
A Details on experimental setup330

A.1 Setup for LiDAR and camera input331

Setup for LiDAR input: To learn robust features for the calibration of different transforms, we332

train our network to recover the true calibration from a variety of initial guesses T̂ = TpT. Where333

we perturb the ground truth T using uniformly sampled Tp, modeled by a translation and angle-334

axis vector. We sample these vectors uniformly on the 3-sphere using [19] and scale them with a335

uniformly distributed scalar. For training, the translation and rotation magnitudes are in the range336

[0, 1.5]m and [0, 15]◦, respectively.337

To account for different intensity profiles registered by different LiDAR models, and cater to the338

fact that some LiDAR drivers don’t provide intensity readings, we augment the intensity channel of339

our LiDAR data to minimize our dependence on intensity information. We apply uniform random340

scalar perturbations in the range [0, 1.0] to the intensity channel of the LiDAR points, meaning that341

in some samples the intensity information is close to dropped out.342

Lastly, to process the LiDAR data using our sparse 3-D CNN, we voxelize the points using isotropic343

voxels of 2 cm per side. We found this resolution to be reasonable since it is in the range of the344

measurement error reported by most LiDAR manufacturers.345

Setup for camera input: We’ve found experimentally that the camera feature extractor fails to346

learn generalizable geometric features unless spatial augmentations are applied. In our training, we347

performed random crop augmentations of [512, 256] pixels in width and height to the input image,348

and updated the camera intrinsic parameters accordingly.349

A.2 Model setup350

Both image and point cloud feature extractors in our model follow the U-Net [14] architecture with351

5 layers of coarse-to-fine features, each layer being a factor of 2 finer than the previous layer. We352

use features from 3 layers for our alignment, the 1/16-scale, the 1/4-scale, and the 1-scale. The353

feature dimensionalities at these layers are 128, 128, and 32, respectively. To help adaptation, at354

each pyramid level, the features from both domains are passed through a shared 2-layer MLP with355

the same input and output dimensions at each layer and Leaky ReLu activation.356

With recent advancements in 3-D convolutions [20], we’ve chosen the spconv [21] implementation357

of sparse 3-D CNNs for our LiDAR feature extractor, as it efficiently handles the large point clouds,358

and effectively treats the sparsity pattern of the data.359

Learning features in the image domain is relatively straightforward, we’ve found that using the same360

U-Net [14] architecture (similar to Pixloc [11]) with the 2-D convolutional VGG [22] backbone was361

sufficient for learning image features.362

We initialize the visual extractor using weights from a pre-trained PixLoc [11] model trained on363

the CMU Seasons dataset [23], and the LiDAR extractor using only the sparse 3D CNN weights364

of a SphereFormer [24] model pre-trained on Semantic KITTI [25]. For the pose optimization, we365

trained with M = 5 iterations at every pyramid level.366

11


	Introduction
	Related Works
	Method
	Problem formulation
	Camera/LiDAR extrinsic calibration as differentiable direct alignment
	Batch SE(3) alignment

	Training Setup
	Results
	Extrinsic calibration in settings similar to training
	Zero-shot transfer to different environments with different sensors

	Limitations
	Conclusion
	Details on experimental setup
	Setup for LiDAR and camera input
	Model setup


