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1. Introduction
Machine learning has revolutionized the study of

crystalline materials for enabling rapid predictions
and discovery. However, most AI-for-Materials re-
search to date has focused on ideal crystals, whereas
real-world materials inevitably contain defects that
play a critical role in modern functional technolo-
gies. The defects break geometric symmetry and
increase interaction complexity, posing particular
challenges for traditional ML models. Addressing
these challenges requires models that are able to
capture sparse defect-driven effects in crystals while
maintaining adaptability and precision. Here, we
introduce Defect-Informed Equivariant Graph Neu-
ral Network (DefiNet), a model specifically designed
to accurately capture defect-related interactions and
geometric configurations in point-defect structures.
Trained on 14,866 defect structures, DefiNet achieves
highly accurate structural predictions in a single
step, avoiding the time-consuming iterative pro-
cesses in modern ML relaxation models and possi-
ble error accumulation from iteration. We further
validates DefiNet accuracy by using density func-
tional theory (DFT) relaxation on DefiNet-predicted
structures. For most defect structures, regardless
of defect complexity or system size, only 3 ionic
steps are required to reach the DFT-level ground
state. Finally, comparisons with scanning transmis-
sion electron microscopy (STEM) images confirm
DefiNet scalability and extrapolation beyond point
defects, positioning it as a groundbreaking tool for
defect-focused materials research.
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Fig. 1: Overview of crystal defect structure relax-
ation methods. (a) Relaxation using DFT with
multi-step iterations. (b) Relaxation using ML po-
tentials with multi-step iterations. (c) Relaxation
using our DefiNet with a single step. (d) The
traditional specific graph representation for de-
fect structures. (e) Our proposed universal defect
graph representation.
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Fig. 2: Visualization of DefiNet-predicted defect
structures and comparisons with STEM images.
(a) Example of an MoS2 crystal structure con-
taining both substitutional and vacancy defects,
alongside the corresponding DFT-relaxed and
DefiNet-predicted structures. (b) STEM image
of MoS2 featuring a line defect, overlaid with
the DefiNet-relaxed structure. Copyright 2016
American Chemical Society. (c) STEM image of
WSe2 with mixed SVSe and DVSe defects, overlaid
with the DefiNet-relaxed structure. (d) STEM
image of WSe2 with a three-fold symmetrical
trefoil defect, overlaid with the DefiNet-relaxed
structure. Defect sites are highlighted with white
dotted lines for clarity.
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