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A Appendix

A.1 Hardware Details

We compute the number of logic gates required for each integer operation.

A.2 Addition

A half-adder (HA) circuit is made up of 1 XOR gate and 1 AND gate, while the full-adder (FA)
circuit requires 2 XOR gates, 2 AND gates and 1 OR gate. Therefore, the cost of an n bit addition is

HA + (n—1) x FA

= (1 XOR + 1 AND) + (n — 1) x (2 XOR + 2 AND + 1 OR)
=(2n—1) AND + (2n — 1) XOR + (n — 1) OR

~bn—3

A.3 Multiplication

A common architecture usually include (n — 1) n-bit Adders besides the n> AND gates, see Figure
top panels. One n-bit adders is composed of one half-adder (HA) and n — 1 full-adder (FA). We will
consider a n-bit adder as building block in our theoretical analysis, although it could be optimized
further.

A2 A1 A0

BO -

E) ar  bo b1

2-bit Adder
C

Ele] Ss1

P3 P2 P1 PO PSP4 P3 P2 P1 PO
Schematic of 2x2 Bit Multiplier Schematic of 3x3 Bit Multiplier
Using 2-bit Adder Using 3-bit Adder

ao bo
1-bit Adder
C so

P3 P2 P1 PO P5 P4 P3 P2 P1PO

Schematic of 2x2 Bit Squarer Schematic of 3x3 Bit Squarer
Using 1-bit Adder Using 3-bit Adder

Figure 5: Binary multiplier (top panel) and binary squarer (bottom panels) for number of bits n = 2
(left panels) and n = 3 (right panels).
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425 Hence the cost of multiplication is

n? AND + (n — 1) x (n — bit Adder)

=n? AND+ (n — 1) x HA + (n — 1)® x FA

=n? AND + (n — 1) x (1 XOR + 1 AND) + (n — 1)® x (2 XOR + 2 AND + 1 OR)
= (3n? —3n+ 1) AND + (2n? — 3n + 1) XOR + (n? — 2n + 1) OR

~ 6n% —8n + 3

426 A.4 Squaring

427 In the case of squaring, we have less AND gates representing element-wise multiplication, because
428 some values are repeated. We provide some examples in Figures|[6|and

As Ay Ay A
As Ay A, A
ApAs ApAs Aoy A2
A A A1 Ay A? A1 Ay 0
Ag A A2 As Ay AsAg 0 0
A2 AzAy As Ay Az 0 0 0

A2 2(AgAs) A3+ 2(A1As) 2(AgAs) +2(A1Ay) A2 +2(AgAy) 2(AgAy) Al

Figure 6: Binary Square for n = 4 bits.

Ay As Ao Ay Ao
Aa A3 As Al Ao
AoAq AoAs AoA2 AoAy A
A1Ag A1As A1Ag A? A1Ap 0
AgAy A2A3 4% A2Ay A2Ao 0 0
A3Ay A2 A3Ay A3Ay A3A 0 0 0
A2 A4A AyAs AgAy A4Ap 0 0 0 0

AT 2(A3Ay) A3 +2(AsAy)  2(A1Ag+ AA3) A3 +2(ApAg + A1A3)  2(AgAs + A1Ag) A7 +2(ApAa)  2(AgAr) AR

Figure 7: Binary Square for n = 5 bits.

420 In Figures[fland[7] we see that some sums are actually a multiplication by a factor of 2. Multiplication
430 by a factor of 2 can instead be though as a shift towards the left in the addition.

431 1. If n is even, then only the middle column will shift | 3 | = % values to the left. Also, the
432 column on the left will have the term Ai—r So, the sum with maximum number of elements,
433 % + 1, will only happen in one column, ¢« = n — 1. Hence, we need % (n — 1)-bit adders.
434 See Figure 8] for visual intuition.
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n
Sumof;+1 A As A Ao

elements
I Ay Ay Ay Ao
Aoy oAy Ad, A2
A, Ads 4 Ade O
Aods A2 Aoy Ao Ao 0 0
A2 Mds Ak As Ao 0 0 0
A3 2AeAs) (A3 +2AMA), 2AA0ds) +2(Aids) AT +2(AoA); 2Adod) A
n*— 1
n—1 bits

bits

Figure 8: Intuition for square on n even.

435 Hence, the cost of squaring when n is even is:

n(n—1)
2
nin—1) n n

= T AND + 7 x HA + Z(n — 2) x FA

1

:%ANDJrg><(1XOR+1AND)+%(n72)x(2XOR+2AND+10R)

1
= (2712 — 2n> AND + <n2 — 2n> XOR + (2712 — n) OR

AND + g % ((n— 1) — bit Adder)

9
~3n?—-n
2
436 2. If nis odd, column i = n — 1,n,n + 1 will shift 2] = 251 values to the left. Since
437 columns ¢ = n — 2, n both have an A? term, the sum with maximum number of elements,
438 ”T’l + 1, will happen at those columns. Hence, we need ”T’l n-bit adders. See FigureElfor
439 visual intuition.
Sum of%+ 1
Sum °f$ +1 Ag elements As Az Ay Ao
elements v n+1l
T Ay Az | column Ay Ay Ao
¥ Aods Aods Ao PR
A Ay AyAg A1 Ay A2 A1Ag 0
A2A4 A2A3 4:; A2Aq A2A0 0 0
A3Ay A2 AgAz AsA; AsAg 0 0 0
A} A4As AsAy AgAo 0 0 0 0
A7 2(A3Aq) F2(A2As)  2(A1As+Az2A3) A +2(AoAs +A1As)  2(AgAs + A1As) A2 +2(AgAz)  2(AoAr) A2
] | ]
n bits
n bits

Figure 9: Intuition for square on n odd.
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Similarity | Gate Count

Secony 6nZ—8n+3
1
St nodd | 3n%+ an = 3

neven | 3n? + 5m —3

Figure 10: Similarity operator Gate Count.

440 Hence, the cost of squaring when n is odd is:
-1 -1
% AND + == x (1 — bit Adder)
-1 -1 -1
=D N+ P ma s P 1) RA
2 2
-1 -1 -1
_ n(nT)AND—k B % (1XOR+1AND)+ " (n—1) x (2XOR + 2 AND + 1 OR)
3 1 3 1 1 1
= (2712—271—1—2) AND + (n2 - 2n+2) XOR + <2n2 —n+2> OR
9 3
~3n2 _ = Z
~ 3n 5" + 5"
441 Moreover, in Figure [5] (bottom panels), we present the corresponding hardware schemes for
442 n=23.
Operation | Gate Count Similarity | Gate Count
Add on —3 >
. 9 Seconv 6n° —8n+3
Multiply 6n - —8n+3 9 1 3
2_9 3 nodd | 3n“ 4 5n —
Square n odd 3n* — sn + b Seuclid 3 2 + f _ §
1 n even 3n? —In feven | ot gn

Figure 11: Logic gate count for operations n-bit integers.
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