A Appendix

A.1 Hardware Details

We compute the number of logic gates required for each integer operation.

A.2 Addition

A half-adder (HA) circuit is made up of 1 XOR gate and 1 AND gate, while the full-adder (FA) circuit requires 2 XOR gates, 2 AND gates and 1 OR gate. Therefore, the cost of an n bit addition is

$$\text{HA} + (n - 1) \times \text{FA}$$

$$= (1 \text{ XOR} + 1 \text{ AND}) + (n - 1) \times (2 \text{ XOR} + 2 \text{ AND} + 1 \text{ OR})$$

$$= (2n - 1) \text{ AND} + (2n - 1) \text{ XOR} + (n - 1) \text{ OR}$$

$$\approx 5n - 3$$

A.3 Multiplication

A common architecture usually include $(n - 1)$ n-bit Adders besides the n^2 AND gates, see Figure 5 top panels. One n-bit adders is composed of one half-adder (HA) and $n - 1$ full-adder (FA). We will consider a n-bit adder as building block in our theoretical analysis, although it could be optimized further.

![Schematic of 2x2 Bit Multiplier Using 2-bit Adder](image1)

![Schematic of 3x3 Bit Multiplier Using 3-bit Adder](image2)

![Schematic of 2x2 Bit Squarer Using 1-bit Adder](image3)

![Schematic of 3x3 Bit Squarer Using 3-bit Adder](image4)

Figure 5: Binary multiplier (top panel) and binary squarer (bottom panels) for number of bits $n = 2$ (left panels) and $n = 3$ (right panels).
Hence the cost of multiplication is

\[n^2 \text{ AND} + (n - 1) \times (n - \text{bit Adder}) \]
\[= n^2 \text{ AND} + (n - 1) \times \text{HA} + (n - 1)^2 \times \text{FA} \]
\[= n^2 \text{ AND} + (n - 1) \times (1 \text{ XOR} + 1 \text{ AND}) + (n - 1)^2 \times (2 \text{ XOR} + 2 \text{ AND} + 1 \text{ OR}) \]
\[= (3n^2 - 3n + 1) \text{ AND} + (2n^2 - 3n + 1) \text{ XOR} + (n^2 - 2n + 1) \text{ OR} \]
\[\approx 6n^2 - 8n + 3 \]

A.4 Squaring

In the case of squaring, we have less AND gates representing element-wise multiplication, because some values are repeated. We provide some examples in Figures 6 and 7.

Figure 6: Binary Square for \(n = 4 \) bits.

<table>
<thead>
<tr>
<th>(A_3)</th>
<th>(A_2)</th>
<th>(A_1)</th>
<th>(A_0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A_3)</td>
<td>(A_2)</td>
<td>(A_1)</td>
<td>(A_0)</td>
</tr>
<tr>
<td>(A_0A_3)</td>
<td>(A_0A_2)</td>
<td>(A_0A_1)</td>
<td>(A_0A_0)</td>
</tr>
<tr>
<td>(A_1A_3)</td>
<td>(A_1A_2)</td>
<td>(A_1^2)</td>
<td>(A_1A_0)</td>
</tr>
<tr>
<td>(A_2A_3)</td>
<td>(A_2^2)</td>
<td>(A_2A_1)</td>
<td>(A_2A_0)</td>
</tr>
<tr>
<td>(A_3A_3)</td>
<td>(A_3A_2)</td>
<td>(A_3A_1)</td>
<td>(A_3A_0)</td>
</tr>
<tr>
<td>(A_3^2)</td>
<td>(2(A_2A_3))</td>
<td>(A_3^2 + 2(A_1A_3))</td>
<td>(2(A_0A_3) + 2(A_1A_2))</td>
</tr>
</tbody>
</table>

Figure 7: Binary Square for \(n = 5 \) bits.

<table>
<thead>
<tr>
<th>(A_2)</th>
<th>(A_3)</th>
<th>(A_2)</th>
<th>(A_1)</th>
<th>(A_0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A_4)</td>
<td>(A_3)</td>
<td>(A_2)</td>
<td>(A_1)</td>
<td>(A_0)</td>
</tr>
<tr>
<td>(A_0A_4)</td>
<td>(A_0A_3)</td>
<td>(A_0A_2)</td>
<td>(A_0A_1)</td>
<td>(A_0A_0)</td>
</tr>
<tr>
<td>(A_1A_4)</td>
<td>(A_1A_3)</td>
<td>(A_1A_2)</td>
<td>(A_1A_1)</td>
<td>(A_1A_0)</td>
</tr>
<tr>
<td>(A_2A_4)</td>
<td>(A_2A_3)</td>
<td>(A_2^2)</td>
<td>(A_2A_2)</td>
<td>(A_2A_1)</td>
</tr>
<tr>
<td>(A_3A_4)</td>
<td>(A_3^2)</td>
<td>(A_3A_3)</td>
<td>(A_3A_2)</td>
<td>(A_3A_1)</td>
</tr>
<tr>
<td>(A_4^2)</td>
<td>(2(A_4A_4))</td>
<td>(A_4^2 + 2(A_2A_4))</td>
<td>(2(A_2A_4) + 2(A_1A_4))</td>
<td>(A_4^2 + 2(A_0A_4) + 2(A_1A_3))</td>
</tr>
</tbody>
</table>

In Figures 6 and 7 we see that some sums are actually a multiplication by a factor of 2. Multiplication by a factor of 2 can instead be though as a shift towards the left in the addition.

1. If \(n \) is even, then only the middle column will shift \(\lfloor \frac{n}{2} \rfloor = \frac{n}{2} \) values to the left. Also, the column on the left will have the term \(A_{n-1}^2 \). So, the sum with maximum number of elements, \(\frac{n}{2} + 1 \), will only happen in one column, \(i = n - 1 \). Hence, we need \(\frac{n}{2} \) \((n - 1)\)-bit adders. See Figure 8 for visual intuition.
Figure 8: Intuition for square on \(n \) even.

Hence, the cost of squaring when \(n \) is even is:

\[
\frac{n(n-1)}{2} \text{ AND} + \frac{n}{2} \times ((n-1) \text{ - bit Adder})
\]

\[
= \frac{n(n-1)}{2} \text{ AND} + \frac{n}{2} \times (n-2) \times \text{ FA}
\]

\[
= \frac{n(n-1)}{2} \times (\text{ XOR} + 1 \text{ AND}) + \frac{n}{2} (n-2) \times (2 \text{ XOR} + 2 \text{ AND} + 1 \text{ OR})
\]

\[
= \left(\frac{3}{2} n^2 - 2n \right) \text{ AND} + \left(n^2 - \frac{3}{2} n \right) \text{ XOR} + \left(\frac{1}{2} n^2 - n \right) \text{ OR}
\]

\[
\approx 3n^2 - \frac{9}{2} n
\]

2. If \(n \) is odd, column \(i = n-1, n, n+1 \) will shift \(\left\lfloor \frac{n}{2} \right\rfloor = \frac{n-1}{2} \) values to the left. Since columns \(i = n-2, n \) both have an \(A_i^2 \) term, the sum with maximum number of elements, \(\frac{n-1}{2} + 1 \), will happen at those columns. Hence, we need \(\frac{n-1}{2} \) \(n \)-bit adders. See Figure 9 for visual intuition.

Figure 9: Intuition for square on \(n \) odd.
Hence, the cost of squaring when \(n \) is odd is:

\[
\frac{n(n-1)}{2} \text{ AND } \frac{n-1}{2} \times (n - \text{bit Adder})
\]

\[
= \frac{n(n-1)}{2} \text{ AND } \frac{n-1}{2} \times \text{HA} + \frac{n-1}{2} (n-1) \times \text{FA}
\]

\[
= \frac{n(n-1)}{2} \text{ AND } \frac{n-1}{2} \times (1 \text{ XOR } 1 \text{ AND}) + \frac{n-1}{2} (n-1) \times (2 \text{ XOR } 2 \text{ AND } 1 \text{ OR})
\]

\[
= \left(\frac{3}{2}n^2 - 2n + \frac{1}{2} \right) \text{ AND } \left(n^2 - \frac{3}{2}n + \frac{1}{2} \right) \text{ XOR } \left(\frac{1}{2}n^2 - n + \frac{1}{2} \right) \text{ OR}
\]

\[
\approx 3n^2 - \frac{9}{2}n + \frac{3}{2}.
\]

Moreover, in Figure 5 (bottom panels), we present the corresponding hardware schemes for \(n = 2, 3 \).

<table>
<thead>
<tr>
<th>Operation</th>
<th>Gate Count</th>
<th>Similarity</th>
<th>Gate Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add</td>
<td>(5n - 3)</td>
<td>(S_{\text{conv}})</td>
<td>(6n^2 - 8n + 3)</td>
</tr>
<tr>
<td>Multiply</td>
<td>(6n^2 - 8n + 3)</td>
<td>(S_{\text{euclid}})</td>
<td>(3n^2 + \frac{1}{2}n - \frac{3}{2})</td>
</tr>
<tr>
<td>Square</td>
<td>(n) odd</td>
<td>(\frac{3n^2}{2} - \frac{9}{2}n + \frac{3}{2})</td>
<td>(3n^2 + \frac{1}{2}n - \frac{3}{2})</td>
</tr>
<tr>
<td></td>
<td>(n) even</td>
<td>(\frac{3n^2}{2} - \frac{9}{2}n)</td>
<td>(3n^2 + \frac{1}{2}n - \frac{3}{2})</td>
</tr>
</tbody>
</table>

Figure 11: Logic gate count for operations \(n \)-bit integers.