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1 Results for synthetic functions
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SVGP 0.67 2.54 0.27 1.89 0.70 0.41 10.1 17.4 0.60 9.26 1.61 0.70
PPGPR 0.50 0.52 0.46 0.55 0.21 0.47 1.29 6.80 1.98 3.11 6.18 2.39

GradGP 9.12 7.82 1.75 0.48 2.48 0.79 0.41 0.41 0.27 0.88 0.73 0.30
GradSVGP 1.64 2.70 0.19 0.75 0.23 0.30 0.93 0.14 0.11 5.46 2.29 17.6

GradPPGPR 2.64 1.93 16.20 10.8 1.35 1.43 0.02 0.06 1.67 2.40 2.15 1.11
DSVGP2 0.87 8.29 0.21 2.61 0.11 2.00 0.60 0.25 0.25 2.69 1.44 0.81

DPPGPR2 1.70 0.96 2.35 2.13 0.59 0.49 1.38 4.86 1.46 2.72 4.32 1.64
DSKI 0.25 10.8 0.20 33.6 0.03 22.0 N/A N/A N/A N/A N/A N/A

Table 1: Standard errors for regression results on synthetic experiments, i.e. Table 1 in the main
paper.

The following plots show detailed results for the synthetic experiments. In each figure we show the
Root Mean Squared Error (RMSE) and Negative Log Likelihood (NLL) versus the inducing matrix
size. We compare Variational GPs (SVGP, PPGPR) to Variational GPs with Derivatives (GradSVGP,
GradPPGPR) and Variational GPs with p = 2 Directional Derivatives (DSVGP2, DPPGPR2). The
number of inducing points is varied across methods in order to keep the computational complexity
equivalent. If SVGP and PPGPR used M0 inducing points then DSVGP2, DPPGPR2 used M =
M0/(p+1) = M0/3 inducing points and GradSVGP, GradPPGPR used M = M0/(D+1) inducing
points. All methods were trained using the Adam optimizer. Methods were implemented using
GPyTorch, and run with a single GPU
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Figure 1: The root mean squared error (RMSE) and the negative log likelihood (NLL) for the various
GPs when using different inducing matrix sizes to regress on Branin. Averaged over 5 runs. DSKI is
removed because it does not have comparable matrix size.

Figure 2: The root mean squared error (RMSE) and the negative log likelihood (NLL) for the various
GPs when using different inducing matrix sizes to regress on SixHumpCamel. Averaged over 5 runs.
DSKI is removed because it does not have comparable matrix size.

Figure 3: The root mean squared error (RMSE) and the negative log likelihood (NLL) for the various
GPs when using different inducing matrix sizes to regress on Styblinksi-Tang. Averaged over 5 runs.
DSKI is removed because it does not have comparable matrix size.
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Figure 4: The root mean squared error (RMSE) and the negative log likelihood (NLL) for the various
GPs when using different inducing matrix sizes to regress on Sin-5. Averaged over 5 runs. DSKI is
removed because it does not have comparable matrix size.

Figure 5: The root mean squared error (RMSE) and the negative log likelihood (NLL) for the various
GPs when using different inducing matrix sizes to regress on Hartmann. Averaged over 5 runs. DSKI
is removed because it does not have comparable matrix size.

Figure 6: The root mean squared error (RMSE) and the negative log likelihood (NLL) for the various
GPs when using different inducing matrix sizes to regress on Welch-m. Averaged over 5 runs. DSKI
is removed because it does not have comparable matrix size.
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2 Results with shared inducing directions

In this section we test the performance of variational GPs with directional derivatives when the
set of inducing points learns a set of p shared inducing directions, rather than each inducing point
having its own distinct set of p directions. We abbreviate these methods as DSVGP-Sharedk and
DPPGPR-Sharedk, with k indicating the number of inducing directions. We compare the performance
to variational GPs without derivatives (SVGP, PPGPR) and variational GPs with distinct directional
derivatives (DPPGPR, DSVGP) on the stellarator regression task and the graph convolutional neural
network (GCN) bayesian optimiztion task, see main paper for a description of these experiments.
On the GCN bayesian optimization task TuRBO-DPPGPR-Sharedk, and TuRBO-DSVGP-Sharedk
indicate the variants of TuRBO that leverage use DPPGPR-Shared and DSVGP-Shared as the GP
surrogate.

Note that if M0 inducing points are used with p shared inducing directions, the inducing matrix is
still M ×M where M = M0(p+ 1). This is equivalent to the inducing matrix size for M0 inducing
points and p distinct inducing directions. As the complexity of variational GPs with directional
derivatives is O(M3), sharing directions does not improve complexity. Furthermore it significantly
reduces model flexibility as the number of inducing parameters is significantly lower than if directions
are distinct.

Figure 7: Negative log likelihood of GP variants as the inducing matrix size increases for the
D = 45, N = 500000 Stellarator Regression experiment. Shaded regions correspond to standard
errors. We find that for the same computational complexity (inducing matrix size) sharing inducing
directions is inferior to distinct inducing directions, likely due to the lack of model flexibility in this
high dimensional problem.

3 Standard Error for UCI Regression Experiments

Table 2 shows the standard errors for the UCI Regression experiments in the main paper. See the
main paper for a description of the experiments.

Elevators kin40k Energy Protein Kegg-directed
RMSE NLL RMSE NLL RMSE NLL RMSE NLL RMSE NLL

SVGP 0.0011 0.0028 0.0006 0.0011 0.0057 0.0237 0.0028 0.0037 0.0007 0.0099
DSVGP1 0.0027 0.0070 0.0008 0.0035 0.0023 0.0214 0.0030 0.0041 0.0008 0.0088

PPGPR 0.0051 0.0080 0.0027 0.0027 0.0069 0.0274 0.0025 0.0050 0.0014 0.0142
DPPGPR1 0.0028 0.0077 0.0059 0.0066 0.0043 0.0269 0.0025 0.0062 0.0015 0.0084

Table 2: Standard Errors for Variational GPs with no derivatives (SVGP, PPGPR) and Variational
GPs with p = 1 directions (DSVGP1, DPPGPR1) on UCI benchmark regression datasets for which
no derivative information is available. See the main paper Table 3 for regression performance results.
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Figure 8: GCN training on the Pubmed dataset: (Left) training loss and (Right) training accuracy.
Averaged over 6 trials for all optimizers. Shaded regions correspond to standard errors. From top
to bottom, a different number of inducing directions are used: p = 1, 2, 3 respectively. We find that
using shared inducing directions still provides a benefit over incorporating no derivative information,
but does not perform as well as using distinct inducing directions.
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