.72/77.95 Gaussian + Smoothing  47.02/12.68  52.66/27.89

Table 3: Certified robustness of randomized smoothed networks under /5 threat with ¢ = 0.5 on
CIFAR-10 (left) and with ¢ = 3.0 on ImageNet (right). (clean acc./cert acc.)
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Figure 2: Histograms for the loss values of images ¢(z,, c(x,)) (left) and the loss values of the
perturbed safe spot solution sup,.cp_(,+) £(25, ¢(2o)) (right). A safe spot-aware adversarially
trained model without fine-tuning is used as the classifier. The dotted lines are where the false positive
rate is 95%.

D.3 EXPERIMENTS WITH HIGHER PGD ITERATIONS

We additionally provide adversarial accuracy results under higher PGD iterations for all threat models
considered in Section 4.1 and 4.2. We used the same networks from the main paper for all experiments.
PGD step size was set to (5 - ¢/iterations) except for when iterations = 10, where step size was set
to (2.5 - €/iterations). For these experiments, we used 10,000 randomly selected test set images for
CIFAR-10 and ImageNet each. Figure [3|to Figure 5| show the results.
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Figure 3: Evaluation with higher PGD iterations, under (a) ¢, threat with ¢ = 8/255 and (b) {2
threat with e = 0.5 on CIFAR-10. (safe) denotes using safe spot images in place of original images.
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Figure 4: Evaluation with higher PGD iterations, under /., threat with (a) ¢ = 4/255 and (b)
e = 8/255 on ImageNet. (safe) denotes using safe spot images in place of original images. Fast-
Natural indicates the natural model trained with efficient training techniques from Fast. ADV-8 and
ADV-4 each indicate ADV models trained under e = 8/255 and € = 4/255.
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Figure 5: Evaluation with higher PGD iterations, under ¢ threat with ¢ = 3.0 on ImageNet. (safe)
denotes using safe spot images in place of original images.
D.4 EXPERIMENTS ON OTHER ATTACKS

We ran additional experiments with multiple PGD restarts as well as CW attack |Carlini & Wagner|
(2017) on CIFAR-10 under the /5 threat model and present the results below.

Method
Model None S-Full
Natural 96.0/00.5/00.0/01.4 96.0/59.0/20.3/22.5
ADV 90.3/68.2/68.1/71.2 90.3/90.0/89.3/90.0

S-FGSM+ADV 90.9/63.3/63.1/65.1 90.9/90.6/90.1/90.7
S-PGD+ADV  94.1/57.7/57.3/58.8 94.1/93.5/93.0/93.9

Table 4: Classification accuracy under /5 threat with ¢ = 0.5 on CIFAR-10. (clean acc./PGD
acc./PGD(m) acc./CW acc.)

‘PGD(m)’ denotes 500-step PGD with ten restarts, and ‘CW’ denotes CW attack with epsilon-ball
projection at the end, following the experimental protocol of [Song et al.| (2017). The Table [ results
show that our algorithm also makes images safer for different types of attacks.

E OUT-OF-DISTRIBUTION DETECTION WITH SAFE SPOTS

E.1 DATASETS

Gaussian The Gaussian noise dataset consists of 10,000 32 x 32 synthetic noise images, where
each RGB pixel value is sampled i.i.d from Gaussian distribution with mean 0.5 and unit variance.
The pixel values are clipped into the range [0, 1].

CIFAR-100 The CIFAR-100 dataset consists of 60,000 32 x 32 color images in 100 classes. There
are 50,000 training images and 10,000 test images. Although CIFAR-10 and CIFAR-100 datasets do
have some similarities, their classes are mutually exclusive.

SVHN The SVHN dataset contains color images of house numbers in 32 x 32 size. It includes
604,388 train images and 26,032 test images.
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TinyImageNet The TinylmageNet dataset is a 200-class subset of the ImageNet, where each
class has 500 training images, 50 validation images, and 50 test images. The images are resized
and cropped to 64 x 64 resolution. We downsample the images again to 32 x 32 resolution using
Torchvision library (Paszke et al.l 2019) to fit our CIFAR-10 classifiers.

LSUN The Large-scale Scene UNderstanding dataset (LSUN) is a dataset with 10 scene classes
and consists of 10,000 test images. Similar to TinyImageNet, we downsample and center-crop the
images to 32 x 32 using Torchvision library (Paszke et al., 2019).

80 Million Tiny Images (Torralba et al.,[2008) The Tiny Images consists of 79,302,017 unlabeled
images, each of which is a 32 x 32 image. Note that CIFAR-10 and CIFAR-100 are labeled subsets
of Tiny Images.

E.2 TRAINING AND EVALUATION

We use the same WRN-34-10 architecture from previous CIFAR-10 experiments. Following the
experimental protocol of Hendrycks et al.|(2019), we train natural and S-PGD+ADYV models for 100
epochs using SGD optimizer with weight decay 5E — 4, except for the cosine learning rate schedule.
Instead, we set the initial learning rate to 0.1 and decay it with a factor 0.1 on 50 and 75 epochs.
For the S-PGD+ADV model, we use 7-step {3-PGD with ¢ = 0.25 to generate a safe spot and its
adversarial example.

After training, we fine-tune the models for 10 epochs using a cosine learning rate schedule with
an initial learning rate of 0.001. We use a subset of 80 Million Tiny Images that all the images in
the CIFAR datasets are excluded as D", For the natural model, we fine-tune it with the training

objective proposed in [Hendrycks et al.|(2019), which is expressed by

minimize £ [l(zo,y;0)] +v-  E_[l(Zo,;0)].
0 (%0,y)~Din &~ Dlin

We tune ~y within a range of {0.5, 1.0, 2.0} and choose the best v = 1.0. For the S-PGD+ADV model,

we tune v and A within a range of {0.5,1.0,2.0} and set v = 1.0, A = 1.0.

For evaluation, we randomly sample 10,000 test images from the in-distribution and out-of-
distribution datasets and measure their AUROC, AUPR, and FPR95 scores. The first two metrics
summarize a method’s detection performance across multiple thresholds, where higher values are
better. FPR9S evaluates the performance on a single threshold where the true positive rate becomes
95%, and the lower value is better. We treat OOD samples as the positive class. All results are aver-
aged over 10 runs. To make safe spot search more efficient, we use /2 FGSM with € = 0.25 to solve
the inner maximization in the safe spot objective. We set § = 0.25, MAXITER = 20, and 8 = 0.0002.
For the score function, we tune 4 within a range of {0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9} and set
n=0.5.

F TRANSFERABILITY OF SAFE SPOTS

In this subsection, we examine whether the robustness of safe spots generated from one classifier
transfers when they are fed to other classifiers. Table[5]|shows safe spot transfer results for various
robust classifiers (Madry et al., |2017; |Liu et al., 2019; |He et al.| [2019; Wang & Yu, 2019; |Zhang
et al., 2019), where safe spots were generated from a certain robust classifier (source) and fed to
other classifiers (target) robustly trained with different defense techniques. The result shows that
regardless of defense methods or neural network architecture selections, at least 60% of our safe
spots are transferable. The results also show that safe spots generated from more robust classifiers
(e.g. TRADES) are more transferable to other robust classifiers. The results suggest that robust
training methods, regardless of their procedural details, force decision boundaries to align with
certain features, which is uncommon for standard training.

G SAFE SPOT EXAMPLES ON LARGER ¢

Until now, we searched for safe spots with § set equal to €. In the next experiments, we relax this
condition and search for safe spots with larger ¢ values. Since safe spots can be easily found for
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Figure 6: Adversarial accuracy of safe spots for a naturally trained ResNet-50 classifier on ImageNet
under (a) £, threat with e = 4/255 and (b) ¢5 threat with ¢ = 3.0 as d-ball increases. The dashed
line indicates the clean accuracy.

. Method . Method
S/T Defense Architecture None S-Full (transfer) S/IT Defense Architecture None S-Full (transfer)

Source  ADV WRN-34-10 86.6/49.3 86.6/84.7 Source  TRADES WRN-34-10 85.2/55.6 85.2/84.8
Adv-BNN  VGG-16  78.8/46.0 82.1/57.0 Adv-BNN  VGG-16  78.8/46.0 83.0/66.2

PNI Noise-RN-20 83.1/39.6 86.3/50.7 PNI Noise-RN-20 83.1/39.6 84.5/61.6

Target RobustDL RN-18 86.0/44.1 87.3/63.0 Target RobustDL RN-18 86.0/44.1 86.8/62.4
ADV RN-50 87.0/524 87.6/66.4 ADV WRN-34-10 86.6/49.3 85.8/67.0

TRADES WRN-34-10 85.2/55.6 86.6/67.5 ADV RN-50 87.0/52.4 85.3/73.0

Table 5: Transferability results under ¢, threat with ¢ = 8 /255 on CIFAR-10. (clean acc. / adv acc.).
Safe images from the source model are transfered to target models.

robust classifiers without increasing 4, we focus on the natural models. Figure [6] shows the results on
ImageNet using the naturally trained ResNet-50 classifier. While Figure[6a]and Figure [6b] show safe
spots can be found on most samples within £,, balls of size 10e and 5e respectively, we note that on
l setting with e = 8/255, increasing J values could not achieve the similar performance. These
results suggest that as the strength of adversarial attack passes a certain threshold, safe spots may
disappear on natural classifiers.

For robust classifiers, we increase € along with § to visualize safe spots that are more safe. The
results in robust classifiers are shown in Figure [/} Interestingly, we observe that safe spots for robust
classifiers emphasize certain human perceptible features of original images, such as mountain peak
covered with snow, fur color of the fox, and field of grass. Also, the safe spots tend to render colors
much more vivid, and the object boundaries crisper. The results suggest that safe spot algorithms
could be applied to image synthesis tasks such as style transfer, super-resolution, or colorization,
aligned with findings of [Santurkar et al.| (2019) on robust classifiers.
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Figure 7: Examples of safe spots for robust classifiers on ImageNet in /., and /5 setting. To
encourage finding more safe spots, e is increased to match §. Inferred labels for /., are ‘alp’, ‘killer
whale’, ‘lawn mower’, and ‘chest’, and inferred labels for /5 are ‘red fox’, ‘gorilla’, ‘harvester’, and
‘saxophone’.
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