
Appendix – Double Machine Learning Density Estimation for
Local Treatment Effects with Instruments

A IV Settings and LTE

In this work, we consider the IV setting represented by the causal graph G in Fig. 1. It is common in
the literature to define IV assumptions in terms of conditional independences among counterfactuals
[2, 60, 47, 64], as given in the following:
Assumption A.1 (IV assumptions).

1. Exclusion restriction: Yx,z = Yx almost surely for all z, x.

2. Independence: Z ⊥⊥ (Yx, Xz)|W for all z, x.

3. Instruments relevance: P (XZ=1 = 1|W ) ̸= P (XZ=0 = 1|W ) almost surely.

We show that the causal graph in Fig. 1 captures the set of IV assumptions in Assumption A.1.
Lemma A.1. The causal graph G in Fig. 1 satisfies the set of IV assumptions in Assumption A.1.

Proof. We will show the first item. We have Yx,z = Yx,z,Wx
= Yx,Wx

= Yx, where the first equality
is due to the composition property [50, Property 1 (pp. 229)], the second due to exclusion restrictions
[50, Eq.(7.25)], and the third by composition.

We will show the second. We have (Zw ⊥⊥ {W,Xz,w, Yx,w}) by independence restrictions [50,
Eq.(7.26)]. Then by the weak union graphoid axiom (Refer [50, pp.11]), (Zw ⊥⊥ {Xz,w, Yx,w}|W ),
which leads to (Z ⊥⊥ (Yx, Xz)|W ) by composition.

We will show the third. By (Z ⊥⊥ Xz|W ), P (xz|w) = P (xz|w, z) = P (x|w, z), where the second
equality is by composition. The third assumption is reflected by that X is not independent of Z given
W in G.

Definition A.1 (Local treatment effect (LTE) density). The local treatment effect (LTE) density is
the density of outcome Y under treatment X = x among compliers (i.e., XZ=1 = 1 and XZ=0 = 0)
denoted by p(yx|XZ=1 = 1, XZ=0 = 0). We will use C = (XZ=1 = 1 ∧XZ=0 = 0) to denote the
event that a unit is a complier and write the LTE density as p(yx|C).

The LTE density p(yx|C) is known to be identifiable under monotonicity in the IV settings [31, 2]. In
the notations of this paper, we present the identification results as follows, where for a given constant
a and a variable X , xa denotes the event X = a.
Lemma A.2. In the causal graph G in Fig. 1, p(yx|w,C) is identifiable under monotonicity and is
given by

p(yx|w,C) =
p(y|x, zx, w)P (x|zx, w)− p(y|w, x, z1−x)P (x|z1−x, w)

P (x1|z1, w)− P (x1|z0, w)
.

Theorem A.1. In the causal graph G in Fig. 1, the LTE density p(yx|C) is identifiable under
monotonicity and is given by

p(yx|C) =
∫
W [p(y|x, zx, w)P (x|zx, w)− p(y|w, x, z1−x)P (x|z1−x, w)]P (w) d[w]∫

W [P (x1|z1, w)− P (x1|z0, w)]P (w) d[w]

≡
EP
[
p(y|x, zx,W )P (x|zx,W )− p(y|x, z1−x,W )P (x|z1−x,W )

]
EP [P (x1|z1,W )− P (x1|z0,W )]

.

B Proofs

Notations We will use Pϵ ≡ P (1 + ϵg), where g is a mean zero bounded random function, to
denote a parametric submodel for the probability measure P . Also, we note that the causal effect
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ψ[f(Y )] in Eq. (3) can be written as ψY X [f(Y )]/ψX , where ψX and ψY X [f(Y )] are defined in
Eqs. (4,7).

We provide a formal definition of a function class called Donsker class, which is used throughout the
proof.

Definition S.1 (Donsker Class [63, page. 269]). Let Gn(f) ≡
√
n(1/n)

∑n
i=1 f(v(i))−EP [f(V)]

denote the empirical process evaluated at a measurable function f . A class of measurable functions
F is called (P -)Donsker class if the sequence of processes {Gn(f); f ∈ F} converges in distribution
to a limit process G in the space ℓ∞(F), where G is the process such that, for all ϵ > 0, there is a
compact set S such that P (G ∈ S) > 1− ϵ.

Lemma S.1 ([63, Thm.5.31],[39, Lemma 3]). Let ϕ(V; θ, η) denote a vector estimating function
for target parameter θ ∈ Rp and nuisance functions η ∈ H for some function space H . Suppose
EP [ϕ(V; θ0, η0)] = 0 (where θ0, η0 denote true parameters) and define the estimator θ̂ as a solution

to ED

[
ϕ(V; θ̂, η̂)

]
= oP (n

−1/2), where η is estimated on a separate independent sample. Assume

1. {ϕ(V; θ, η) : θ ∈ Rp} is Donsker for any fixed η.

2. θ̂ − θ0 = oP (1) and ∥η̂ − η∥2 = oP (1).

3. The map θ 7→ EP [ϕ(V; θ, η)] is differentiable at θ0 uniformly in η, with non-singular

matrix M(θ0, η) ≡ (∂/∂θ)|θ0EP [ϕ(V; θ, η)], where M(θ0, η̂)
P→M ≡M(θ0, η0).

Then,

θ̂ − θ0 = −M−1ED [ϕ(V; θ0, η0)]−M−1EP [ϕ(V; θ0, η̂)] + oP (n
−1/2).

B.1 Proofs for Sec. 3

Lemma S.2 ([28, Proof of Thm. 1]). For a target estimand γ ≡
EP
[
EP
[
f(Y )|x1,W

]
− EP

[
f(Y )|x0,W

]]
for binary X ∈ {0, 1} and f(·) < ∞, an

influence function ϕγ is given by

ϕγ ≡
1x1(X)− 1x0(X)

P (X|W )
(f(Y )− EP [f(Y )|X,W ]) +

(
EP
[
f(Y )|x1,W

]
− EP

[
f(Y )|x0,W

])
− γ.

Lemma S.3. An influence function for ψ[f(Y )] for f(Y ) <∞ is given by the mapping function in
Eq. (9), which is

ϕ(η = {π, ξ, θ}, ψ)[f(Y )] ≡ 1

ψX
(VY X({π, θ})[f(Y )]− ψ[f(Y )]VX({π, ξ})) .

Proof. We note that the estimand is given as ψ[f(Y )] = ψY X [f(Y )]/ψX , where ψX and
ψY X [f(Y )] are defined in Eqs. (4,7).

By Lemma S.2, influence functions corresponding to ψX and ψY X [f(Y )], denoted ϕX and
ϕY X [f(Y )] respectively, are given as

ϕX ≡
1z1(Z)− 1z0(Z)

πZ(W )
(1x1(X)− ξx1 (Z,W )) +

(
ξx1

(
z1,W

)
− ξx1

(
z0,W

))
− ψX

(B.1)

ϕY X [f(Y )] ≡ 1zx(Z)− 1z1−x(Z)

πZ(W )
(f(Y )1x(X)− θ(x, Z,W )[f(Y )])

+
(
θ(x, zx,W )[f(Y )]− θ(x, z1−x,W )[f(Y )]

)
− ψY X [f(Y )]. (B.2)
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Then, by applying the chain rule for the Gateaux derivative (since the influence function is a Gateaux
derivative), an influence function for ψ[f(Y )] = ψY X [f(Y )]/ψX is given as

1

ψX
(ϕY X [f(Y )]− ψ[f(Y )]ϕX)

=
1

ψX
(
VY X [f(Y )]− ψY X [f(Y )]− ψ[f(Y )]

(
VX − ψX

))
=

1

ψX
{VY X [f(Y )]− ψ[f(Y )]VX} − ψ[f(Y )] + ψ[f(Y )]

=
1

ψX
(VY X [f(Y )]− ψ[f(Y )]VX) .

Lemma B.1 (Restated Lemma 1). Let m(ψ′;ψh) be the score defined in Eq. (6). Then, an influence
function for EP [m(ψ′;ψh)], denoted ϕm, is given by

ϕm(η = {π, ξ, θ}, ψ) ≡ ϕ(η, ψ)[Kh,y(Y )] (B.3)

where ϕ is given as

ϕ(η = {π, ξ, θ}, ψ)[f(Y )] ≡ 1

ψX
(VY X({π, θ})[f(Y )]− ψ[f(Y )]VX({π, ξ}))

Proof. Let ϕX denote the influence function corresponding to ψX , given in Eq. (B.1). This implies
that EP [VX ] = ψX . Then, equipped with the true nuisance for VX ,

EP [m(ψ′;ψh)] = EP
[

1

ψX
(ψh − ψ′)VX

]
=

1

ψX
(ψh − ψ′)EP [VX ] = ψh − ψ′.

Then, the influence function for EP [m(ψ′;ψh)] coincides with the influence function for ψh, which
is given by Eq. (B.3) based on Lemma S.3.

Lemma B.2 (Restated Lemma 2). Let m(ψ′;ψh) be the score function in Eq. (6), and ϕm(η =
{π, ξ, θ}, ψh) be the influence function for EP [m(ψ′;ψh)] given in Eq. (10). Then, a Neyman
orthogonal score for ψh is given as φ(ψ′; η = {π, ξ, θ}) ≡ m(ψ′;ψh) + ϕm(η, ψ); Specifically,

φ(ψ′; η = {π, ξ, θ}) = 1

ψX
(VY X({π, θ})[Kh,y(Y )]− ψ′VX({π, ξ})) . (B.4)

Proof. For a score function for ψ, denoted m(·), and the influence function of EP [m(·)], denoted
ϕm(·), a Neyman orthogonal score for ψ is given asm+ϕm [14, Thm. 1]. Applying this,m(ψ′;ψh)+
ϕm(η, ψh) is a Neyman orthogonal score. Specifically,

φ(ψ′; η = {π, ξ, θ})
= m(ψ′;ψh) + ϕm(η, ψh)

=
1

ψX
(ψ[Kh,y(Y )]− ψ′)VX +

1

ψX
(VY X({π, θ})[Kh,y(Y )]− ψ[Kh,y(Y )]VX({π, ξ}))

=
1

ψX
(VY X(η = {π, θ})[Kh,y(Y )]− ψ′VX({π, ξ})) .

Lemma B.3 (Restated Lemma 3). For any fixed y ∈ Y , suppose the estimators for nuisances are
consistent; i.e., ∥ν − ν̂∥ = oP (1) for ν ∈ η = {π, ξ, θ} for all (w, z, x). Suppose h < ∞, and
nhd →∞ as n→∞. Then,

ψ̂h(y)− ψh(y) = OP

(
1/
√
nhd +Rk2 + 1/

√
n
)
,

where

Rk2 ≡
∑
z

∥π̂z − πz∥
{∥∥∥θ̂z − θz∥∥∥+ ∥∥∥ξ̂z − ξz∥∥∥} , (B.5)

where πz ≡ πz(W ), ξz ≡ ξx(z,W ) and θz ≡ θ(x, z,W )[Kh,y(Y )].
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Proof. We note that the condition nhd → ∞ means that h = O(n−α) for some α < 1/d. h < ∞
implies that such h is either constant or decreasing function over n. Combining, the condition implies
h = O(n−α) for α ∈ [0, 1/d).

We recall that ψX , ψY X are defined in Eq. (4.7) and VX ,VY X are defined in Eq. (5,8).

Now, we will prove this Lemma through the master result in Lemma S.1. The KLTE estimator ψ̂h in
Eq. (12) satisfies ED

[
φ(ψ̂h, η̂)

]
= oP (n

−1/2), because

ED

[
φ(ψ̂h, η̂)

]
=

1

ψX(ξ̂)

(
ED

[
VY X({π̂, θ̂})[Kh,y(Y )]

]
− ψ̂hED

[
VX({π̂, ξ̂})

])

=
1

ψX(ξ̂)

ED

[
VY X({π̂, θ̂})[Kh,y(Y )]

]
−

ED

[
VY X({π̂, θ̂})[Kh,y(Y )]

]
ED

[
VX({π̂, ξ̂})

] ED

[
VX({π̂, ξ̂})

]
= 0.

The Neyman orthogonal score function φ in Lemma 2 satisfies the assumptions in Lemma S.1, since
φ is a linear function of ψ when nuisances are fixed. Also, M in Lemma S.1 is given as −1, which
can be witnessed by the following:

M(ψ0, η) = (∂/∂ψ′)|ψ0

1

ψX
EP [{VY X − ψ′VX}] = −

1

ψX
EP [VX ] ,

and, with the true nuisance, M =M(ψ0, η0) = −1 since EP [VX ] = ψX .

Then, by the result of Lemma S.1,

ψ̂h − ψh = ED [ϕm(ψh, η)] + EP [ϕm(ψh, η̂)] + oP (n
−1/2).

We will first study the convergence behavior of ED [ϕm(ψh, η)]. We will show that
EP [ED [ϕm(ψh, η)]] = O

(
1/
√
nhd

)
. Then, the

√
nhd-consistency of ED [ϕm(ψh, η)] (i.e.,

ED [ϕm(ψh, η)] = OP (1/
√
nhd)) can be shown immediately by the Markov inequality. This

implies that ED [ϕm(ψh, η)] converges if nhd →∞.

Let ϕm(Vi, ψ, η) denote the influence function evaluated at Vi ∈ D.

Consider the following:

EP [|ED [ϕm(ψh, η)]|] ≤
√

EP
[
(ED [ϕm(ψh, η)])

2
]

=
√

varP (ED [ϕm(ψh, η)])

=
√
(1/n)EP [ϕ2m(ψh, η)],

where the first inequality is by Cauchy-Schwarz inequality, the second and third equality are from the
iid assumption and EP [ϕm] = 0.

We note that

ϕm =
1

ψX
(VY X [Kh,y(Y )]− ψhVX)

=
1

ψX
(VY X [Kh,y(Y )]− ψhVX) +

ψY X [Kh,y(Y )]

ψX
− ψX

ψX
ψh︸ ︷︷ ︸

=0

=
1

ψX
({
VY X [Kh,y(Y )]− ψY X [Kh,y(Y )]

}
− ψh

{
VX − ψX

})
=

1

ψX
(ϕY X [Kh,y(Y )]− ψhϕX) .
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Next,

EP
[
ϕ2m(ψh, η)

]
= EP

[
1

ψ2
X

{ϕXY [Kh,y(Y )]− ψhϕX}2
]

=
1

ψ2
X

EP
[
{ϕXY [Kh,y(Y )]− ψhϕX}2

]
=

1

ψ2
X

EP
[
ϕ2XY [Kh,y(Y )] + ψ2

hϕ
2
X − 2ϕXY [Kh,y(Y )]ϕXψh

]
.

We first analyze EP
[
ϕ2XY [Kh,y(Y )]

]
= varP [ϕXY [Kh,y(Y )]]. By [28, Thm. 1],

varP [ϕXY [Kh,y(Y )]] = EP

[
VarP (Kh,y(Y )1x(X)|zx,W )

πzx(W )
+

VarP
(
Kh,y(Y )1x(X)|z1−x,W

)
πz1−x(W )

]
+ EP

[{
EP [Kh,y(Y )1x(X)|zx,W ]− EP

[
Kh,y(Y )1x(X)|z1−x,W

]
− ψY X [Kh,y]

}2]
.

First,

EP [VarP (Kh,y(Y )1x(X)|zx,W )] ≤ varP (Kh,y(Y )1x(X)|zx)
≤ EP

[
K2
h,y(Y )1x(X)|zx

]
≤ EP

[
K2
h,y(Y )|x, zx

]
=

∫
Y
K2
h,y(y

′)p(y|x, zx) d[y′]

≤
∫
Y
K2
h,y(y

′) d[y′]

=
1

h2d

∫
Y
K2

(
y′ − y
h

)
d[y′]

=
1

hd

∫
Y
K2 (u) d[u]

= O
(
1/hd

)
. (B.6)

The 1st equality holds by Law of total variance, the 2nd and 3rd by the standard algebra, the 5th by
the assumption that p(y|x, zx) is bounded, and the remaining parts from the change of a variable in
the integral computation.

Also,

EP
[{

EP [Kh,y(Y )1x(X)|zx,W ]− EP
[
Kh,y(Y )1x(X)|z1−x,W

]
− ψY X [Kh,y]

}2]
= varP

({
EP [Kh,y(Y )1x(X)|zx,W ]− EP

[
Kh,y(Y )1x(X)|z1−x,W

]})
≤ 2 sup

z∈{0,1}
varP (EP [Kh,y(Y )1x(X)|z,W ])

= O(1/hd),

where the first (in)equality is by the definition of the variance, the second by the linear combination
of the variance, and the last by Eq. (B.6). Therefore, varP [ϕXY [Kh,y(Y )]] = O(1/hd).
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Next, we will study EP
[
ψ2
hϕ

2
X

]
. We first note that EP

[
ψ2
hϕ

2
X

]
= ψ2

hEP
[
ϕ2X
]
= O(ψ2

h). Therefore,
it suffices to analyze O

(
ψ2
h

)
.

ψ2
h =

(∫
Y
Kh,y(y

′)ψ(y′) d[y′]

)2

≤
∫
Y
K2
h,y(y

′)ψ2(y′) d[y′]

≤
∫
Y
K2
h,y(y

′) d[y′]

=

∫
Y

1

h2d
K2

(
y′ − y
h

)
d[y′]

=

∫
U

1

hd
K2 (u) d[u]

= O(1/hd),

where the 2nd line inequality by the Cauchy-Schwarz inequality, the 3rd by the assumption that ψ(y)
is bounded, the fifth by the change of variables.

Finally, consider the term−2EP [ϕY X [Kh,y(Y )] · ϕX · ψh]. Note, EP [ϕY X [Kh,y(Y )] · ϕX · ψh] =
ψh · EP [ϕY X [Kh,y(Y )] · ϕX ]. We first consider EP [ϕY X [Kh,y(Y )] · ϕX ]:

EP [ϕY X [Kh,y(Y )] · ϕX ] = EP [ϕY X [Kh,y(Y )] · ϕX ]

≤
√
EP [ϕ2Y X [Kh,y(Y )]] · EP [ϕ2X ]

= O

(√
EP [ϕ2Y X [Kh,y(Y )]]

)
= O

(
h−d/2

)
,

where the last equality holds by Eq. (B.6).

Next, consider ψh:

ψh ≡
∫
Y
Kh,y(y

′)ψ(y′) d[y′]

=

∫
Y

1

h
K

(
(y′ − y)

h

)
ψ(y′) d[y′]

=

∫
U
K(u)ψ(hu+ y) d[u]

=

∫
U
K(u)

(
ψ(y) + huψ(1)(y) + h2u2ψ(2)(y) +O(h2u2)

)
d[u]

= C +O(h2),

for some constant C, The 4th line equality holds by the differentiability assumption of ψ, and the last
equality holds since ψ(y) is bounded and twice differentiable. Combining, we can rewrite the term
−2EP [ϕY X [Kh,y(Y )] · ϕX · ψh] as O(h−d/2 + h−d/2 · h2).
Therefore,

EP
[
ϕ2m(ψh, η)

]
= O(h−d + h−d/2 + h−d/2h2).

With h = O(n−α) with α ∈ [0, 1/d), we can rewrite

EP
[
ϕ2m(ψh, η)

]
= O(h−d + h−d/2 + h−d/2h2) = O

(
nαd

)
= O(h−d).

This shows that

EP [ED [ϕm(ψh, η)]] ≤
√

(1/n)EP [ϕ2m(ψh, η)] = O
(
1/
√
nhd

)
.
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We now consider EP [ϕm(ψh, η̂)].

EP [ϕm(ψh, η̂)]

= EP
[

1

ψ̂X

(
V̂Y X [Kh,y(Y )]− ψ[Kh,y(Y )]V̂X

)]
= EP

[
1

ψX

(
V̂Y X [Kh,y(Y )]− ψ[Kh,y(Y )]V̂X

)
+

(
1

ψ̂X
− 1

ψX

)(
V̂Y X [Kh,y(Y )]− ψ[Kh,y(Y )]V̂X

)]
.

(B.7)

For further analysis, we consider EP
[
V̂Y X [Kh,y(Y )]− VY X [Kh,y(Y )]

]
. First, define

VY X,(x,z)(π, θ)[f(Y )] ≡ 1z(Z)

πZ(W )
(f(Y )1x(X)− θ(x, Z,W )[f(Y )]) + θ(x, z,W )[f(Y )].

Then, VY X [f(Y )] = VY X,(x,zx)[f(Y )] − VY X,(x,z1−x)[f(Y )]. Now, consider

EP
[
V̂Y X,(x,z)[Kh,y(Y )]− VY X,(x,z)[Kh,y(Y )]

]
. We have

EP
[
VY X,(x,z)(π̂, θ̂)[f(Y )]− VY X,(x,z)(π, θ)[f(Y )]

]
= EP

[
1z(Z)

π̂Z(W )

(
f(Y )1x(X)− θ̂(x, Z,W )[f(Y )]

)
+ θ̂(x, z,W )[f(Y )]− θ(x, z,W )[f(Y )]

]
= EP

[
1z(Z)

π̂Z(W )

(
θ(x, Z,W )[f(Y )]− θ̂(x, Z,W )[f(Y )]

)
+
{
θ̂(x, z,W )[f(Y )]− θ(x, z,W )[f(Y )]

}]
= EP

[
πz(W )

π̂z(W )

(
θ(x, z,W )[f(Y )]− θ̂(x, z,W )[f(Y )]

)
+
{
θ̂(x, z,W )[f(Y )]− θ(x, z,W )[f(Y )]

}]
= EP

[(
θ(x, z,W )[f(Y )]− θ̂(x, z,W )[f(Y )]

)(
1− πz(W )

π̂z(W )

)]
= EP

[(
θ(x, z,W )[f(Y )]− θ̂(x, z,W )[f(Y )]

)( π̂z(W )− πz(W )

π̂z(W )

)]
= OP

(∥∥∥θ(x, z,W )[f(Y )]− θ̂(x, z,W )[f(Y )]
∥∥∥ ∥π̂z(W )− πz(W )∥

)
,

where the first and the second are by the fact that EP [f(Y )1x(X)|W,Z,X] = θ(x, Z,W )[f(Y )],
the third is by taking an expectation over Z conditioned on W , the fourth and the fifth by rearrange-
ment, and the sixth by Cauchy-Schwarz inequality and Positivity. Then,

RY X ≡ EP
[
VY X(π̂, θ̂)[f(Y )]− VY X(π, θ)[f(Y )]

]
=

∑
z∈{0,1}

OP

(∥∥∥θ(x, z,W )[f(Y )]− θ̂(x, z,W )[f(Y )]
∥∥∥ ∥π̂z(W )− πz(W )∥

)
.

Also, let

VX,x(π, ξ) ≡
1z(Z)

πZ(W )
(1x(X)− ξx(Z,W )) + ξx(z,W ).

Then, with the similar proof as above, we have

EP
[
VX,x(π̂, ξ̂)− VX,x(π, ξ)

]
= OP

(∥∥∥ξx(z,W )− ξ̂x(z,W )
∥∥∥ ∥π̂z(W )− πz(W )∥

)
,

and

EP
[
VX(π̂, ξ̂)− VX(π, ξ)

]
=

∑
z∈{0,1}

OP

(∥∥∥ξx(z,W )− ξ̂x(z,W )
∥∥∥ ∥π̂z(W )− πz(W )∥

)
.
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Recall RY X = EP
[
V̂Y X − VY X

]
and let RX ≡ EP

[
V̂X − VX

]
. Then, continuing from Eq. (B.7),

Eq. (B.7) = EP
[

1

ψX

(
ψY X +RY X −

ψY X
ψX

(ψX +RX)

)
+

(
1

ψ̂X
− 1

ψX

)(
ψY X +RY X −

ψY X
ψX

(ψX +RX)

)]
= EP

[
1

ψX
(RY X − ψRX) +

(
1

ψ̂X
− 1

ψX

)
(RY X − ψRX)

]
= OP (RY X +RX)

= OP (R
k
2),

where

Rk2 =
∑

z∈{0,1}

OP

(
∥π̂z − πz∥

{∥∥∥θ̂z − θz∥∥∥+ ∥∥∥ξ̂z − ξz∥∥∥}) .
Note the first equality is by EP

[
V̂Y X

]
= RY X + EP [VY X ] and EP

[
V̂X
]
= RX + EP [VX ], the

second by rearrangement, the third by Positivity, the fourth by the definition of RY X and RX .

Summing up, we have shown that EP [ϕm(ψh, η)] = O(1/
√
nhd) and EP [ϕm(ψh, η̂)] = OP

(
Rk2
)
.

Corollary 1 ((Restated Corol. 1)). If all nuisances {π̂, ξ̂, θ̂} for any given (w, z, x, y) converge at
rate {nhd}−1/4, then the target estimator ψ̂h(y) achieves

√
nhd-rate convergence to ψh.

Proof. This result follows immediately from Lemma 3.

Theorem B.1 (Restated Thm. 1). For any fixed y ∈ Y , suppose the estimators for nuisances are
consistent; i.e., ∥ν − ν̂∥ = oP (1) for ν ∈ η = {π, ξ, θ} for all (w, z, x). Suppose h < ∞, and
nhd →∞ as n→∞. Then

ψ̂h(y)− ψ(y) = OP

(
1/
√
nhd +Rk2 + 1/

√
n
)
+By, (B.8)

where By is defined in Eq. (14), and Rk2 is defined in Eq. (13).

Proof. This result follows immediately from Lemmas 3 and 4.

Lemma B.5 (Restated Lemma 5). The bandwidth h that minimizes the error in Eq. (15) is h =
O(n−1/(d+4)). This choice of h satisfies the assumption in Lemma. 3 that nhd →∞.

Proof. We note that the error in Eq. (15) w.r.t. h is OP (1/
√
nhd+h2). Since the function 1/

√
nhd+

h2 is convex w.r.t. h and the global minimum is at h = n−1/(d+4), the optimal h minimizing the
error is h = O(n−1/(d+4)). Then, O(nhd) = O(n4/(d+4)), implying that nhd →∞.

Corollary 2 (Restated Corol. 2). Let h = O(n−1/(d+4)). If nuisances {π̂, ξ̂, θ̂} converge at
{nhd}−1/4 rate for any (w, z, x, y), then the target estimator ψ̂h(y) achieves

√
nhd-rate convergence

to ψ.

Proof. It suffices to show that By converges at
√
nhd-rate with the choice of h as in Lemma 5, since

the rest is guaranteed by Corol. 1. We first note that By = O(h2). Since O(nhd) = O(n4/(d+4)),
we have O(1/

√
nhd) = O(n−2/(d+4)) = O(h2).

Lemma B.6 (Restated Lemma 6). Suppose Df is a f -divergence such that f(p, q) = 0 if p = q.
Then,

Df (ψ, ψ̂h) ≤
∫
Y
w(y)

(
ψ̂h(y)− ψ(y)

)
d[y],

where w(y) ≡ f ′2(ψ(y), ψ̃(y))ψ̂h(y), f ′2(p, q) ≡ (∂/∂q)f(p, q), and ψ̃h(y) ≡ tψ̂h(y)+ (1− t)ψ(y)
for some fixed t ∈ [0, 1].
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Proof. For f(p, q), by applying Taylor’s expansion, we have

f(p, q) = f(p, p) + f ′2(p, p̃)(q − p),

for some fixed p̃ ∈ [p, q]. Applying this idea,

Df (ψ, ψ̂h) =

∫
Y
f(ψ(y), ψ̂h(y))ψ̂h(y) d[y]

=

∫
Y

f(ψ(y), ψ(y))︸ ︷︷ ︸
=0

+f ′2(ψ(y), ψ̃(y))
(
ψ̂h(y)− ψ(y)

) ψ̂h(y) d[y],

=

∫
Y
w(y)

(
ψ̂h(y)− ψ(y)

)
d[y],

were the second equality holds by Taylor’s expansion on f , and the third equality by the given
assumption that f(p, q) = 0 whenever p = q.

Theorem B.2 (Restated Thm. 2). Suppose the estimators for nuisances are consistent; i.e., ∥ν − ν̂∥ =
oP (1) for ν ∈ η = {π, ξ, θ} for all (w, z, x, y). Suppose Df is a f -divergence such that f(p, q) = 0
if p = q. Suppose w(y) in Lemma 6 is finite. Then,

Df (ψ, ψ̂h) ≤ OP
(
sup
y∈Y

{
Rk2 +By

}
+ 1/

√
nhd + 1/

√
n

)
, (B.9)

where Rk2 is defined in Eq. (13) and By is defined in Eq. (14).

Proof. Under the given conditions, with Thm. 1,

Df (ψ, ψ̂h) ≤
∫
Y
w(y)

(
ψ̂h(y)− ψ(y)

)
d[y]

=

∫
Y
w(y)

(
OP

(
1/
√
nhd +Rk2 + 1/

√
n
)
+By

)
d[y]

= OP (1/
√
nhd + 1/

√
n) +

∫
Y
(w(y)OP (R

k
2) +By) d[y]

= OP (1/
√
nhd + 1/

√
n) +OP

(
sup
y∈Y

{
Rk2 +By

})
.

Corollary 3 (Restated Corol. 3). Let h = O(n−1/(d+4)). Suppose Df satisfies f(p, q) = 0 if p = q.
Suppose w(y) in Lemma 6 is finite. If nuisances {π̂, ξ̂, θ̂} converges at {nhd}−1/4 rate for any
(w, z, x, y), then Df (ψ, ψ̂h) converges to 0 at

√
nhd-rate.

Proof. This result follows immediately from Thm. 2.

B.2 Proofs for Sec. 4

We will use ψp to denote ψ as a functional for p. Let pϵ denote a parametric submodel. We will use
Sϵ to denote a score function for pϵ.
Lemma B.7 (Restated Lemma 7). An influence function for m(β;ψ) in Eq. (18), denoted ϕm, is
given by

ϕm(β; η = {π, ξ, θ}, ψ) ≡ ϕ(η, ψ)[Rf (Y ;β, ψ)], (B.10)

where ϕ(η, ψ)[·] is defined in Eq. (9), and

Rf (Y ;β, ψ) ≡ g′(Y ;β) {f ′′21(ψ(Y ), g(Y ;β))g(Y ;β) + f ′1(ψ(Y ), g(Y ;β))} ,

where g′(y;β) ≡ (∂/∂β)g(y;β), f ′1(p, q) ≡ (∂/∂p)f(p, q) and f ′′21(p, q) ≡ (∂/∂p)f ′2(p, q).
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Proof. Let ψϵ denote the estimand ψ written w.r.t. the parametric submodel pϵ = p(1 + ϵg) where g
is a bounded mean-zero random function. Let Sϵ ≡ ((∂/∂ϵ)|ϵ=0 log pϵ.

Let

m(y;β, ψ) ≡ g′(y;β) {f ′2(ψ(y), g(y;β))g(y;β) + f(ψ(y), g(y;β))} . (B.11)

Note m(β, ψ) =
∫
Y m(y;β, ψ) d[y]. Also, we note that (∂/∂ψ)m(y;β, ψ) = Rf (y;β, ψ).

Also, recall that an influence function for ψ[f(Y )] (for f(Y ) < ∞) is given as ϕ(η, ψ)[f(Y )] in
Lemma S.3. Then, by the definition of the influence function, ψ[f(Y )] satisfies the following,

(∂/∂ϵ)|ϵ=0ψϵ[f(Y )] = EP [ϕ(ψ, η)[f(Y )] · Sϵ] .

Now, we will prove that ϕm(β; η = {π, ξ, θ}, ψ) ≡ ϕ(η, ψ)[Rf (Y ;β, ψ)] is a functional satisfying

(∂/∂ϵ)|ϵ=0m(β, ψ) = EP [ϕ(ψ, η)[Rf (Y ;β, ψ)] · Sϵ] ,

then this equation implies that ϕ(η, ψ)[Rf (Y ;β, ψ)] is an influence function for the score m(β, ψ).

This can be shown as follows:

(∂/∂ϵ)|ϵ=0m(β, ψ)

= (∂/∂ϵ)|ϵ=0

∫
Y
m(y;β, ψ) d[y]

=

∫
Y
(∂/∂ϵ)|ϵ=0m(y;β, ψ) d[y]

=

∫
Y
(∂/∂ϵ)|ϵ=0ψϵ(y)(∂/∂ψ

′(y))|ψ′=ψm(y;β, ψϵ) d[y]

= (∂/∂ϵ)|ϵ=0

∫
Y
ψϵ(y)Rf (y;β, ψ) d[y]

= (∂/∂ϵ)|ϵ=0ψϵ[Rf (Y ;β, ψ)]

= EP [ϕ(ψ, η)[Rf (Y ;β, ψ)] · Sϵ] ,

where the first equality is by the definition of m, the second by the exchange of derivation/integration,
the third by the chain rule, the fourth by the fact that (∂/∂ψ)m(y;β, ψ) = Rf (y;β, ψ) and the
exchange of derivation/integration, the fifth by the definition of ψ[f(Y )] in Eq. (9), the sixth by the
definition of the influence function (i.e., the influence function for ψ[f(Y )] is a function ϕ[f(Y )]
satisfying (∂/∂ϵ)|ϵ=0ψϵ[f(Y )] = EP [ϕ[f(Y )] · Sϵ].

Lemma B.8 ((Restated Lemma 8)). A Neyman orthogonal score for estimating β, denoted φ(β′; (η =
{π, ξ, θ}, ψ)), is given by

φ(β′; (η = {π, ξ, θ}, ψ)) ≡ m(β′, ψ) + ϕm(β, η, ψ), (B.12)

where ϕm(β, η, ψ) is defined in Eq. (19).

Proof. We first note that EP [m(β′, ψ)] = m(β′, ψ), because this is not a random function. Then, the
influence function for EP [m(β′, ψ)] is given by Lemma 7. For any score function which expectation
is zero at the true parameter, its addition with the influence function is a Neyman orthogonal score
[14, Thm.1]. That is, m(β′, ψ) + ϕm(β, η, ψ) is a Neyman orthogonal score.

Theorem B.3 ((Restated Thm. 3)). Let φ(β′; (η = {π, ξ, θ}, ψ) be given in Eq. (20). Let ϕm(β, η, ψ)

be given in Eq. (19). Let β0, η0, ψ0 denote the true parameters. Let β̂ be the MLTE estimator for β
defined in Def. 3. Suppose (1) Rf (y;β, ψ) is bounded and R′

f (y;β, ψ) ≡ (∂/∂ψ)Rf (y;β, ψ) <∞;
(2) There exists a function H(y) <∞ s.t. supβ,ψmax{Rf (y;β, ψ), R′

f (y;β, ψ)} = O (H(y)); (3)
{φ(β; (η, ψ))} is Donsker w.r.t. β for the fixed η; (3) The estimators are consistent: β̂ − β0 = oP (1)
and ∥ν − ν̂∥ = oP (1) for ν ∈ {πz(w), ξx(z, w), θ(x, z, w)[H(Y )]} for all (w, z, x, y); and (4)
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EP [φ(β; (η, ψ))] is differentiable w.r.t. β at β = β0 with non-singular matrix M(β0, (η, ψ)) ≡
(∂/∂β)|β=β0

EP [φ(β; (η, ψ))] for all (η, ψ), where M(β0, (η̂, ψ̂))
P→M ≡M(β0, (η0, ψ0)). Then,

β̂ − β0 = −M−1ED [ϕm(β0; (ψ0, η0))] + oP (n
−1/2) +OP (R

m
2 ),

where

Rm2 =
∑
z

(
∥π̂z − πz∥

{∥∥∥θ̂z − θz∥∥∥+ ∥∥∥ξ̂z − ξz∥∥∥}+
∥∥∥ξ̂z − ξz∥∥∥2 + ∥∥∥θz − θ̂z∥∥∥2 + ∥∥∥ξ̂z − ξz∥∥∥∥∥∥θz − θ̂z∥∥∥) ,

where πz ≡ πz(W ), ξz ≡ ξx(z,W ), and θz ≡ θ(x, z,W )[H(Y )].

Proof. We follow the proof strategy used in [39, Lemma 1, Thm.3]. First,

β̂ − β0 = −M−1ED [φ(β0, (ψ0, η0))]−M−1EP
[
φ(β0, (ψ̂, η̂))

]
+ oP (n

−1/2)

= −M−1ED [ϕm(β0, {ψ0, η0})]−M−1EP
[
φ(β0, (ψ̂, η̂))

]
+ oP (n

−1/2), (B.13)

where the first equality holds by Lemma S.1, and the second holds since m(β0, ψ0) = 0 by the
moment condition in Eq. (18). Since ED [ϕm(β0, η0, ψ0)] converges to N(0, var(ϕ2m)) in distribution
at
√
n-rate, the only remaining term to analyze is

EP
[
φ(β0, (ψ̂, η̂)

]
= m(β0, ψ̂) + EP

[
ϕ(β0, (ψ̂, η̂))[Rf (Y ;β0, ψ̂)]

]
, (B.14)

which can be analyzed as

EP

[
ϕ(β0, (ψ̂, η̂))[Rf (Y ;β0)]

]
= EP

[
1

ψ̂X

{
V̂Y X [Rf (Y ;β0, ψ̂)]− ψ̂[Rf (Y ;β0, ψ̂)]V̂X

}]
= EP

[
1

ψ̂X

V̂Y X [Rf (Y ;β0, ψ̂)]

]
− EP

[
1

ψ̂X

ψ̂[Rf (Y ;β0, ψ̂)]V̂X

]
= EP

[
1

ψ̂X

{
π̂zx(W )

πzx(W )

{
θ(x, zx,W )[Rf (Y ;β0, ψ̂)]− θ̂(x, zx,W )[Rf (Y ;β0, ψ̂)]

}
+ θ̂(x, zx,W )Rf (Y ;β0, ψ̂)

}]
(B.15)

− EP

[
1

ψ̂X

{
π̂z1−x(W )

πz1−x(W )

{
θ(x, z1−x,W )[Rf (Y ;β0, ψ̂)]− θ̂(x, z1−x,W )[Rf (Y ;β0, ψ̂)]

}
+ θ̂(x, z1−x,W )[Rf (Y ;β0, ψ̂)]

}]
(B.16)

− EP

[
1

ψ̂X

ψ̂[Rf (Y ;β0, ψ̂)]

{
πzx(W )

π̂zx(W )

{
ξx(z

x,W )− ξ̂x(z
x,W )

}
+ ξ̂x(z

x,W )

}]
(B.17)

+ EP

[
1

ψ̂X

ψ̂[Rf (Y ;β0, ψ̂)]

{
πz1−x(W )

π̂z1−x(W )

{
ξx(z

1−x,W )− ξ̂x(z
1−x,W )

}
+ ξ̂x(z

1−x,W )

}]
, (B.18)

where

(B.15) = EP
[

1

ψ̂X
·
{(

π̂zx(W )

πzx(W )
− 1

){
θ(x, zx,W )[Rf (Y ;β0, ψ̂)]− θ̂(x, zx,W )[Rf (Y ;β0, ψ̂)]

}}]
(B.19)

+ EP
[

1

ψ̂X
θ(x, zx,W )[Rf (Y ;β0, ψ̂)]

]
(B.20)

(B.16) = −EP
[

1

ψ̂X

{(
π̂z1−x(W )

πz1−x(W )
− 1

){
θ(x, z1−x,W )[Rf (Y ;β0, ψ̂)]− θ̂(x, z1−x,W )[Rf (Y ;β0, ψ̂)]

}}]
(B.21)

− EP
[

1

ψ̂X
θ(x, z1−x,W )[Rf (Y ;β0, ψ̂)]

]
(B.22)
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(B.17) = −EP
[

1

ψ̂X
ψ̂[Rf (Y ;β0, ψ̂)]

{(
πzx(W )

π̂zx(W )
− 1

){
ξx(z

x,W )− ξ̂x(zx,W )
}}]

(B.23)

− EP
[

1

ψ̂X
ψ̂[Rf (Y ;β0, ψ̂)]ξx(z

x,W )

]
(B.24)

(B.18) = EP
[

1

ψ̂X
ψ̂[Rf (Y ;β0, ψ̂)]

{(
πz1−x(W )

π̂z1−x(W )
− 1

){
ξx(z

1−x,W )− ξ̂x(z1−x,W )
}}]

(B.25)

+ EP
[

1

ψ̂X
ψ̂[Rf (Y ;β0, ψ̂)]ξx(z

1−x,W )

]
(B.26)

First, consider the summation of (B.20,B.22,B.24,B.26):

Eq. (B.20) + Eq. (B.22) + Eq. (B.24) + Eq. (B.26)

= EP
[

1

ψ̂X

{
θ(x, zx,W )[Rf (Y ;β0, ψ̂)]− θ(x, z1−x,W )[Rf (Y ;β0, ψ̂)]

}]
− EP

[
1

ψ̂X
ψ̂[Rf (Y ;β0, ψ̂)]

{
ξx(z

x,W )− ξx(z1−x,W )
}]

= EP
[

1

ψ̂X

(
ψY X [Rf (Y ;β0, ψ̂)]− ψ̂[Rf (Y ;β0, ψ̂)] · ψX

)]
= EP

[
1

ψ̂X

(
ψY X [Rf (Y ;β0, ψ̂)]−

ψ̂Y X [[Rf (Y ;β0, ψ̂)]]

ψ̂X
· ψX

)]

= EP

[
ψX

ψ̂X

(
ψY X [Rf (Y ;β0, ψ̂)]

ψX
− ψ̂Y X [Rf (Y ;β0, ψ̂)]

ψ̂X

)]

= EP
[
ψX

ψ̂X

(
ψ[Rf (Y ;β0, ψ̂)]− ψ̂[Rf (Y ;β0, ψ̂)]

)]
.

= EP
[{

ψX

ψ̂X
− 1

}(
ψ[Rf (Y ;β0, ψ̂)]− ψ̂[Rf (Y ;β0, ψ̂)]

)]
+ EP

[(
ψ[Rf (Y ;β0, ψ̂)]− ψ̂[Rf (Y ;β0, ψ̂)]

)]
.

(B.27)

Then,

Eq. (B.14) = m(β0, ψ̂) + Sum of (B.20, B.22, B.24, B.26) + Sum of (B.19, B.21, B.23, B.25)

= m(β0, ψ̂) + EP
[(
ψ[Rf (Y ;β0, ψ̂)]− ψ̂[Rf (Y ;β0, ψ̂)]

)]
(B.28)

+ EP
[{

ψX

ψ̂X
− 1

}(
ψ[Rf (Y ;β0, ψ̂)]− ψ̂[Rf (Y ;β0, ψ̂)]

)]
+ Sum of (B.19,B.21,B.23,B.25).

(B.29)

To analyze (B.28), we recall that (∂/∂ψ)m(β0, ψ) =
∫
Y Rf (y;β0, ψ) d[y] and m(β0, ψ) = 0. Also,

by Taylor’s expansion to m(y;β, ψ) defined in Eq. (B.11),

m(y;β0, ψ) = m(y;β0, ψ̂) +Rf (y;β, ψ̂)(ψ(y)− ψ̂(y)) +R
(1)
f (y;β, ψ̃)(ψ(y)− ψ̂(y))2,

where R(1)
f is a first derivative of Rf w.r.t. ψ. This implies that

0 = m(β0, ψ) = m(β0, ψ̂) +

∫
Y
Rf (y;β, ψ̂)

(
ψ(y)− ψ̂(y)

)
d[y] +

∫
Y
R

(1)
f (y;β, ψ̃)

(
ψ(y)− ψ̂(y)

)2
d[y],

where ψ̃ is some unknown estimand within the interval [ψ, ψ̂]. We obtain

−
∫
Y
R

(1)
f (y;β, ψ̃)

(
ψ(y)− ψ̂(y)

)2
d[y] = m(β0, ψ̂) +

∫
Y
Rf (y;β, ψ̂)

(
ψ(y)− ψ̂(y)

)
d[y].
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By taking expectations for both sides,

−EP
[∫

Y
R

(1)
f (y;β, ψ̃)

(
ψ(y)− ψ̂(y)

)2
d[y]

]
= m(β0, ψ̂) + EP

[∫
Y
Rf (y;β, ψ̂)

(
ψ(y)− ψ̂(y)

)
d[y]

]
.

(B.30)

We have

−
∫
Y
R

(1)
f (y;β, ψ̃)

(
ψ(y)− ψ̂(y)

)2
d[y] = O

(∫
Y
R

(1)
f (y;β, ψ̃)

(
ψ(y)− ψ̂(y)

)2
d[y]

)
= O

(∫
Y
H(y)

(
ψ(y)− ψ̂(y)

)2
d[y]

)
= O

(∫
Y
H2(y)

(
ψ(y)− ψ̂(y)

)2
d[y]

)
= O

(∥∥∥ψ[H(Y )]− ψ̂[H(Y )]
∥∥∥2) ,

where the second equality is by the definition of H(y), the third by H(y) <∞, and the fourth by the
definition of L2 norm.

This implies that

(B.28) = −EP
[∫

Y
R

(1)
f (y;β, ψ̃)

(
ψ − ψ̂

)2
d[y]

]
= O

(∥∥∥ψ[H(Y )]− ψ̂[H(Y )]
∥∥∥2) ,

where the first equality is by Eq. (B.30) and the second equality is by the above.

Also, Sum of (B.19,B.21,B.23,B.25) in (B.29) can be written as follows:

Sum of (B.19,B.21,B.23,B.25)

=
∑

z∈{0,1}

OP

(
∥π̂z(W )− πz(W )∥

{∥∥∥θ̂(x, z,W )[Rf (Y ;β0, ψ̂)]− θ(x, z,W )[Rf (Y ;β0, ψ̂)]
∥∥∥+ ∥∥∥ξ̂x(z,W )− ξx(z,W )

∥∥∥})
=

∑
z∈{0,1}

OP

(
∥π̂z(W )− πz(W )∥

{∥∥∥θ̂(x, z,W )[H(Y )]− θ(x, z,W )[H(Y )]
∥∥∥+ ∥∥∥ξ̂x(z,W )− ξx(z,W )

∥∥∥}) .

For simplicity, we assume, for any x, z,

OP

({
ξx(z,W )− ξ̂x(z,W )

}
·
{
ξx(1− z,W )− ξ̂x(1− z,W )

})
=

∑
z∈{0,1}

OP

(∥∥∥ξx(z,W )− ξ̂x(z,W )
∥∥∥2) , and

OP

(∥∥∥ξx(z,W )− ξ̂x(z,W )
∥∥∥ ∥∥∥θ(x, 1− z,W )[H(Y )]− θ̂(x, 1− z,W )[H(Y )]

∥∥∥)
=

∑
z∈{0,1}

OP

(∥∥∥ξx(z,W )− ξ̂x(z,W )
∥∥∥∥∥∥θ(x, z,W )[H(Y )]− θ̂(x, z,W )[H(Y )]

∥∥∥) .
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The other part of Eq. (B.29) is given as

EP

[{
ψX

ψ̂X

− 1

}(
ψ[Rf (Y ;β0, ψ̂)]− ψ̂[Rf (Y ;β0, ψ̂)]

)]
= OP

(∥∥∥ψX − ψ̂X
∥∥∥∥∥∥ψ[Rf (Y ;β0, ψ̂)]− ψ̂[Rf (Y ;β0, ψ̂)]

∥∥∥)
= OP

(∥∥∥ψX − ψ̂X
∥∥∥∥∥∥∥∥ψY X [Rf (Y ;β0, ψ̂)]

ψX
− ψ̂Y X [Rf (Y ;β0, ψ̂)]

ψX
+
ψ̂Y X [Rf (Y ;β0, ψ̂)]

ψX
− ψ̂Y X [Rf (Y ;β0, ψ̂)]

ψ̂X

∥∥∥∥∥
)

= OP

(∥∥∥ψX − ψ̂X
∥∥∥(∥∥∥ψY X [Rf (Y ;β0, ψ̂)]− ψ̂Y X [Rf (Y ;β0, ψ̂)]

∥∥∥+ ∥∥∥∥ 1

ψX
− 1

ψ̂X

∥∥∥∥))
= OP

(∥∥∥ψX − ψ̂X
∥∥∥(∥∥∥ψY X [Rf (Y ;β0, ψ̂)]− ψ̂Y X [Rf (Y ;β0, ψ̂)]

∥∥∥+ ∥∥∥ψX − ψ̂X
∥∥∥))

= OP

(∥∥∥ψX − ψ̂X
∥∥∥2)+OP

(∥∥∥ψX − ψ̂X
∥∥∥∥∥∥ψY X [Rf (Y ;β0, ψ̂)]− ψ̂Y X [Rf (Y ;β0, ψ̂)]

∥∥∥)
= OP

(∥∥∥ψX − ψ̂X
∥∥∥2)+OP

(∥∥∥ψX − ψ̂X
∥∥∥ ∥∥∥ψY X [H(Y )]− ψ̂Y X [H(Y )]

∥∥∥)
=
∑
z

OP

(∥∥∥ξ̂x(z,W )− ξx(z,W )
∥∥∥2 + ∥∥∥ξ̂x(z,W )− ξx(z,W )

∥∥∥∥∥∥θ(x, z,W )[H(Y )]− θ̂(x, z,W )[H(Y )]
∥∥∥) ,

where the equalities can be shown using the standard computation and the positivity assumption.

Similarly we assume, for any x, z,

OP

(∥∥∥θ(x, z,W )[H(Y )]− θ̂(x, z,W )[H(Y )]
∥∥∥∥∥∥θ(x, 1− z,W )[H(Y )]− θ̂(x, 1− z,W )[H(Y )]

∥∥∥)
=

∑
z∈{0,1}

OP

(∥∥∥θ(x, z,W )[H(Y )]− θ̂(x, z,W )[H(Y )]
∥∥∥2) .

We have

OP

(∥∥∥ψ̂[H(Y )]− ψ[H(Y )]
∥∥∥2)

= OP

(∥∥∥ ˆψY X [H(Y )]− ψY X [H(Y )] + ψ̂X − ψX
∥∥∥2)

= OP

(∥∥∥ ˆψY X [H(Y )]− ψY X [H(Y )]
∥∥∥2 + ∥∥∥ψ̂X − ψX

∥∥∥2 + ∥∥∥ ˆψY X [H(Y )]− ψY X [H(Y )]
∥∥∥ ∥∥∥ψ̂X − ψX

∥∥∥)
=

∑
z∈{0,1}

OP

(∥∥∥θ(x, z,W )[H(Y )]− θ̂(x, z,W )[H(Y )]
∥∥∥2)+

∑
z∈{0,1}

OP

(∥∥∥ξx(z,W )− ξ̂x(z,W )
∥∥∥2)

+
∑

z∈{0,1}

OP

(∥∥∥θ(x, z,W )[H(Y )]− θ̂(x, z,W )[H(Y )]
∥∥∥∥∥∥ξx(z,W )− ξ̂x(z,W )

∥∥∥) .
Finally

Eq. (B.14) =
∑
z

OP

(
∥π̂z(W )− πz(W )∥

{∥∥∥θ̂(x, z,W )[H(Y )]− θ(x, z,W )[H(Y )]
∥∥∥+ ∥∥∥ξ̂x(z,W )− ξx(z,W )

∥∥∥})
+
∑
z

OP

(∥∥∥ξ̂x(z,W )− ξx(z,W )
∥∥∥2 + ∥∥∥θ(x, z,W )− θ̂(x, z,W )

∥∥∥2)
+
∑
z

OP

(∥∥∥ξ̂x(z,W )− ξx(z,W )
∥∥∥∥∥∥θ(x, z,W )− θ̂(x, z,W )

∥∥∥) . (B.31)

Therefore, with Eq. (B.13), the following holds

β̂ − β0 = −M−1ED [ϕm(V;β0, ψ0, η0)] + Eq. (B.31) + oP (n
−1/2),

where Eq. (B.31) = Rm2 .

Corollary 4 (Restated Corol. 4). If nuisances {π̂, ξ̂, θ̂} converges at n−1/4 rate, then the target
estimator β̂ converges to β0 at

√
n-rate.
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Proof. If all nuisances converge at n−1/4 rate, then the Rm2 term in Thm. 3 converges at n−1/2 rate.
Also, ED [ϕm(β0; (ψ0, η0))] converges in distribution toN(0, var(ϕm(β0, (ψ0, η0)))) at

√
n-rate. So

β̂ converges to β0 at
√
n-rate by Thm. 3.

C Details of empirical applications

C.1 Data generating processes for synthetic datasets

The following structural equations are used for all four data generating processes in Fig. 2:

U ∼ N(0, 1)

fW (U) = 2U − 1 + ϵW , where ϵW ∼ N(0, 1)

fZ(W ) = 1 (0.25W + ϵZ > 0) , where ϵZ ∼ N(0, 1)

fX(W,Z,U) = 1 (Z + 0.25 ∗W + 0.25 ∗ U + ϵX > 0.5) · (1− Z) + Z, where ϵX ∼ N(0, 1).

With such data generating process, XZ=1 ≥ XZ=0 is satisfied. We will denote four figures in Fig. 2
as Fig. 2(a,b,c,d). For Fig. 2a,

fY (W,X,U) = 0.6501(W · (2X − 1) + 2U + 0.374).

For Fig. 2b,

fY (W,X,U) = 0.9515(2X − 1 +W ) + 0.8(−2X + 1 + U) +WU + 0.082.

For Fig. 2c,

fY (W,X,U) = 1.08541 (W < 0) (2X − 1 + 0.1U) + 1 (0 ≤W < 1) (−2X + 1 + 0.1U)

+ 1.0854 · 0.9163 (1 (W ≥ 1) (−3(2X − 1) + 0.2U + 0.3)− 0.122)

For Fig. 2d,

fY (W,X,U) = 0.7865 · 1.0628 · 1 (W < −1) (−0.8(2X − 1) + 0.1U) + 1 (−1 ≤W < 0) (−2(2X − 1) + 0.1U)

+ 0.7865 · 1.0628 · (1 (0 ≤W < 1) (2(2X − 1) + 0.2U) + 1 (W > 1) (0.5(2X − 1) + 0.2U) + 0.0525)

+ 1.0628 · 0.104

C.2 Application to 401(k) data

We use the 401(k) dataset that is initially introduced by [2]. Specifically, we used the version of the
data named ‘The Woodridge Data Set [67]’ originally entitled ‘401ksu.dta’ in STATA format (available
in https://www.stata.com/texts/eacsap/). In the dataset, we used nettfa (net financial asset
in $1000) as Y , p401k (participation in 401(k), participation = 1) as X , e401k (eligibility for 401(k),
eligible = 1) as Z, andW = {W1,W2,W3,W4,W5} = {agesq, fsize, male, marr, incsq},
where agesq means the square of the age, fsize the family size, male the gender (male = 1), marr
the marital status (married = 1) and incsq the square of the income.

C.3 Density plots illustrating uncertainty

In this section, we present the density plots corresponding to Figs. (3,4) illustrating uncertainty of the
results. The same data generating processes as used for Figs. (3,4) are leveraged.

Synthetic dataset. To represent the uncertainty, we generate 100 synthetic datasets {Dk}100k=1, each
of which has N = 50000 samples (i.e., |Dk| = 50000), from the same data generating process
used for the simulation for Fig. 3. After learning the density estimation with Dk, we obtain a vector
of density values (pk1 , p

k
2 , · · · , pkm) at m equi-spaced points for each method (‘Moment’, ’MLTE’,

‘Kernel-smoothing’, ’KLTE’). For the model-based approach (Moment, MLTE), m is set to 1000. For
the kernel-based approach (Kernel-smoothing, KLTE),m is set to 25. For each {model, kernel}-based
approach, we have estimates of the density in the form of a matrix {(pk1 , · · · , pkm)}100k=1. Let pavg,i

denote the average of {pki }100k=1. Let σi denote the standard deviation of {pki }100k=1. Then, we take

pavg ≡ {pavg,i}mi=1

pupper ≡ {pavg,i + σi}mi=1

plower ≡ {pavg,i − σi}mi=1.
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A set of density plots corresponding to Fig. 3 with uncertainty information in Fig. C.5. For each
density estimate in Fig. C.5, the middle dark-colored dotted line shows pavg, and the above,below
light-colored solid line shows pupper, plower respectively.
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Figure C.5: LTE estimation with a synthetic dataset. The middle dark-colored dotted line denotes
pavg, and the upper and lower light-colored solid lines represents pupper, plower, respectively.

Application to 401(k) data. To represent the uncertainty, we randomly resample (with replacement)
the dataset from the original datasetD, where the kth regenerated dataset is denotedDk. We conducted
this data regeneration process for 100 times and have {Dk}100k=1. After learning the density estimation
with Dk, we obtain a vector of density values (pk1 , p

k
2 , · · · , pkm) at m equi-spaced points for each

method (‘Moment’, ’MLTE’, ‘Kernel-smoothing’, ’KLTE’). For the model-based approach (Moment,
MLTE), m is set to 1000. For the kernel-based approach (Kernel-smoothing, KLTE), m is set to 25.
For each {model, kernel}-based approach, we have estimates of the density in the form of a matrix
{(pk1 , · · · , pkm)}100k=1. Let pavg,i denote the average of {pki }100k=1. Let σi denote the standard deviation of
{pki }100k=1. Then, we take pavg ≡ {pavg,i}mi=1, pupper ≡ {pavg,i+σi}mi=1 and plower ≡ {pavg,i−σi}mi=1.

A set of density plots corresponding to Fig. 3 with uncertainty information in Fig. C.6. For each
density estimate in Fig. C.6, the middle dark-colored dotted line shows pavg, and the above,below
light-colored solid line shows pupper, plower respectively.
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Figure C.6: LTE of 401(k) participation (X) on net financial asset (Y ). The middle dark-colored
dotted line denotes pavg, and the upper and lower light-colored solid lines represents pupper, plower,
respectively.
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