
Shortest Path Networks for Graph Property Prediction

Anonymous Author(s)
Anonymous Affiliation
Anonymous Email

Abstract1

Most graph neural network models rely on a particular message passing paradigm,2

where the idea is to iteratively propagate node representations of a graph to each3

node in the direct neighborhood. While very prominent, this paradigm leads to4

information propagation bottlenecks, as information is repeatedly compressed at5

intermediary node representations, which causes loss of information, making it6

practically impossible to gather meaningful signals from distant nodes. To address7

this issue, we propose shortest path message passing neural networks, where8

the node representations of a graph are propagated to each node in the shortest9

path neighborhoods. In this setting, nodes can directly communicate between10

each other even if they are not neighbors, breaking the information bottleneck11

and hence leading to more adequately learned representations. Theoretically, our12

framework generalizes message passing neural networks, resulting in provably13

more expressive models, and we show that some recent state-of-the-art models are14

special instances of this framework. Empirically, we verify the capacity of a basic15

model of this framework on dedicated synthetic experiments, and on real-world16

graph classification and regression benchmarks, and obtain state-of-the-art results.17

1 Introduction18

Graphs provide a powerful abstraction for relational data in a wide range of domains, ranging from19

systems in life-sciences (e.g., physical [1, 2], chemical [3, 4], and biological systems [5, 6]) to social20

networks [7], which sparked interest in machine learning over graphs. Graph neural networks (GNNs)21

[8, 9] have become prominent models for graph machine learning, owing to their adaptability to22

different graphs, and their capacity to explicitly encode desirable relational inductive biases [10],23

such as permutation invariance (resp., equivariance) relative to graph nodes.24

The vast majority of GNNs [11–13] are instances of message passing neural networks (MPNNs) [14],25

since they follow a specific message passing paradigm, where each node iteratively updates its state26

by aggregating messages from its direct neighborhood. This mode of operation, however, is known27

to lead to information propagation bottlenecks when the learning task requires interactions between28

distant nodes of a graph [15]. In order to exchange information between nodes which are k hops away29

from each other in a graph, at least k message passing iterations (or, equivalently, k network layers)30

are needed. For most non-trivial graphs, however, the number of nodes in each node’s receptive field31

can grow exponentially in k. Eventually, the information from this exponentially-growing receptive32

field is compressed into fixed-length node state vectors, which leads to a phenomenon referred to as33

over-squashing [15], causing a severe loss of information as k increases.34

In parallel to standard MPNNs, several message passing techniques have been proposed to allow more35

global communication between nodes. For instance, multi-hop neighborhoods [16, 17], based on36

powers of the graph adjacency matrix, and transformer-based models [18–20] employing full pairwise37

node attention, look beyond direct neighborhoods for message passing, but both suffer from noise and38

scalability limitations. More recently, several approaches have refined message passing using shortest39

paths between pairs of nodes, such that nodes interact differently based on the minimum distance40

between them [21–23]. Models in this category, such as Graphormer [23], have in fact achieved41

state-of-the-art results. However, the theoretical study of this message passing paradigm remains42

incomplete, with its expressiveness and propagation properties left unknown.43

Submitted to the First Learning on Graphs Conference (LoG 2022). Do not distribute.

Shortest Path Networks for Graph Property Prediction

COM
(

, AGG1

()
, AGG2

()
, AGG3

())
Figure 1: SP-MPNNs update the state of the white
node, by aggregating from its different shortest
path neighborhoods, which are color-coded.

In this paper, we introduce the shortest path44

message passing neural networks (SP-MPNNs)45

framework to alleviate over-squashing. The core46

idea behind this framework is to update node47

states by aggregating messages from shortest48

path neighborhoods instead of the direct neigh-49

borhood. Specifically, for each node u in a graph50

G, we define its i-hop shortest path neighbor-51

hood as the set of nodes in G reachable from52

u through a shortest path of length i. Then,53

the state of u is updated by separately aggre-54

gating messages from each i-hop neighborhood55

for 1 ≤ i ≤ k, for some choice of k. This56

corresponds to a single iteration (i.e., layer) of57

SP-MPNNs, and we can use multiple layers as58

in MPNNs. For example, consider the graph59

shown in Figure 1, where 1-hop, 2-hop and 3-60

hop shortest path neighborhoods of the white61

node are represented by different colors. SP-MPNNs first separately aggregate representations from62

each neighborhood, and then combine all hop-level aggregates with the white node embedding to63

yield the new node state.64

Our framework builds on a line of work on GNNs using multi-hop aggregation [16, 17, 24, 25],65

but distinguishes itself with key choices, as discussed in detail in Section 5. Most importantly, the66

choice of aggregating over shortest path neighborhoods ensures distinct neighborhoods, and thus67

avoids redundancies, i.e., nodes are not repeated over different hops. SP-MPNNs enable a direct68

communication between nodes in different hops, which in turn, enables more holistic node state69

updates. Our contributions can be summarized as follows:70

− We propose SP-MPNNs, which strictly generalize MPNNs, and enable direct message passing71

between nodes and their shortest path neighbors. Similarly to MPNNs, our framework can72

be instantiated in many different ways, and encapsulates several recent models, including the73

state-of-the-art Graphormer [23].74

− We show that SP-MPNNs can discern any pair of graphs which can be discerned either by the75

1-WL graph isomorphism test, or by the shortest path graph kernel, making SP-MPNNs strictly76

more expressive than MPNNs which are upper bounded by the 1-WL test [12, 26].77

− We present a logical characterization of SP-MPNNs, based on the characterization given for78

MPNNs [27], and show that SP-MPNNs can capture a larger class of functions than MPNNs.79

− In our empirical analysis, we focus on a basic, simple model, called shortest path networks.80

We show that shortest path networks alleviate over-squashing, and propose carefully designed81

synthetic datasets through which we validate this claim empirically.82

− We conduct a comprehensive empirical evaluation using real-world graph classification and83

regression benchmarks, and show that shortest path networks achieve state-of-the-art performance.84

All proofs for formal statements, as well as further experimental details, can be found in the appendix.85

2 Message Passing Neural Networks86

Graph neural networks (GNNs) [8, 9] have become very prominent in graph machine learning [11–87

13], as they encode desirable relational inductive biases [10]. Message-passing neural networks88

(MPNNs) [14] are an effective class of GNNs, where each node u is assigned an initial state vector89

h
(0)
u , which is iteratively updated based on the state of its neighbors N (u) and its own state, as:90

h(t+1)
u = COM

(
h(t)
u ,AGG(h(t)

u , {{h(t)
v | v ∈ N (u)}})

)
,

where {{·}} denotes a multiset, and COM and AGG are differentiable combination, and aggregation91

functions, respectively. An MPNN is homogeneous if each of its layers uses the same COM and92

AGG functions, and heterogeneous, otherwise.93

2

Shortest Path Networks for Graph Property Prediction

The choice for the aggregate and combine functions varies across models, e.g., graph convolu-94

tional networks (GCNs) [11], graph isomorphism networks (GINs) [12], and graph attention net-95

works (GATs) [13]. Following message passing, the final node embeddings are pooled to form a96

graph embedding vector to predict properties of entire graphs. The pooling often takes the form of97

simple averaging, summing or element-wise maximum.98

G1 G2

Figure 2: G1 and G2 are indistin-
guishable by 1-WL.

MPNNs naturally capture the input graph structure and are99

computationally efficient, but they suffer from several well-100

known limitations. MPNNs are limited in expressive power,101

at most matching the power of the 1-dimensional Weisfeiler102

Leman graph isomorphism test (1-WL) [12, 26]: graphs cannot103

be distinguished by MPNNs if 1-WL does not distinguish them,104

e.g., the pair of graphs in Figure 2 are indistinguishable by105

MPNNs. Hence, several alternatives, i.e., approaches based on106

unique node identifiers [28], random node features [29, 30], or107

higher-order GNN models [26, 31–33], have been proposed108

to improve on this bound. Two other limitations, known as109

over-smoothing [34, 35] and over-squashing [15], are linked to110

using more message passing layers. Briefly, using more message passing layers leads to increasingly111

similar node representations, hence to over-smoothing. Concurrently, the receptive field in MPNNs112

grows exponentially with the number of message passing iterations, but the information from this113

receptive field is compressed into fixed-length node state vectors. This leads to substantial loss of114

information, referred to as over-squashing.115

3 Shortest Path Message Passing Neural Networks116

We consider simple, undirected, connected1 graphs G = (V,E) and write ρ(u, v) to denote the length117

of the shortest path between nodes u, v ∈ V . The i-hop shortest path neighborhood of u is defined118

as Ni(u) = {v ∈ V | ρ(u, v) = i}, i.e., the set of nodes reachable from u through a shortest path of119

length i. In SP-MPNNs, each node u ∈ V is assigned an initial state vector h(0)
u , which is iteratively120

updated based on the node states in the shortest path neighborhoods N1(u), . . . ,Nk(u) for some121

choice of k ≥ 1, and its own state as:122

h(t+1)
u = COM

(
h(t)
u ,AGGu,1, . . . ,AGGu,k

)
,

where COM and AGGu,i = (h
(t)
u , {{h(t)

v | v ∈ Ni(u)}}) are differentiable combination, and aggre-123

gation functions, respectively. We write SP-MPNN (k = j) to denote an SP-MPNN model using124

neighborhoods at distance up to k = j. Importantly, N (u) = N1(u) for simple graphs, and so125

SP-MPNN (k = 1) is a standard MPNN.126

Similarly to MPNNs, different choices for AGG and COM lead to different SP-MPNN models.127

Moreover, graph pooling approaches [36], and related notions directly translate to SP-MPNNs, and128

so do, e.g., sub-graph sampling approaches [37, 38] for scaling to large graphs. Similarly to MPNNs,129

we can incorporate a global readout component to define SP-MPNNs with global readout:130

h(t+1)
u = COM

(
h(t)
u ,AGGu,1, . . . ,AGGu,k,READ(h(t)

u , {{h(t)
v | v ∈ G}})

)
,

where READ is a permutation-invariant readout function.131

To make our study concrete, we define a basic, simple, instance of SP-MPNNs, called shortest path132

networks (SPNs) as:133

h(t+1)
u = MLP

(
(1 + ϵ) h(t)

u +

k∑
i=1

αi

∑
v∈Ni(u)

h(t)
v

)
,

where ϵ ∈ R, and αi ∈ [0, 1] are learnable weights, satisfying α1 + . . . + αk = 12. That is, SPNs134

use summation to aggregate within hops, weighted summation for aggregation across all k hops, and135

finally, an MLP as a combine function.136

1We assume connected graphs for ease of presentation: All of our results can be extended to disconnected
graphs, see the appendix for further details.

2When the weights are unconstrained, the model performs slightly worse and overfits. Hence, this restriction
not only provides a means to interpret neighborhood importance, but also acts as an effective regularizer.

3

Shortest Path Networks for Graph Property Prediction

Intuitively, SPNs can directly aggregate from different neighborhoods, by weighing their contributions.137

It is easy to see that SPNs with k = 1 are identical to GIN, but observe also that SPNs with arbitrary138

k are also identical to GIN as long as the weight of the direct neighborhood is learned to be α1 = 1.139

We use SPNs throughout this paper as an intentionally simple baseline, as we seek to purely evaluate140

the impact of our extended message passing paradigm with minimal reliance on tangential model141

choices, e.g., including attention, residual connections, recurrent units, etc.142

The SP-MPNN framework offers a unifying perspective for several recent models in graph repre-143

sentation learning using shortest path neighborhoods. In particular, SP-MPNN with global readout144

encapsulates models such as Graphormer3[23], the winner of the 2021 PCQM4M-LSC competition145

in the KDD Cup. Indeed, Graphormer is an instance of SP-MPNNs with global readout over simple,146

undirected, connected graphs (without edge types), as shown in the following proposition:147

Proposition 1. A Graphormer with a maximum shortest path length of M is an instance of SP-MPNN148

(k = M − 1) with global readout.149

3.1 Information Propagation: Alleviating Over-squashing150

Consider a graph G, its adjacency matrix representation A, and its diagonal degree matrix D,151

indicating the number of edges incident to every node in G. We also consider variations of the degree152

matrix, e.g., D̃ = D+ I, where I is the identity matrix. In our analysis, we focus on the normalized153

adjacency matrix Â = D̃−0.5(A+ I)D̃−0.5 to align with recent work analyzing over-squashing [39].154

To study over-squashing, Topping et al. [39] consider the Jacobian of node representations relative to155

initial node features, i.e., the ratio ∂h(r)
u /∂h(0)

v , where u, v ∈ V are separated by a distance r ∈ N+.156

This Jacobian is highly relevant to over-squashing, as it quantifies the effect of initial node features157

for distant nodes (v), on target node (u) representations, when sufficiently many message passing158

iterations (r) occur. In particular, a low Jacobian value indicates that h(0)
v minimally affects h(r)

u .159

To standardize this Jacobian, Topping et al. [39] assume the normalized adjacency matrix for AGG,160

i.e., neighbor messages are weighted by their coefficients in Â and summed. This is a useful161

assumption, as Â is normalized, thus preventing artificially high gradients. Furthermore, a smoothness162

assumption is made on the gradient of COM, as well as that of individual MPNN messages, i.e.,163

the terms summed in aggregation. More specifically, these gradients are bounded by quantities α164

and β, respectively. Given these assumptions, it has been shown that |∂h(r)
u /∂h(0)

v | ≤ (αβ)rÂr
uv,165

upper-bounding the absolute value of the Jacobian [39]. Observe that the term Âr
uv typically decays166

exponentially with r in MPNNs, as node degrees are typically much larger than 1, imposing decay167

due to D̃. Moreover, this term is zero before iteration r due to under-reaching.168

Analogously, we also consider normalized adjacency matrices within SP-MPNNs. That is, we use the169

matrix Âi = D̃−0.5
i (Ai + I)D̃−0.5

i within each AGGi, where Ai is the i-hop 0/1 adjacency matrix,170

which verifies (Ai)uv = 1 ⇔ ρ(u, v) = i, and D̃i is the corresponding degree matrix. By design,171

SP-MPNNs span k hops per iteration, and thus let information from v reach u in q = ⌈r/k⌉ iterations.172

For simplicity, let r be an exact multiple of k. In this scenario, ∂h(q)
u /∂h(0)

v is non-zero and depends173

on (Âk)
q
uv (this holds by simply considering k-hop aggregation as a standard MPNN). Therefore,174

for larger k, q ≪ r, which reduces the adjacency exponent substantially, thus improving gradient175

flow. In fact, when r ≤ k, the Jacobian ∂h(1)
u /∂h(0)

v is only linearly dependent on (Âr)uv. Finally,176

the hop-level neighbor separation of neighbors within SP-MPNN further improves the Jacobian, as177

node degrees are partitioned across hops. More specifically, the set of all connected nodes to u is178

partitioned based on distance, leading to smaller degree matrices at every hop, and thus to less severe179

normalization, and better gradient flow, compared to, e.g, using a fully connected layer across G [15].180

3.2 Expressive Power of Shortest Path Message Passing Networks181

Shortest path computations within SP-MPNNs introduce a direct correspondence between the model182

and the shortest path (SP) kernel [40], allowing the model to distinguish any pair of graphs SP183

distinguishes. At the same time, SP-MPNNs contain MPNNs which can match the expressive power184

3We follow the authors’ terminology, and refer to the specific model defined using shortest path biases and
degree positional embeddings as “Graphormer”. This Graphormer model is introduced in detail in the appendix.

4

Shortest Path Networks for Graph Property Prediction

of 1-WL when supplemented with injective aggregate and combine functions [12]. Building on these185

observations, we show that SP-MPNNs can match the expressive power of both kernels:186

Theorem 1. Let G1, G2 be two non-isomorphic graphs. There exists a SP-MPNN M : G → R, such187

that M(G1) ̸= M(G2) if either 1-WL distinguishes G1 and G2, or SP distinguishes G1 and G2.188

H1 H2

Figure 3: H1 and H2 are indistinguishable
by neither 1-WL nor SP [41].

Since SP distinguishes a different set of graphs than189

1-WL (see Appendix E for more details), SP-MPNNs190

strictly improve on the expressive power of MPNNs.191

For example, SP-MPNNs (k ≥ 2) can distinguish the192

graphs G1 and G2 shown in Figure 2. Nonetheless,193

the power provided by 1-WL and SP also has limi-194

tations, as neither kernel can distinguish the graphs195

H1 and H2 shown in Figure 3. It is easy to see that196

SP-MPNNs cannot discern H1 and H2 either.197

Unsurprisingly, the choice of k affects expressive power. On one hand, k = n− 1 allows SP-MPNNs198

to replicate SP, whereas setting k = 1 reduces them to MPNNs. Also note that the expressive power199

of SP-MPNNs cannot be completely characterized within the WL hierarchy since, e.g., H1 and H2,200

which cannot be distinguished by SP-MPNNs, can be distinguished by folklore 2-WL. In practice,201

the optimal k relates to the problem radius of the prediction task [15]: A higher k value (k > 1) is not202

helpful for predicting a local graph property, e.g., neighbor counting, whereas tasks with long-range203

dependencies necessitate and benefit from a higher k.204

Beyond distinguishing graphs, we study the expressive power of SP-MPNNs in terms of the class205

of functions that they can capture, following the logical characterization given by Barceló et al.206

[27]. This characterization is given for node classification and establishes a correspondence between207

first-order formulas and MPNN classifiers. Briefly, a first-order formula ϕ(x) with one free variable208

x can be viewed as a logical node classifier, by interpreting the free variable x as a node u from an209

input graph G, and verifying whether the property ϕ(u) holds in G, i.e., G |= ϕ(u). For instance,210

the formula ϕ(x) = ∃yE(x, y) ∧Red(y) holds when x is interpreted as a node u in G, if and only211

if u has a red neighbor in G. An MPNN M captures a logical node classifier ϕ(x) if M admits212

a parametrization such that for all graphs G and nodes u, M maps (G, u) to true if and only if213

G |= ϕ(u). Barceló et al. [27] show in their Theorem 5.1 that any C2 classifier can be captured by214

an MPNN with a global readout. C2 is the two-variable fragment of the logic C, which extends215

first-order logic with counting quantifiers, e.g., ∃≥m x ϕ(x) for m ∈ N.216

It would be interesting to analogously characterize SP-MPNNs with global readout. To this end, let us217

extend the relational vocabulary with a distinct set of binary shortest path predicates Ei, 2 ≤ i ≤ k,218

such that Ei(u, v) evaluates to true in G if and only if there is a shortest path of length i between u and219

v in G. Let us further denote by C2
k the extension of C2 with such shortest path predicates. Observe220

that C2 ⊊ C2
k: given the graphs G1, G2 from Figure 2, the C2

2 formula ϕ(x) = ∃≥2y E2(x, y)221

evaluates to false on all G1 nodes, and true on all G2 nodes. By contrast, no C2 formula can produce222

different outputs over the nodes of G1, G2, due to a correspondence between 1-WL and C2 [42].223

Through a simple adaptation of Theorem 5.1 of Barceló et al. [27], we obtain the following theorem:224

Theorem 2. Given a k ∈ N, each C2
k classifier can be captured by a SP-MPNN with global readout.225

4 Empirical Evaluation226

In this section, we evaluate (i) SPNs and a small Graphormer model on dedicated synthetic experi-227

ments assessing their information flow contrasting with classical MPNNs; (ii) SPNs on real-world228

graph classification [43, 44] tasks and (iii) a basic relational variant of SPNs, called R-SPN, on229

regression benchmarks [45, 46]. In all experiments, SP-MPNN models achieve state-of-the-art results.230

Further details and additional experiments on MoleculeNet [47, 48] can also be found in the appendix.231

4.1 Experiment: Do all red nodes have at most two blue nodes at ≤ h hops distance?232

In this experiment, we evaluate the ability of SP-MPNNs to handle long-range dependencies, and233

compare against standard MPNNs. Specifically, we consider classification based on counting within234

h-hop neighborhoods: given a graph with node colors including, e.g., red and blue, do all red nodes235

have at most 2 blue nodes within their h-hop neighborhood?236

5

Shortest Path Networks for Graph Property Prediction

Table 1: Results (Accuracy) for SPNs with k = {1, 5} on the h-Proximity benchmarks.

Model 1-Proximity 3-Proximity 5-Proximity 8-Proximity 10-Proximity

GCN 65.0±3.5 50.0±0.0 50.0±0.0 50.1±0.0 49.9±0.0

GAT 91.7±7.7 50.4±1.0 49.9±0.0 50.0±0.0 50.0±0.0

SPN (k = 1) 99.4±0.6 50.5±0.7 50.2±1.0 50.0±0.9 49.8±0.8

SPN (k = 5, L = 2) 96.4±0.8 94.7±1.6 95.8±0.9 96.2±0.6 96.2±0.6

SPN (k = 5, L = 5) 96.9±0.6 95.5±1.6 96.8±0.7 96.8±0.6 96.8±0.6

Graphormer 94.1±2.3 94.7±2.7 95.1±1.8 97.3±1.4 96.8±2.1

This question presents multiple challenges for MPNNs. First, MPNNs must learn to identify the237

two relevant colors in the input graph. Second, they must count color statistics in their long-range238

neighborhoods. The latter is especially difficult, as MPNNs must keep track of all their long-range239

neighbors despite the redundancies stemming from message passing. This setup hence examines240

whether SP-MPNNs enable better information flow than MPNNs, and alleviate over-squashing.241

(a) (b)

Figure 4: Graph (a) has one red node with
three blue neighbors (classified as false).
Graph (b) has one red node with only two
blue neighbors (classified as true).

Data generation. We propose the h-Proximity datasets242

to evaluate long-range information flow in GNNs. In243

h-Proximity, we use a graph structure based on node244

levels, where (i) consecutive level nodes are pairwise245

fully connected, (ii) nodes within a level are pairwise246

disconnected. As a result, these graphs are fully speci-247

fied by their level count l and the level width w, i.e., the248

number of nodes per level. We show a graph pair with249

l = 3, w = 3 in Figure 4.250

Using this structure, we generate pairs of graphs, clas-251

sified as true and false respectively, differing only by252

one edge. More specifically, we generate h-Proximity253

datasets consisting each of 4500 pairs of graphs, for254

h = {1, 3, 5, 8, 10}. Within these datasets, we design255

every graph pair to be at the decision boundary for our256

classification task: the positive graph always has all its red nodes connected exactly to 2 blue nodes257

in its h-hop neighborhood, whereas the negative graph violates the rule by introducing one additional258

edge to the positive graph. We describe our data generation procedure in detail in Appendix D.259

Experimental setup. We use two representative SP-MPNN models: SPN and a small Graphormer260

model. Following Errica et al. [43], we use SPN with batch normalization [49] and a ReLU non-261

linearity following every message passing iteration. We evaluate SPN (k = {1, 5}) and Graphormer262

(max distance 5) and compare with GCN [11] and GAT [13] on h-Proximity (h = {1, 3, 5, 8, 10})263

using the risk assessment protocol by Errica et al. [43]: we fix 10 random splits per dataset, run264

training 3 times per split, and report the average of the best results across the 10 splits. For GCN,265

GAT and SPN (k = 1), we experiment with T = {1, 3, 5, 8, 10} message passing layers such that266

T ≥ h (so as to eliminate any potential under-reaching), whereas we use T = {2, . . . , 5} for SPN267

(k = 5) and T = {1, . . . , 5} for Graphormer. Across all our models, we adopt the same pooling268

mechanism from Errica et al. [43], based on layer output addition: for T message passing iterations,269

the pooled representation is given by
∑T

i=1

∑
u∈V Wih

(i−1)
u , where Wi are learnable layer-specific270

linear maps. Furthermore, we represent node colors with learnable embeddings. Finally, we use271

analogous hyperparameter tuning grids across all models for fairness, and set an identical embedding272

dimensionality of 64. Further details on hyper-parameter setup can be found in Appendix E.273

Results. Experimental results are shown in Table 1. MPNNs all exceed 50% on 1-Proximity, but274

fail on higher h values, whereas SPN (k = 5) is strong across all h-Prox datasets, with an average275

accuracy of 96.1% with two layers, and 96.6% with 5 layers. Hence, SPN successfully detects276

higher-hop neighbors, remains strong even when h > k, and improves with more layers. Graphormer277

also improves as h increases, but is more unstable, as evidenced by its higher standard deviations.278

Both these findings show that SP-MPNN models relatively struggle to identify the local pattern in279

1-Prox given their generality, but ultimately are very successful on higher h-Prox datasets. Conversely,280

standard MPNNs only perform well on 1-Proximity, where blue nodes are directly accessible, and281

6

Shortest Path Networks for Graph Property Prediction

Table 2: Results (Accuracy) for SPN (k = {1, 5, 10}) and competing models on chemical graph
classification benchmarks. Other model results reported from Errica et al. [43].

Dataset D&D NCI1 PROTEINS ENZYMES

Baseline 78.4±4.5 69.8±2.2 75.8±3.7 65.2±6.4

DGCNN [54] 76.6±4.3 76.4±1.7 72.9±3.5 38.9±5.7

DiffPool [55] 75.0±3.5 76.9±1.9 73.7±3.5 59.5±5.6

ECC [56] 72.6±4.1 76.2±1.4 72.3±3.4 29.5±8.2

GIN [12] 75.3±2.9 80.0±1.4 73.3±4.0 59.6±4.5

GraphSAGE [7] 72.9±2.0 76.0±1.8 73.0±4.5 58.2±6.0

SPN (k = 1) 72.7±2.6 80.0±1.5 71.0±3.7 67.5±5.5

SPN (k = 5) 77.4±3.8 78.6±1.7 74.2±2.7 69.4±6.2

SPN (k = 10) 77.8±4.0 78.2±1.2 74.5±3.2 67.9±6.7

struggle beyond this. Hence, message passing does not reliably relay long-range information due to282

over-squashing and the high connectivity of h-Proximity graphs.283

Interestingly, SPN (k = 1), or equivalently GIN, solves 1-Prox almost perfectly, whereas GAT284

performs slightly worse (92%), and GCN struggles (65%). This substantial variability stems from285

model aggregation choices: GIN uses sum aggregation and an MLP, and this offers maximal injective286

power. However, GAT is less injective, and effectively acts as a maximum function, which drops287

node cardinality information. Finally, GCN normalizes all messages based on node degrees, and thus288

effectively averages incoming signal and discards cardinality information.289

Crucially, the basic SPN model successfully solves h-Prox, and is also more stable and efficient290

than Graphormer, since it only considers shortest path neighborhoods up to k, whereas Graphormer291

considers all-pair message passing and uses attention. Hence, SPN runs faster and is less suspectible292

to noise, while also being a representative SP-MPNN model, not relying on sophisticated components.293

For feasibility, we will solely focus on SPNs throughout the remainder of this experimental study.294

4.2 Graph Classification295

In this experiment, we evaluate SPNs on chemical graph classification benchmarks D&D [50],296

PROTEINS [51], NCI1 [52], and ENZYMES [53].297

Experimental setup. We evaluate SPN (k = {1, 5, 10}) on all four chemical datasets. We also298

follow the risk assessment protocol [43], and use its provided data splits. When training SPN models,299

we follow the same hyperparameter tuning grid as GIN [43], but additionally include a learning rate300

of 10−4, as original learning rate choices were artificially limiting GIN on ENZYMES.301

Results. The SPN results on the chemical datasets are shown in Table 2. Here, using k = 5 and302

k = 10 yields significant improvements on D&D and PROTEINS. Furthermore, SPN (k = {5, 10})303

performs strongly on ENZYMES, surpassing all reported results, and is competitive on NCI1. These304

results are very encouraging, and reflect the robustness of the model. Indeed, NCI1 and ENZYMES305

have limited reliance on higher-hop information, whereas D&D and PROTEINS rely heavily on this306

information, as evidenced by earlier WL and SP results [57, 58]. This aligns well with our findings,307

and shows that SPNs effectively use shortest paths and perform strongly where the SP kernel is strong.308

Conversely, on NCI1 and ENZYMES, where 1-WL is strong, these models also maintain strong309

performance. Hence, SPNs robustly combine the strengths of both SP and 1-WL, even when higher310

hop information is noisy, e.g., for larger values of k.311

4.3 Graph Regression312

Model setup. We define a multi-relational version of SPNs, namely R-SPN as follows:313

h(t+1)
u = (1 + ϵ)MLPs(h

(t)
u) + α1

R∑
j=1

∑
rj(u,v)

MLPj(h
(t)
v) +

k∑
i=2

αi

∑
v∈Ni(x)

MLPh(h
(t)
v),

where R is a set of relations r1, ..., rR, with corresponding relational edges ri(x, y). Essentially,314

R-SPN introduces multi-layer perceptrons MLP1, ...,MLPR to transform the input with respect to315

7

Shortest Path Networks for Graph Property Prediction

Table 3: Results (MAE) for R-SPN (k = {1, 5, 10}, T = 8) and competing models on QM9. Other
model results, along with their fully adjacent (FA) extensions are as previously reported [15]. Average
relative improvement by R-SPN versus the best GNN and FA result are shown in the last two rows.

Property R-GIN R-GAT GGNN R-SPN

base +FA base +FA base +FA k = 1 k = 5 k = 10

mu 2.64±0.11 2.54±0.09 2.68±0.11 2.73±0.07 3.85±0.16 3.53±0.13 3.59±0.01 2.25±0.17 2.32±0.20

alpha 4.67±0.52 2.28±0.04 4.65±0.44 2.32±0.16 5.22±0.86 2.72±0.12 6.74±0.15 1.86±0.06 1.82±0.02

HOMO 1.42±0.01 1.26±0.02 1.48±0.03 1.43±0.02 1.67±0.07 1.45±0.04 2.00±0.01 1.27±0.03 1.32±0.07

LUMO 1.50±0.09 1.34±0.04 1.53±0.07 1.41±0.03 1.74±0.06 1.63±0.06 2.11±0.02 1.23±0.03 1.26±0.06

gap 2.27±0.09 1.96±0.04 2.31±0.06 2.08±0.05 2.60±0.06 2.30±0.05 2.95±0.02 1.89±0.06 1.94±0.08

R2 15.63±1.40 12.61±0.37 52.39±42.515.76±1.17 35.94±35.714.33±0.47 22.41±0.64 10.80±0.60 10.82±1.30

ZPVE 12.93±1.81 5.03±0.36 14.87±2.88 5.98±0.43 17.84±3.61 5.24±0.30 29.16±1.14 3.34±0.16 2.73±0.05

U0 5.88±1.01 2.21±0.12 7.61±0.46 2.19±0.25 8.65±2.46 3.35±1.68 13.39±0.37 1.15±0.05 0.96±0.02

U 18.71±23.36 2.32±0.18 6.86±0.53 2.11±0.10 9.24±2.26 2.49±0.34 13.61±0.73 1.32±0.04 0.96±0.04

H 5.62±0.81 2.26±0.19 7.64±0.92 2.27±0.29 9.35±0.96 2.31±0.15 13.65±0.63 1.20±0.05 1.02±0.06

G 5.38±0.75 2.04±0.24 6.54±0.36 2.07±0.07 7.14±1.15 2.17±0.29 12.22±0.71 1.06±0.07 0.94±0.03

Cv 3.53±0.37 1.86±0.03 4.11±0.27 2.03±0.14 8.86±9.07 2.25±0.20 5.45±0.24 1.42±0.05 1.31±0.03

Omega 1.05±0.11 0.80±0.04 1.48±0.87 0.73±0.04 1.57±0.53 0.87±0.09 2.90±0.06 0.55±0.01 0.55±0.02

vs best GNNs: +86.3% −50.2% −51.1%
vs best FA models: +270% −24.4% −28.1%

each relation, as well as a self-loop relation rs, encoded by MLPs, to process the updating node. For316

higher hop neighbors, R-SPN introduces a relation type rh, encoded by MLPh. R-SPN emulates the317

R-GIN model [45] at the first hop level, and treats higher hops as an additional edge type.318

Experimental setup. We evaluate R-SPN (k = {1, 5, 10}) on the 13 properties of the QM9 dataset319

[46] following the splits and protocol (5 reruns per split) of GNN-FiLM [45]. We train using mean320

squared error (MSE) and report mean absolute error (MAE) on the test set. We compare R-SPN321

against GNN-FiLM models, as well as their fully adjacent (FA) layer variants [15]. For fairness,322

we only report results with T = 8 layers, a learning rate of 0.001, a batch size of 128 and 128-323

dimensional embeddings. However, we conduct a depth analysis including results with T = {4, 6} to324

study the robustness of R-SPN in the appendix. Finally, due to the reported and observed instability325

of the original R-GIN setup (layer norm, residual connections)[45], we use the simpler pooling and326

update setup from SPNs with our R-SPNs.327

Results. The results of R-SPN on all 13 properties of QM9 are shown in Table 3. In these results,328

R-SPN (k = 1) performs worse than the reported R-GIN, and this is expected given its relative329

simplicity, e.g., no residual connections, no layer norm. However, R-SPNs with k = {5, 10} perform330

very strongly, comfortably surpassing the best MPNNs and their FA counterparts. In fact, R-SPN331

(k = 10) reduces the average MAE across all properties by over 28%. Interestingly, improvement332

varies across QM9 properties. On the first five properties, R-SPN (k = 10) yields an average relative333

error reduction of 8.5%, whereas this reduction exceeds 50% for U0, U, H, and G. This indicates that334

properties variably rely on higher-hop information, with the latter properties benefiting far more from335

higher k. All in all, these results highlight that R-SPNs not only effectively alleviate over-squashing,336

but also provide a strong inductive bias to improve model performance.337

2 4 6 8 10
0

20

40

(a) QM9 Diameter distribution

Pe
rc

en
ta

ge
(%

)

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

(b) U0 average weights (αi)

W
ei

gh
t

Layer 1
Layer 8

Figure 5: Histograms for R-SPN model analysis.

Analyzing the model. To better under-338

stand model behavior, we inspect the av-339

erage learned hop weights (across 5 train-340

ing runs) within the first and last layers of341

R-SPN (k = 10), T = 8 on the U0 prop-342

erty. We show the diameter distribution of343

QM9 graphs in Figure 5(a), and the learned344

weights in Figure 5(b).345

Despite their small size (∼18 nodes on av-346

erage), most QM9 graphs have a diameter347

of 6 or larger, which confirms the need for348

long-range information flow. This is further349

evidenced by the weights α1, . . . , α10, which are non-uniform and significant for higher hops, es-350

8

Shortest Path Networks for Graph Property Prediction

pecially within the first layer. Hence, R-SPN learns non-trivial hop aggregations. Interestingly, the351

weights at layers 1 and 8 are very different, which indicates that R-SPN learns sophisticated node rep-352

resentations, based on distinct layer-wise weighted hop aggregations. Therefore, the learned weights353

on U0 highlight non-trivial processing of hop neighborhoods within QM9, diverging significantly354

from FA layers and better exploiting higher hop information.355

5 Related Work356

The over-squashing phenomenon was first identified by Alon and Yahav [15]: applying message357

passing on direct node neighborhoods potentially leads to an exponentially growing amount of358

information being “squashed” into constant-sized embedding vectors, as the number of iterations359

increases. One approach to alleviate over-squashing is to “rewire” graphs, so as to connect relevant360

nodes (in a new graph) and shorten propagation distances to minimize bottlenecks. For instance,361

adding a fully adjacent final layer [45] naïvely connecting all node pairs yields substantial error362

reductions on QM9 [15]. DIGL [59] performs rewiring based on random walks, so as to establish363

connections between nodes which have small diffusion distance [60]. More recently, the Stochastic364

Discrete Ricci Flow [39] algorithm considers Ricci curvature over the input graph, where negative365

curvature indicates an information bottleneck, and introduces edges at negatively curved locations.366

Instead of rewiring the input graphs, our study suggests better information flow for models which367

exploit multi-hop information through a dedicated, more general, message passing framework.368

We therefore build on a rich line of work that exploits higher-hop information within MPNNs369

[16, 17, 24, 25, 61–63]. Closely related to SP-MPNNs, the models N-GCN [16] and MixHop [17]370

use normalized powers of the graph adjacency matrix to access nodes up to k hops away. Differently,371

however, these hops are not partitioned based on shortest paths as in SP-MPNNs, but rather are372

computed using powers of the adjacency matrix. Hence, this approach does not shrink the exponential373

receptive field of MPNNs, and in fact amplifies the signals coming from highly connected and nearer374

nodes, due to potentially redundant messages. To make this concrete, consider the graph from375

Figure 1: using k = 3 with adjacency matrix powers implies that each orange node has one third of376

the weight of a green node when aggregating at the white node. Intuitively, this is because the same377

nodes are repeatedly seen at different hops, which is not the case with shortest-path neighborhoods.378

Our work closely resembles approaches which aggregate nodes based on shortest path distances.379

For instance, k-hop GNNs [25] compute the k-hop shortest path sub-graph around each node, and380

propagate and combine messages inward from hop k nodes to the updating node. However, this381

message passing still suffers from over-squashing, as, e.g., the signal from orange nodes in Figure 1382

is squashed across k iterations, mixing with other messages, before reaching the white node. In383

contrast, SP-MPNNs enable distant neighbors to communicate directly with the updating node, which384

alleviates over-squashing significantly. Graphormer [23] builds on transformer approaches over385

graphs [18–20] and augments their all-pairs attention mechanism with shortest path distance-based386

bias. Graphormer is an instance of SP-MPNNs, and effectively exploits graph structure, but its387

attention still imposes a quadratic overhead, limiting its feasibility in practice. Similarly to MPNNs,388

our framework acts as a unifying framework for models based on shortest path message passing, and389

allows to precisely characterize their expressiveness and propagation properties (e.g., the theorems in390

Section 3 immediately apply to Graphormers).391

Other approaches are proposed in the literature to exploit distant nodes in the graph, such as path-392

based convolution models [64, 65] and random walk approaches. Among the latter, DeepWalk393

[62] uses sampled random walks to learn node representations that maximize walk co-occurrence394

probabilities across node pairs. Similarly, random walk GNNs [61] compare input graphs with395

learnable “hidden” graphs using random walk-based similarity [63]. Finally, NGNNs [24], use a396

nested message passing structure, where representations are first learned by message passing within a397

k-hop rooted sub-graph, and then used for standard graph-level message passing.398

6 Summary and Outlook399

We presented the SP-MPNN framework, which enables direct message passing between nodes and400

their distant hop neighborhoods based on shortest paths, and showed that it improves on MPNN401

representation power and alleviates over-squashing. We then empirically validated this framework on402

the synthetic Proximity datasets and on real-world graph classification and regression benchmarks.403

9

Shortest Path Networks for Graph Property Prediction

References404

[1] Jonathan Shlomi, Peter Battaglia, and Jean-Roch Vlimant. Graph neural networks in particle405

physics. Machine Learning: Science and Technology, 2(2):021001, 2021. 1406

[2] Peter W. Battaglia, Razvan Pascanu, Matthew Lai, Danilo Jimenez Rezende, and Koray407

Kavukcuoglu. Interaction networks for learning about objects, relations and physics. In408

Proceedings of the Twenty-Ninth Annual Conference on Advances in Neural Information Pro-409

cessing Systems, NIPS, pages 4502–4510, 2016. 1410

[3] David Duvenaud, Dougal Maclaurin, Jorge Aguilera-Iparraguirre, Rafael Gómez-Bombarelli,411

Timothy Hirzel, Alán Aspuru-Guzik, and Ryan P. Adams. Convolutional networks on graphs412

for learning molecular fingerprints. In Proceedings of the Twenty-Eighth Annual Conference on413

Advances in Neural Information Processing Systems, NIPS, pages 2224–2232, 2015. 1414

[4] Steven M. Kearnes, Kevin McCloskey, Marc Berndl, Vijay S. Pande, and Patrick Riley. Molecu-415

lar graph convolutions: moving beyond fingerprints. Journal of Computer Aided Molecular416

Design, 30(8):595–608, 2016. 1417

[5] Marinka Zitnik, Monica Agrawal, and Jure Leskovec. Modeling polypharmacy side effects with418

graph convolutional networks. Bioinformatics, 34(13):i457–i466, 2018. 1419

[6] Alex Fout, Jonathon Byrd, Basir Shariat, and Asa Ben-Hur. Protein interface prediction using420

graph convolutional networks. In Proceedings of the Thirtieth Annual Conference on Advances421

in Neural Information Processing Systems, NIPS, pages 6530–6539, 2017. 1422

[7] William L. Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large423

graphs. In Proceedings of the Thirtieth Annual Conference on Advances in Neural Information424

Processing Systems, NIPS, pages 1024–1034, 2017. 1, 7425

[8] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini.426

The graph neural network model. IEEE Transactions on Neural Networks, 20(1):61–80, 2009.427

1, 2428

[9] Marco Gori, Gabriele Monfardini, and Franco Scarselli. A new model for learning in graph429

domains. In Proceedings of the 2005 IEEE International Joint Conference on Neural Networks,430

IJCNN, volume 2, pages 729–734, 2005. 1, 2431

[10] Peter W. Battaglia, Jessica B. Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinícius Flo-432

res Zambaldi, Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan433

Faulkner, Çaglar Gülçehre, H. Francis Song, Andrew J. Ballard, Justin Gilmer, George E. Dahl,434

Ashish Vaswani, Kelsey R. Allen, Charles Nash, Victoria Langston, Chris Dyer, Nicolas Heess,435

Daan Wierstra, Pushmeet Kohli, Matthew Botvinick, Oriol Vinyals, Yujia Li, and Razvan Pas-436

canu. Relational inductive biases, deep learning, and graph networks. CoRR, abs/1806.01261,437

2018. 1, 2438

[11] Thomas Kipf and Max Welling. Semi-supervised classification with graph convolutional439

networks. In Proceedings of the Fifth International Conference on Learning Representations,440

ICLR, 2017. 1, 2, 3, 6441

[12] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural442

networks? In Proceedings of the Seventh Annual Conference on Learning Representations,443

ICLR, 2019. 2, 3, 5, 7, 17444

[13] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua445

Bengio. Graph attention networks. In Proceedings of the Sixth International Conference on446

Learning Representations, ICLR, 2018. 1, 2, 3, 6447

[14] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl. Neural448

message passing for quantum chemistry. In Proceedings of the Thirty-Fourth International449

Conference on Machine Learning, ICML, pages 1263–1272, 2017. 1, 2450

[15] Uri Alon and Eran Yahav. On the bottleneck of graph neural networks and its practical451

implications. In Proceedings of the Ninth International Conference on Learning Representations,452

ICLR, 2021. 1, 3, 4, 5, 8, 9, 20453

[16] Sami Abu-El-Haija, Amol Kapoor, Bryan Perozzi, and Joonseok Lee. N-GCN: multi-scale454

graph convolution for semi-supervised node classification. In Proceedings of the Thirty-Fifth455

Conference on Uncertainty in Artificial Intelligence, UAI, pages 841–851, 2019. 1, 2, 9456

10

Shortest Path Networks for Graph Property Prediction

[17] Sami Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Nazanin Alipourfard, Kristina Lerman, Hrayr457

Harutyunyan, Greg Ver Steeg, and Aram Galstyan. Mixhop: Higher-order graph convolutional458

architectures via sparsified neighborhood mixing. In Proceedings of the Thirty-Sixth Interna-459

tional Conference on Machine Learning, ICML, volume 97 of Proceedings of Machine Learning460

Research, pages 21–29, 2019. 1, 2, 9461

[18] Seongjun Yun, Minbyul Jeong, Raehyun Kim, Jaewoo Kang, and Hyunwoo J. Kim. Graph462

transformer networks. In Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Florence463

d’Alché-Buc, Emily B. Fox, and Roman Garnett, editors, Proceedings of the Thirty-Second464

Annual Conference on Advances in Neural Information Processing Systems, NeurIPS, pages465

11960–11970, 2019. 1, 9466

[19] Devin Kreuzer, Dominique Beaini, William L. Hamilton, Vincent Létourneau, and Prudencio467

Tossou. Rethinking graph transformers with spectral attention. In Marc’Aurelio Ranzato,468

Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan, editors,469

Proceedings of the Thirty-Fourth Annual Conference on Advances in Neural Information470

Processing Systems, NeurIPS, pages 21618–21629, 2021.471

[20] Zhanghao Wu, Paras Jain, Matthew A. Wright, Azalia Mirhoseini, Joseph E. Gonzalez, and Ion472

Stoica. Representing long-range context for graph neural networks with global attention. In473

Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wort-474

man Vaughan, editors, Proceedings of the Thirty-Fourth Annual Conference on Advances in475

Neural Information Processing Systems, NeurIPS, pages 13266–13279, 2021. 1, 9476

[21] Pan Li, Yanbang Wang, Hongwei Wang, and Jure Leskovec. Distance encoding: Design477

provably more powerful neural networks for graph representation learning. In Hugo Larochelle,478

Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin, editors, Pro-479

ceedings of the Thirty-Third Annual Conference on Advances in Neural Information Processing480

Systems, NeurIPS, 2020. 1481

[22] Yiding Yang, Xinchao Wang, Mingli Song, Junsong Yuan, and Dacheng Tao. SPAGAN:482

shortest path graph attention network. In Sarit Kraus, editor, Proceedings of the Twenty-Eighth483

International Joint Conference on Artificial Intelligence, IJCAI, pages 4099–4105. ijcai.org,484

2019.485

[23] Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming486

Shen, and Tie-Yan Liu. Do transformers really perform badly for graph representation? In487

Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wort-488

man Vaughan, editors, Proceedings of the Thirty-Fourth Annual Conference on Advances in489

Neural Information Processing Systems, NeurIPS, pages 28877–28888, 2021. 1, 2, 4, 9490

[24] Muhan Zhang and Pan Li. Nested graph neural networks. In Proceedings of the Thirty-Fifth491

Annual Conference on Advanced in Neural Information Processing Systems, NeurIPS, pages492

15734–15747, 2021. 2, 9493

[25] Giannis Nikolentzos, George Dasoulas, and Michalis Vazirgiannis. k-hop graph neural networks.494

Neural Networks, 130:195–205, 2020. 2, 9495

[26] Christopher Morris, Martin Ritzert, Matthias Fey, William L. Hamilton, Jan Eric Lenssen,496

Gaurav Rattan, and Martin Grohe. Weisfeiler and Leman go neural: Higher-order graph neural497

networks. In Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI,498

pages 4602–4609, 2019. 2, 3499

[27] Pablo Barceló, Egor V. Kostylev, Mikaël Monet, Jorge Pérez, Juan L. Reutter, and Juan Pablo500

Silva. The logical expressiveness of graph neural networks. In Proceedings of the Eighth501

International Conference on Learning Representations, ICLR, 2020. 2, 5, 17, 18, 19502

[28] Andreas Loukas. What graph neural networks cannot learn: depth vs width. In Proceedings of503

the Eighth International Conference on Learning Representations, ICLR, 2020. 3504

[29] Ryoma Sato, Makoto Yamada, and Hisashi Kashima. Random features strengthen graph neural505

networks. In Proceedings of the 2021 SIAM International Conference on Data Mining, SDM,506

pages 333–341, 2021. 3507

[30] Ralph Abboud, İsmail İlkan Ceylan, Martin Grohe, and Thomas Lukasiewicz. The surprising508

power of graph neural networks with random node initialization. In Proceedings of the Thirtieth509

International Joint Conference on Artificial Intelligence, IJCAI, pages 2112–2118, 2021. 3, 20510

11

Shortest Path Networks for Graph Property Prediction

[31] Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, and Yaron Lipman. Provably powerful511

graph networks. In Proceedings of the Thirty-Second Annual Conference on Advances in Neural512

Information Processing Systems, NeurIPS, pages 2153–2164, 2019. 3513

[32] Haggai Maron, Ethan Fetaya, Nimrod Segol, and Yaron Lipman. On the universality of invariant514

networks. In Proceedings of the Thirty-Sixth International Conference on Machine Learning,515

ICML, pages 4363–4371, 2019.516

[33] Nicolas Keriven and Gabriel Peyré. Universal invariant and equivariant graph neural networks.517

In Proceedings of the Thirty-Second Annual Conference on Advances in Neural Information518

Processing Systems, NeurIPS, pages 7090–7099, 2019. 3519

[34] Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional networks520

for semi-supervised learning. In Proceedings of the Thirty-Second AAAI Conference on Artificial521

Intelligence, AAAI, pages 3538–3545, 2018. 3522

[35] Kenta Oono and Taiji Suzuki. Graph neural networks exponentially lose expressive power523

for node classification. In Proceedings of the Eighth International Conference on Learning524

Representations, ICLR, 2020. 3525

[36] Ryan L. Murphy, Balasubramaniam Srinivasan, Vinayak A. Rao, and Bruno Ribeiro. Rela-526

tional pooling for graph representations. In Kamalika Chaudhuri and Ruslan Salakhutdinov,527

editors, Proceedings of the Thirty-Sixth International Conference on Machine Learning, ICML,528

volume 97 of Proceedings of Machine Learning Research, pages 4663–4673, 2019. 3529

[37] Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor K. Prasanna.530

Graphsaint: Graph sampling based inductive learning method. In Proceedings of the Eighth531

International Conference on Learning Representations, ICLR, 2020. 3532

[38] Hanqing Zeng, Muhan Zhang, Yinglong Xia, Ajitesh Srivastava, Andrey Malevich, Rajgopal533

Kannan, Viktor K. Prasanna, Long Jin, and Ren Chen. Decoupling the depth and scope of graph534

neural networks. In Proceedings of the Thirty-Fifth Annual Conference on Advanced in Neural535

Information Processing Systems, NeurIPS, pages 19665–19679, 2021. 3536

[39] Jake Topping, Francesco Di Giovanni, Benjamin Paul Chamberlain, Xiaowen Dong, and537

Michael M. Bronstein. Understanding over-squashing and bottlenecks on graphs via curvature.538

In Proceedings of the Tenth International Conference on Learning Representations, ICLR, 2022.539

4, 9, 20540

[40] Karsten M. Borgwardt and Hans-Peter Kriegel. Shortest-path kernels on graphs. In Proceedings541

of the 5th IEEE International Conference on Data Mining, ICDM, pages 74–81, 2005. 4542

[41] Nils M. Kriege, Christopher Morris, Anja Rey, and Christian Sohler. A property testing543

framework for the theoretical expressivity of graph kernels. In Proceedings of the Twenty-544

Seventh International Joint Conference on Artificial Intelligence, IJCAI, pages 2348–2354,545

2018. 5546

[42] Jin-yi Cai, Martin Fürer, and Neil Immerman. An optimal lower bound on the number of547

variables for graph identifications. Combinatorica, 12(4):389–410, 1992. 5548

[43] Federico Errica, Marco Podda, Davide Bacciu, and Alessio Micheli. A fair comparison of graph549

neural networks for graph classification. In Proceedings of the Eighth Annual Conference on550

Learning Representations, ICLR, 2020. 5, 6, 7, 22551

[44] Christopher Morris, Nils M. Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion552

Neumann. Tudataset: A collection of benchmark datasets for learning with graphs. CoRR,553

abs/2007.08663, 2020. 5554

[45] Marc Brockschmidt. GNN-FiLM: Graph neural networks with feature-wise linear modulation.555

In Proceedings of the Thirty-Seventh International Conference on Machine Learning, ICML,556

volume 119 of Proceedings of Machine Learning Research, pages 1144–1152, 2020. 5, 8, 9557

[46] Raghunathan Ramakrishnan, Pavlo O Dral, Matthias Rupp, and O Anatole Von Lilienfeld.558

Quantum chemistry structures and properties of 134 kilo molecules. Scientific data, 1(1):1–7,559

2014. 5, 8560

[47] Zhenqin Wu, Bharath Ramsundar, Evan N Feinberg, Joseph Gomes, Caleb Geniesse, Aneesh S561

Pappu, Karl Leswing, and Vijay Pande. Moleculenet: a benchmark for molecular machine562

learning. Chemical science, 9(2):513–530, 2018. 5, 23563

12

Shortest Path Networks for Graph Property Prediction

[48] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele564

Catasta, and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs.565

In Proceedings of the Thirty-Third Annual Conference on Advances in Neural Information566

Processing Systems, NeurIPS, pages 22118–22133, 2020. 5, 23, 24567

[49] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by568

reducing internal covariate shift. In Proceedings of the Thirty-Second International Conference569

on Machine Learning, ICML, volume 37 of JMLR Workshop and Conference Proceedings,570

pages 448–456, 2015. 6, 23571

[50] Paul D Dobson and Andrew J Doig. Distinguishing enzyme structures from non-enzymes572

without alignments. Journal of Molecular Biology, 330(4):771–783, 2003. 7573

[51] Karsten M. Borgwardt, Cheng Soon Ong, Stefan Schönauer, S. V. N. Vishwanathan, Alexander J.574

Smola, and Hans-Peter Kriegel. Protein function prediction via graph kernels. In Proceedings575

Thirteenth International Conference on Intelligent Systems for Molecular Biology, ISMB, pages576

47–56, 2005. 7577

[52] Nikil Wale, Ian A. Watson, and George Karypis. Comparison of descriptor spaces for chemical578

compound retrieval and classification. Knowledge and Information Systems, 14(3):347–375,579

2008. 7580

[53] Ida Schomburg, Antje Chang, Christian Ebeling, Marion Gremse, Christian Heldt, Gregor Huhn,581

and Dietmar Schomburg. Brenda, the enzyme database: updates and major new developments.582

Nucleic Acids Research, 32(Database-Issue):431–433, 2004. 7583

[54] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma, Michael M. Bronstein, and Justin M.584

Solomon. Dynamic graph CNN for learning on point clouds. ACM Transactions on Graphics,585

38(5):146:1–146:12, 2019. 7586

[55] Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, William L. Hamilton, and Jure587

Leskovec. Hierarchical graph representation learning with differentiable pooling. In Proceedings588

of the Thirty-First Annual Conference on Advances in Neural Information Processsing Systems,589

NeurIPS, pages 4805–4815, 2018. 7590

[56] Martin Simonovsky and Nikos Komodakis. Dynamic edge-conditioned filters in convolu-591

tional neural networks on graphs. In 2017 IEEE Conference on Computer Vision and Pattern592

Recognition, CVPR, pages 29–38, 2017. 7593

[57] Nils M. Kriege, Fredrik D. Johansson, and Christopher Morris. A survey on graph kernels.594

Applied Network Science, 5(1):6, 2020. 7595

[58] Christopher Morris, Gaurav Rattan, and Petra Mutzel. Weisfeiler and leman go sparse: Towards596

scalable higher-order graph embeddings. In Proceedings of the Thirty-Fourth Annual Conference597

on Advances in Neural Information Processing Systems, NeurIPS, pages 21824–21840, 2020. 7598

[59] Johannes Klicpera, Stefan Weißenberger, and Stephan Günnemann. Diffusion improves graph599

learning. In Proceedings of the Thirty-Second Annual Conference on Advances in Neural600

Information Processing Systems, NeurIPS, pages 13333–13345, 2019. 9601

[60] Ronald R Coifman and Stéphane Lafon. Diffusion maps. Applied and computational harmonic602

analysis, 21(1):5–30, 2006. 9603

[61] Giannis Nikolentzos and Michalis Vazirgiannis. Random walk graph neural networks. In Pro-604

ceedings of the Thirty-Third Annual Conference on Advances in Neural Information Processing605

Systems, NeurIPS, pages 16211–16222, 2020. 9606

[62] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: online learning of social repre-607

sentations. In The 20th ACM SIGKDD International Conference on Knowledge Discovery and608

Data Mining, KDD, pages 701–710, 2014. 9609

[63] S. V. N. Vishwanathan, Nicol N. Schraudolph, Risi Kondor, and Karsten M. Borgwardt. Graph610

kernels. Journal of Machine Learning Research, JMLR, 11:1201–1242, 2010. 9611

[64] Zheng Ma, Junyu Xuan, Yu Guang Wang, Ming Li, and Pietro Liò. Path integral based612

convolution and pooling for graph neural networks. In Hugo Larochelle, Marc’Aurelio Ranzato,613

Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin, editors, Proceedings of the Thirty-614

Third Annual Conference on Advances in Neural Information Processing Systems, NeurIPS,615

2020. 9616

13

Shortest Path Networks for Graph Property Prediction

[65] Moshe Eliasof, Eldad Haber, and Eran Treister. pathgcn: Learning general graph spatial617

operators from paths. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvári,618

Gang Niu, and Sivan Sabato, editors, Proceedings of the Thirty-Ninth International Conference619

on Machine Learning, ICML, volume 162 of Proceedings of Machine Learning Research, pages620

5878–5891. PMLR, 2022. 9621

14

Shortest Path Networks for Graph Property Prediction

A Time and Space Complexity of SP-MPNN622

Time complexity. In SP-MPNNs, message passing requires the shortest path neighborhoods up623

to the threshold of k hops to be computed in advance. In the worst case, this computation reduces624

to computing the all-pairs unweighted shortest paths over the input graph, which can be done in625

O(|V ||E|) using breadth-first search (BFS). Importantly, this computation is only required once,626

and the determined neighborhoods can subsequently be re-used at no additional cost. Hence, this627

overhead can be considered as a pre-computation which does not affect the online running time628

of the model. Given all-pairs unweighted shortest paths, SP-MPNNs perform aggregations over a629

worst-case O(|V |2) elements as it considers all pairs of nodes, analogously to MPNNs over a fully630

connected graph. In the average case, the running time of SP-MPNNs depends on the size of nodes’631

k-hop neighborhoods, which are typically larger than their direct neighborhoods. However, this632

increase in average aggregation size is alleviated in practice as SP-MPNNs can aggregate across633

all k hop neighborhoods in parallel. Therefore, SP-MPNN models typically run efficiently and can634

feasibly be applied to common graph classification and regression benchmarks, despite considering a635

richer neighborhood than standard MPNNs.636

Space complexity. As with MPNNs , SP-MPNNs only require O(|V |) node representations to637

be stored and updated at every iteration. The space complexity in terms of model parametrization638

then depends on choices for AGGi and COM. In the worst case, with k distinct parametrized AGGi639

functions, e.g., k distinct neural networks, SP-MPNNs store O(k) parameter sets. By contrast, using640

a uniform aggregation across hops yields an analogous space complexity as MPNNs.641

B Proof of Proposition 1642

We first recall the proposition:643

Proposition 1. A Graphormer with a maximum shortest path length of M is an instance of SP-MPNN644

(k = M − 1) with global readout.645

We now briefly describe the Graphormer model over simple, undirected, connected graphs without646

edge types. Given an input graph G, Graphormers perform the following steps:647

1. Apply a centrality encoding to initial node embeddings h(0)
u . Formally, for a node u ∈ G with648

degree deg(u), i.e., number of direct neighbor nodes, between 0 and a pre-set maximum degree649

N , the centrality encoding computes a refined representation h′(0)
u as:650

h′(0)
u = h′(0)

u + Z[deg(u)],

where Z ∈ RN+1×d is a look-up embedding table, d denotes the embedding dimensionality,651

and Z[i] denotes the ith row of Z.652

2. Iteratively update node embedding using a spatial encoding based on shortest path distances.653

Formally, for a pair of nodes u, v ∈ G (which could be identical), an attention score function is654

computed using a module AttScore(h(t)
u ,h

(t)
v), e.g., self-attention. Then, a bias term, based on655

the shortest path length between u and v, ρ(u, v) is obtained through a scalar look-up vector656

b ∈ RM+1. Then, the attention score for a given pair of nodes is given by657

AttScore’(h(t)
u ,h(t)

v) = AttScore(h(t)
u ,h(t)

v) + b[ρ(u, v)].

Note that in Graphormer, nodes with a distance greater than M to u are clamped to the same658

scalar, i.e., for ρ(u, v) ≥ M , b[ρ(u, v)] = b[M]. Node updates are then computed by normaliz-659

ing all AttScore’ for a given node u using the softmax function, and computing the following660

update:661

h(t+1)
u =

∑
v∈G

Softmaxv
(
AttScore’(h(t)

u ,h(t)
v)

)
Transform(h(t)

v),

where Transform denotes a transformation function that applies to node embeddings prior to662

weighted averaging, namely multiplication by a linear matrix.663

Proof. We now reconstruct the above Graphormer using a heterogeneous SP-MPNN(k = M − 1)664

with global readout as follows.665

15

Shortest Path Networks for Graph Property Prediction

Centrality encoding. We can capture the centrality encoding through a simple first SP-MPNN layer,666

where aggregation functions AGGu,2, . . . ,AGGu,k all return 0, and where AGGu,1 = Z[|N1(u)],667

i.e., we perform an analogous look-up table process to compute node degrees through the AGG1668

component. As a result, h(1)
u in our SP-MPNN is equivalent to h′(0)

u in Graphormer.669

Spatial encoding. To reconstruct the spatial encoding layer, we use an SP-MPNN layer with global670

readout with the following functions:671

1. Readout:672

READ(h(t)
u , {{h(t)

v | v ∈ G}}) = r0 || r1,

where || denotes the concatenation operation, r0 =
∑

v∈G eAttScore’(h(t)
u ,h(t)

v +b[M]) is673

simply the scalar (i.e., R1) normalization constant for the softmax function and674

r1 =
∑

v∈G

(
eAttScore’(h(t)

u ,h(t)
v bM)Transform(h(t)

v)
)

is the un-normalized uniform attention ag-675

gregation under consistent M -hop bias (r1 ∈ Rd).676

2. Aggregation functions: For i ∈ {1, . . . ,M − 1}677

AGGu,i = ai,0 || ai,1,

where ai,0 =
∑

v∈Ni(u)
eb[i] − eb[M] and ai,1 =

∑
v∈Ni(u)

(
(eb[i] − eb[M])Transform(h

(t)
v)

)
.678

These terms will be used by the combine function to adapt the uniform attention computed by679

readout to consider distance-specific biases.680

3. Combine functions: First, the combine function computes analogous terms as the read-681

out and aggregation functions on h
(t)
u . That is, it computes c0 = eb[0] − eb[M] and682

c1 = (eb[0] − eb[M])Transform(h
(t)
u). Finally, the overall update is computed as follows:683

h(t+1)
u =

r1 + a1,1 + . . .+ aM−1,1 + c1
r0 + a1,0 + . . .+ aM−1,0 + c0

.

Hence, a Graphormer model using shortest path distances up to M over simple, undirected, connected684

graphs can be emulated by an SP-MPNN(k = M − 1) with global readout, as required.685

686

C Proof of Theorem 1687

We first recall the theorem statement:688

Theorem 1. Let G1, G2 be two non-isomorphic graphs. There exists a SP-MPNN M : G → R, such689

that M(G1) ̸= M(G2) if either 1-WL distinguishes G1 and G2, or SP distinguishes G1 and G2.690

Proof. Let n ∈ N+ be the maximum number of nodes between G1 and G2. We define a heteroge-691

neous SP-MPNN model M using L = n+ 1 layers with distance parameter set to k = n− 1. The692

first layer of M is defined as:693

h(1)
u = COM(0)(h(0)

u ,AGG(0)
u,1, . . . ,AGG(0)

u,n−1)

where h
(0)
u ,h

(1)
u ∈ Rd, COM(0) : Rd+n−1 → Rd is an injective combination function (e.g., an694

MLP), and AGG(0)
u,i = |Ni(u)| are the aggregation functions.695

All the remaining n layers of M are defined as:696

h(t+1)
u = COM(t)(h(t)

u ,AGG(t)
u,1, . . . ,AGG(t)

u,n−1),

where 1 ≤ t < n, COM(t) : Rd+n−1 → Rd and AGG(t)
u,1 are injective functions, and for each i > 1,697

AGG(t)
u,i = 0, i.e., the higher-hop aggregates are ignored in these layers. It is easy to see that these698

layers are equivalent to MPNN layers with injective functions defined as:699

h(t+1)
u = COM(t)(h(t)

u ,AGG(t)
u,1).

16

Shortest Path Networks for Graph Property Prediction

Intuitively, this construction encodes (1) the power of the SP kernel in the first layer of the network,700

and (2) the power of 1-WL using all the remaining layers in the network, which are equivalent to701

MPNN layers. We make a case analysis:702

1. SP distinguishes G1 and G2. The SP kernel computes all pairwise shortest paths between703

all connected pairs of nodes in the graph and compares node-level shortest path statistics, i.e.,704

the histograms of shortest path lengths across G1, G2 node pairs to check for isomorphism. If705

SP distinguishes G1 and G2 then there exists at least one pair of nodes with distinct shortest706

path histograms. Observe that the first layer of M yields at least one pair of distinct node707

representations across non-isomorphic graphs G1 and G2 in this case, since the diameter of708

each graph is at most n− 1 (which matches the choice of k), and COM is an injective function,709

acting directly on the shortest path histogram. All the remaining layers can only further refine710

these graphs (as these layers also define injective mappings). Finally, using an injective pooling711

function after L iterations, we obtain M(G1) ̸= M(G2).712

2. 1-WL distinguishes G1 and G2. Observe that M is identical to an MPNN, excluding the very713

first layer, which can yield further refined node features. Hence, it suffices to show that this714

model is as expressive as 1-WL. This can be done by using an analogous construction to GIN715

(based on injective AGG and COM) [12] for layers 2 to n + 1. In doing so, we effectively716

apply a standard 1-WL expressive MPNN on the more refined features provided by the first717

SP-MPNN layer. Notice that such a construction requires at most n layers (and thus the overall718

SP-MPNN model would have at most n+ 1 layers), as n 1-WL iterations are sufficient to refine719

the node representations over graphs with at most n nodes. Hence, by using a 1-WL expressive720

construction for SP-MPNN layers 2 to n + 1, and following this with an injective pooling721

function, we ensure that M(G1) ̸= M(G2) provided that 1-WL distinguishes G1 and G2.722

Our SP-MPNN construction captures the SP kernel within its first layer by computing shortest path723

histograms, and ensures that node representations across G1 and G2 following this layer are more724

refined and distinct if SP distinguishes both graphs. Then, layers 2 to n+1 explicitly emulate a 1-WL725

MPNN, using injective AGG and COM functions, and apply to the more refined representations726

from the first layer. Therefore, these layers can distinguish the pair of graphs G1 and G2 if 1-WL727

distinguishes them. Finally, we apply an injective pooling function to maintain distinguishability.728

Hence, our SP-MPNN construction can distinguish G1 and G2 if either SP or 1-WL distinguishes729

both graphs, as required.730

Remark. Note that this result easily extends to disconnected graphs. Indeed, in this scenario, one731

can introduce an additional aggregation over disconnected nodes. More specifically, we define an732

additional aggregation operation AGG∞ that applies over the multiset stemming from the discon-733

nected neighborhood N∞(u), consisting of all nodes v ∈ G not reachable from u. Using N∞(u),734

the resulting SP-MPNN update in the first layer can then be written as:735

h(1)
u = COM(0)(h(0)

u ,AGG(0)
u,1, . . . ,AGG(0)

u,n−1,AGG(0)
u,∞).

Observe that this construction is sufficient to emulate the SP kernel over disconnected graphs, as it736

also captures the complete histogram in this setting, including disconnected nodes. Hence, this layer737

is sufficient to capture the power of SP as in the original proof. Following this, the remainder of the738

proof is the same: AGGu,∞ is also set to 0 within layers 2 to n+ 1.739

740

D Proof of Theorem 2741

We recall the theorem statement:742

Theorem 2. Given a k ∈ N, each C2
k classifier can be captured by a SP-MPNN with global readout.743

To prove this result, we first extend the model from Barcelo et al. yielding the logical characterization744

to account for the additional shortest path predicates in C2
k.745

To begin with, we first present the MPNN with global readout, known as ACR-GNN, used in the746

original theorem [27]. ACR-GNN is a homogeneous model, i.e., all layers are identically and747

uniformly parametrized. In ACR-GNN, node updates within the homogeneous layer are computed as748

follows:749

17

Shortest Path Networks for Graph Property Prediction

h(t+1)
u = f

(
h(t)
u C+ (

∑
v∈N1(u)

h(t)
v)A+ (

∑
v∈V

h(t)
v)R+ b

)
, (1)

where f is the truncated ReLU non-linearity f(x) = max(0,min(x, 1)), C,A,R ∈ Rl×l are lin-750

ear maps, h(t)
u ∈ Rl denotes node representations and b ∈ Rl is a bias vector. In this equation,751

C transforms the current node representation, A acts on the representations of noeds in the di-752

rect neighborhood, and R transforms the global readout, computed as a sum of all current node753

representations.754

At a high level, the logical characterization of MPNNs with global readout to C2 is a constructive755

proof, which sets values for C,A,R and b so as to exactly learn the target C2 Boolean node classifier756

ϕ(x). This construction is adaptive, as the size of the MPNN depends exactly on the complexity757

of the formula ϕ(x). More specifically, the embedding dimensionality l of the ACR-GNN exactly758

corresponds to the number of sub-formulas in ϕ(x), and the depth of the model depends on the759

quantifier depth q of ϕ(x), which is the maximum nesting level of existential counting quantifiers.760

For example, the formula ϕ(x) := ∃≥2y
(
E(x, y) ∧ ∃≥3z

(
E(y, z)

))
has a quantifier depth of 2.761

Given a classifier ϕ(x), sub-formulas are traversed recursively, based on the different logical operands762

(∧,∨,∃, etc), and each assigned a dedicated embedding dimension. In parallel, entries of the learnable763

matrices C,A,R, as well as the bias vector b, are assigned values based on the operands used to764

traverse sub-formulas, so as to align with the semantics of the corresponding operands. To illustrate,765

consider the formula ϕ(x) = Red(x) ∧ Blue(x). This formula has 3 sub-formulas, namely (i) the766

Red atom, (ii) the Blue atom, and (iii) their conjunction respectively. We therefore use 3-dimensional767

embeddings, and denote the corresponding dimension values for each sub-formula as hu[1], hu[2],768

and hu[3] respectively. To represent the conjunction between Red and Blue (sub-formulas 1 and 2),769

the construction sets C13 = C23 = 1 and b3 = −1. This way, an ACR-GNN update only yields 1 at770

hu[3] if hu[1] and hu[2] are both set to 1, in line with conjunction semantics.771

Theorem 5.1 for ACR-GNNs is based on an analogous construction, but using modal logic operations,772

more specifically modal parameters, which are shown to be equivalent in expressive power to the773

logic C2. Modal parameters are based on the following grammar:774

S := id|e|S ∪ S|S ∩ S|¬S.

For completeness, we now provide the same definitions as the original proof [27]. Given an undirected775

colored graph G(V,E), the interpretation of S on a node v ∈ G is a set ϵS(v), defined inductively:776

• if S = id, then ϵS(v) = {v}777

• if S = e, then ϵS(v) = {u|(u, v) ∈ E}778

• if S = S1 ∪ S2, then ϵS(v) = ϵS1
(v) ∪ ϵS2

(v)779

• if S = S1 ∩ S2, then ϵS(v) = ϵS1
(v) ∩ ϵS2

(v)780

• if S = ¬S′, then ϵS(v) = V ϵS′(v)781

The proof then uses a lemma showing that every modal logic formula can be equivalently written782

using only 8 different model parameters, namely: 1) id, 2) e, 3) ¬e ∩ ¬id, 4) id ∪ e, 5) ¬id, 6) ¬e,783

7) e ∪ ¬e, 8) e ∩ ¬e. From here, it defines precise constructions with respect to A, C, R and b to784

capture each modal parameter with respect to a counting quantifier, e.g., ⟨e⟩≥N .785

For our purposes, we adapt this result to additionally account for the shortest path edge predicates786

offered by SP-MPNNs. Hence, we first propose an adapted update equation, and modify the original787

proof of Theorem 5.1 to incorporate the distinct edge types. For the update equation, we define788

learnable matrices Ai, i ∈ {1, . . . , k} that act on neighbors within the i-hop neighborhood of the789

updating node, and accordingly instantiate the update equation of our SP-MPNN model as:790

h(t+1)
u = f

(
h(t)
u C+

∑
i

(
(

∑
v∈Ni(u)

h(t)
v)Ai

)
+ (

∑
v∈V

h(t)
v)R+ b

)
, (2)

Notice that this equation is analogous to Equation (1), with the only difference being that the single791

neighborhood, and the corresponding matrix A are replaced by k neighborhoods. Using this update792

18

Shortest Path Networks for Graph Property Prediction

equation, we now lift the result of Theorem 5.1 in Barceló et al. [27] to include the additional edge793

predicates. To this end, we use an adapted grammar S, which includes k edge predicates e1, e2, . . . , ek794

(where e1 is the standard edge predicate) in lieu of just e. Accordingly, the interpretation of these795

symbols is as follows:796

• if S = ei, then ϵS(v) := {u|(u, v) ∈ Ei}.797

By replacing e with k different (mutually exclusive) edge symbols e1, . . . , ek, we obtain a modal798

logic defined over multiple disjoint edge types. As such, the 8 cases for the original proof must be799

adapted to account for the different ei, leading to sub-cases with every ei for all cases including e in800

the original proof. In particular, we now provide the construction, adapted from the original proof and801

corresponding to the original 8 cases, that is sufficient to represent any formula with the additional802

edge predicates in our setting.803

In what follows, we let φk denote sub-formula k (which is represented using the kth embedding804

dimension, analogously to the original proof. Moreover, for ease of notation, we represent entry kl in805

matrix Ai as Ai,kl. The construction of our SP-MPNN model is as follows:806

• Case a. if φl = ⟨id⟩≥Nφk, then Ckl = 1 if N = 1 and 0 otherwise.807

• Case b. For i ∈ {1, . . . , k}, if φl = ⟨ei⟩≥Nφk, then Ai,kl = 1 and bl = −N + 1.808

• Case c. For i ∈ {1, . . . , k}, if φl = ⟨¬ei ∪ ¬id⟩≥Nφk, then Rkl = 1 and Ckl = Ai,kl = −1809

and bl = −N + 1.810

• Case d. For i ∈ {1, . . . , k}, if φl = ⟨id ∨ ei⟩≥Nφk, then Ckl = 1 and Ai,kl = 1 and811

bl = −N + 1.812

• Case e. if φl = ⟨¬id⟩ ̸=Nϕk, then Rkl = 1 and Ckl = −1 and bl = −N + 1.813

• Case f. For i ∈ {1, . . . , k}, if φl = ⟨¬e⟩≥Nφk, then Rkl = 1 and Ai,kl = −1 and bl =814

−N + 1.815

• Case g. For i ∈ {1, . . . , k}, if φl = ⟨e ∪ ¬e⟩≥Nφk, then Rkl = 1 and bl = −N + 1.816

• Case h. For i ∈ {1, . . . , k}, if φl = ⟨e ∪ ¬e⟩≥Nφk, then Rkl = 1 and bl = −N + 1.817

Finally, as in the original proof, all other unset values from the above cases for Ai, C, R and b are818

set to 0.819

Remark. Note that the global readout in Equation (2) can be emulated internally within the SP-MPNN820

model by using an additional aggregation operation for disconnected components, i.e., distance +∞,821

nodes, i.e., N∞. More concretely, we can consider an additional aggregation operation AGGu,∞,822

and then exactly capture eq. (2) using the following AGG definitions:823

AGGu,j =
(∑
v∈Nj(u)

hv

)
(Aj +R) for 1 ≤ j ≤ |V | − 1,

AGGu,∞ =
(∑
v∈N∞(u)

hv

)
R, and

h(t+1)
u = f

(
h(t)
u (C+R) +

n−1∑
i=1

AGGu,i + AGGu,∞ + b
)
.

E Comparison of SP and 1-WL kernels824

The SP and 1-WL kernels distinguish different sets of graphs: SP has access to distance information825

between nodes and can determine graph connectedness (by considering whether a shortest path exists826

between all pairs of nodes). By contrast, 1-WL is based on iterative local hash operations, and cannot827

detect this property. For instance, 1-WL fails to distinguish the pair of graphs in Figure 2, whereas828

SP can. It is clear that there are certain graph pairs where SP and 1-WL differ, but one may be829

interested in knowing whether this is the case even for simple connected graphs. Indeed, SP offers830

an expressiveness gain even on connected graphs. To illustrate, we show a simple pair of connected831

graphs I1, I2. This pair of graphs is not distinguishable by 1-WL, but have different shortest path832

matrices. Indeed, the Wiener Index, i.e., the sum of the shortest path lengths in both graphs, are833

19

Shortest Path Networks for Graph Property Prediction

I1 I2

Figure 6: A pair of connected graphs I1, I2 which can be distinguished by SP, but not by 1-WL.

distinct: I1 has a Wiener Index of 50, whereas I2 has a Wiener Index of 56. Moreover, there exist834

shortest paths of length 4 in I2 (crossing the graph from a corner to the opposite corner), whereas no835

such paths exist in I1. Hence, the SP kernel can distinguish I1 and I2. Another more complicated836

example is the core pair from the EXP dataset [30], e.g. Figure 3 from the appendix of the original837

paper. This pair of graphs is not distinguishable by 1-WL, but distinct Wiener Indices: For the pair in838

the figure, these are 353 (top) and 328 (bottom) respectively.839

On the other hand, SP is agnostic to node features, and thus is unable to distinguish structurally840

isomorphic graphs with distinct node features. By contrast, 1-WL exploits node features, and thus841

can easily distinguish graphs in the aforementioned scenario. Our work combines the strengths of842

both kernels.843

F The h-Proximity Dataset844

F.1 Motivation845

The evaluation of over-squashing has been studied in various earlier works [15, 39], with datasets846

such as Tree-NeighborsMatch [15] proposed to quantitatively measure this phenomenon.847

Limitations of Tree-NeighborsMatch. The proposed setup in Tree-NeighborsMatch indeed evalu-848

ates information flow in the graph, but has certain undesirable properties that motivated our develop-849

ment of the h-Proximity datasets. First, Tree-NeighborsMatch uses a local classification property850

(number of blue neighbors) on the tree root node, and relies on information propagation only to851

acquire the label of a leaf node with the same number of blue nodes. Second, and most importantly,852

the tree structure in Tree-NeighborsMatch introduces a second implicit exponential bottleneck aside853

from information flow which could negatively bias our findings: As depth grows, the number of854

leaf nodes in the tree also grows exponentially, leading to not only the exponential decay due to855

over-squashing and propagating through the tree, but also an exponential bottleneck of rival candidate856

classes sending information. Hence, the model must not only receive the correct information, but857

also manipulate exponentially many messages from distinct nodes.858

Objectives of h-Proximity. In light of these limitations, we developed the h-Proximity task, which859

has the following key desiderata:860

1. A global classification property, relying on all nodes in the graph as opposed to a local property861

that must be transmitted to the root.862

2. A linear dependence on the maximum hop length, as opposed to an exponential one. This allows863

us to build deeper graphs (e.g., 10-Prox) with linearly many nodes but exponentially growing864

receptive fields (stemming from the computational graph) and experiment with more realistic865

neighborhood configurations than trees.866

Crucially, as the number of nodes is linear in the hop length, h-Proximity eliminates the collateral867

bottleneck stemming from prohibitive numbers of leaf nodes. Therefore, h-Proximity offers a more868

reliable evaluation tool for over-squashing, as any performance degradation on these datasets can869

more directly be attributed to the information propagation bottleneck, as opposed to the exponential870

amount of information being sent from exponentially many tree leaves.871

F.2 Generation Procedure872

We generate all h-Proximity datasets in three parts. First, we generate the graph structure discussed in873

the main body of the paper. Then, we find a coloring of the nodes in this graph. Finally, we produce874

negative examples by corrupting positive graphs with an additional edge.875

20

Shortest Path Networks for Graph Property Prediction

(a) (b)

Figure 7: (a) A positive graph for h = 1 (l = 4, w = 3) and (b) a corresponding negative graph with
an addition edge (shown in green). The red node in graph (a) has exactly two blue neighbors, but the
green edge in graph (b) directly connects it to a third blue node, violating the classification objective.

Graph structure. For every dataset, we generate 4500 graphs by sampling l (the number of levels in876

our structure) uniformly from the discrete set {15, ..., 25} and w (the level width) from {3, ..., 10}.877

Node coloring. We partition the 4500 graphs evenly into 3 sets of 1500 graphs, where each partition878

includes 1, 2, and 3 red nodes respectively, so as to produce examples with multiple red nodes, where879

all these must satisfy the classification criterion.880

Given a graph and its red node allocation, we repeat the following coloring procedure until a valid881

coloring is found (or, alternatively, until 200 tries, at which point the graph is regenerated).882

1. We select 1, 2, or 3 red nodes (depending on the partition) uniformly at random from the nodes883

of the input graph.884

2. Given the red nodes, we identify graph nodes within the h−hop neighborhoods of at least one885

red node. We then filter out nodes which, if blue, lead to violation of the condition, i.e. a red886

node would have 3 or more blue neighbors in its h-hop neighborhood. Then, we randomly select887

one of the remaining nodes and color it blue. We repeat this procedure until each red node has888

exactly 2 blue neighbors in its h-hop neighborhood.889

3. We randomly sample some “distant” nodes (outside the h-hop neighborhoods of all red nodes)890

to color blue. The number of selected nodes is uniformly sampled from the set {0, 1, 2, 3}. If891

there are insufficiently many “distant” nodes, this step is skipped.892

4. We introduce 8 auxiliary colors (for a total of 10 colors) and allocate all other nodes one of these893

8 colors uniformly at random.894

At the end of this procedure, we obtain a graph that satisfies the classification objective, where all red895

nodes have exactly 2 blue nodes in their h-hop neighborhoods.896

Negative graph generation. To produce negative examples from the earlier generated positive graphs,897

we introduce a single additional edge to make an additional “distant” blue node enter the h-hop898

neighborhood of any red node, thus violating the classification objective. Therefore, the negative899

graphs we produce are largely identical to the positive graphs, differing only by one additional edge.900

Edge addition is done as follows:901

1. For every graph, identify “distant” blue nodes to one or more red nodes, and identify node pairs902

without an edge where an edge addition would bring a blue node within h hops of a red node.903

Note that the node pairs need not themselves be red or blue, and could in fact be intermediary904

nodes offering a “shortcut”.905

2. Randomly sample a satisfactory edge among the aforementioned candidate edges and introduce906

it to the graph.907

We opt for edge addition for multiple reasons. First, edge addition is fundamentally a structural908

modification of the graph, which affects pairwise distances in the graph. Thus, edge addition allows909

us to examine how the same features can propagate across the graph and offers better insights as910

to how these features are processed. Second, edge addition does not affect node features, and thus911

eliminates the possibility of feature-based approximation to the task. Specifically, both positive and912

negative graphs have identical node features, and thus any strong model must distinguish the two913

from the graph structure, rather than from feature statistics.914

To illustrate the negative graph generation procedure, we consider a simple example for h = 1, on915

a graph structure with l = 4 and w = 3, shown in Figure 7. In this example, we see that graph (a),916

21

Shortest Path Networks for Graph Property Prediction

Table 4: Diameter statistics for D&D, ENZYMES, NCI1 and PROTEINS.

Dataset Mean Diameter Median Diameter

D&D 19.90 19
ENZYMES 10.90 11
NCI1 13.33 12
PROTEINS 11.57 10

Table 5: Dataset statistics for D&D, ENZYMES, NCI1, PROTEINS, and QM9.

Dataset #Graphs Mean #Nodes Mean #Edges #Node Types #Edge Types

D&D 1178 284.3 815.7 89 1
ENZYMES 600 32.6 64.1 3 1
NCI1 4110 29.9 32.3 37 1
PROTEINS 1113 39.1 72.8 3 1
QM9 130472 18.0 18.7 5 4

the positive graph, satisfies the classification objective, as its red node is only connected to two blue917

nodes. Therefore, to produce a negative example, as is the case in graph (b), we add a new edge918

(shown in green) connecting the red node to the blue node in the rightmost level of the graph. This919

makes that the red node is now connected to 3 blue nodes, and thus changes the graph classification920

to false.921

G Further Experimental Details922

In this section, we provide further experimental details complementing the experimental section in923

the main paper.924

G.1 Hardware Configuration925

We ran all our experiments on multiple identically configured server nodes, each with a V100 GPU, a926

12-core Haswell CPU and 64 GB of RAM.927

G.2 Dataset Statistics928

The statistics of the real-world datasets used in the experimental section of this paper, namely number929

of graphs, node and edge types, as well as average number of edges and nodes per graph, can be930

found in Table 5. We also report the mean and median graph diameter for the chemical datasets in931

Table 4. For the graph classification benchmarks, the number of target classes is 2 for D&D, NCI1932

and PROTEINS, and 6 for ENZYMES.933

G.3 Synthetic Experiment934

Experimental protocol. In Section 4.1, we train all models across 10 fixed splits for each h-Proximity935

dataset. On each split, we perform training three times and average the final result. Training on each936

split runs for 200 epochs, and test performance is computed at the epoch yielding the best validation937

loss.938

Hyperparameter setup. In these experiments, we fix embedding dimensionality across all models939

to d = 64 for fairness. Moreover, we use a node dropout with probability 0.5 during training4,940

mean pooling to compute graph-level outputs, and experiment with learning rates of 10−3 and 10−4.941

Furthermore, we use a batch size of 32 and adopt the same node-level pooling structure as the GIN942

model in the risk assessment study by Errica et al. [43] across all models. Moreover, for SPN,943

we additionally emulate the MLP architecture from Errica et al.: We use two-layer multi-layer944

4For Graphormer, we use the same default dropout mechanisms as the official repository.

22

Shortest Path Networks for Graph Property Prediction

perceptrons with a hidden dimension of 64 (same as the output dimensionality), such that each layer945

is followed by batch normalization [49] and the ReLU activation function.946

Result validation. To validate the poor performance of MPNNs on h-Proximity datasets with h ≥ 3947

and discount the possibility of insufficient training, we independently trained a GAT model for 1000948

epochs on one split of the 3-Proximity dataset. For this experiment, we used 3 message passing949

layers. We observed that it continued to struggle around 50%, similarly to what we report in the main950

paper. Furthermore, we trained a 300-dimensional GAT model with T = 3 layers on 3-Proximity951

for 200 epochs, and observed the same behavior. Therefore, these results confirm that the limited952

performance of GAT, and standard MPNNs in general, is indeed due to their structural limitations, as953

opposed to less accommodating hyperparameter choices.954

Discussion on MixHop. We also sought to include MixHop as a baseline. However, this was not955

practically feasible, as MixHop uses normalized adjacency matrix powers, which yield dense matrices956

with floating-point weights for higher hops. These dense matrices make computing neighborhood957

aggregations computationally demanding and intractable when considering larger distances. Con-958

cretely, running an epoch of MixHop (considering hops up to 5) on all Prox datasets requires roughly959

8 minutes on our hardware setup, compared to roughly 50 seconds with SPN.960

In light of this issue, we exclude MixHop. Moreover, we do not compare against the default 2-hop961

setting of MixHop, as the resulting comparison with SPN (k = 10) is unfair. Nonetheless, to share962

some working insights, the partial experiments we could run with higher-hop MixHop showed that963

the model exceeds 50% training accuracy on 3, 5,8 and 10-Prox, reaching roughly about 57-58% and964

still improving after 200 epochs, but converged very slowly and noisily and did not exceed 51-52%965

test accuracy even after 200 epochs. Therefore, MixHop could potentially yield better than random966

performance given more training, but requires substantially more epochs and computational resources967

given its inherent redundancies.968

G.3.1 Additional Experiments on MoleculeNet datasets969

We additionally evaluate SP-MPNN on the MoleculeNet [47] datasets. These datasets include edge970

features, and thus we first propose an SP-MPNN model to use this extra information.971

Model setup. In all MoleculeNet datasets, edges are annotated with feature vectors which are972

typically used during message passing. Therefore, we instantiate an SP-MPNN model to use edge973

features analogously to the GIN implementation in the OGBG benchmarks [48]. Concretely, at the974

first hop level, we have tuples (hv, ev) for all node neighbors, denoting the neighboring node features975

and the connecting edge features, respectively. Hence, we define first-hop aggregation AGGu,1 as:976

AGGu,1 =
∑

v∈N (u)

ReLU(hv + ev).

Higher-hop aggregation and the overall update equation are then defined analogously to SPNs. We977

refer to this model as E-SPN.978

Experimental setup. In this experiment, we use the OGB protocol on E-SPN (k = {1, 3, 5}), and979

compare against reported GIN and GCN results. We use 300-dimensional embeddings, follow the980

provided split for training, validation and testing and report average performance across 10 reruns.981

Furthermore, we conduct hyper-parameter tuning using largely the same grid as OGB, but additionally982

consider the lower learning rate of 10−4 to more comprehensively study model performance, similarly983

to Section 4.2. Finally, we use the full feature setup (without virtual node) from OGB and follow their984

feature encoding practices: We map node features to learnable embeddings at the start of message985

passing, and map edge features to distinct learnable embeddings at every layer.986

Results. The results of E-SPN on MoleculeNet benchmarks are shown in Table 6. At higher values987

of k, E-SPN models yield substantial improvements on ToxCast, SIDER, ClinTox and BACE, and988

outperform the two baseline models. Higher-hop neighborhoods are clearly beneficial on ToxCast,989

BACE, and SIDER, where performance improves monotonically relative to k. Moreover, E-SPN990

models maintain strong performance on BBBP, and even yield small improvements on HIV and991

Tox21. These results further highlight the utility of higher-hop information, and suggest that E-SPN992

(as well as SPN) are promising candidates for graph classification over complex graph structures.993

23

Shortest Path Networks for Graph Property Prediction

Table 6: Results (ROC-AUC) for E-SPN and competing models on MoleculeNet graph classification
benchmarks. GIN and GCN results (with features, no virtual node) are as reported in OGB [48].

Dataset BBBP Tox21 ToxCast SIDER ClinTox HIV BACE

GIN 68.2±1.5 74.9±0.5 63.4±0.7 57.6±1.4 88.1±2.5 75.6±1.4 73.0±4.0

GCN 68.9±1.5 75.3±0.7 63.5±0.4 59.6±1.8 91.3±1.7 76.1±1.0 79.2±1.4

E-SPN (k = 1) 69.1±1.4 75.3±0.7 63.9±0.6 58.2±1.5 89.1±2.8 77.1±1.2 78.3±3.0

E-SPN (k = 3) 66.8±1.5 75.7±1.2 64.4±0.6 59.1±1.4 91.8±2.0 75.2±0.8 78.9±2.8

E-SPN (k = 5) 67.5±1.9 75.4±0.8 65.0±0.7 60.7±0.8 88.9±1.8 76.5±1.8 80.9±1.2

G.4 Complete R-SPN Results on QM9994

In this section, we present the complete results for R-SPN (k = {1, 5, 10}, T = {4, 6, 8}) on all995

13 properties of the QM9 dataset. More specifically, these results are provided in Table 7, each996

corresponding to a QM9 property, with the best result shown in bold.997

From this table, we can see that the introduction of higher-hop neighbors is key to improving the998

performance of R-SPN, yielding the state-of-the-art results obtained in the main paper without any999

additional tuning. Moreover, we notice an interesting behavior pertaining to the number of layers.1000

Indeed, R-SPN (k = 5) and R-SPN (k = 10) are more robust with respect to the number of layers,1001

as their performance with T = 4 does not drop nearly as substantially as R-SPN (k = 1) relative to1002

T = 8. Specifically, the average error decreases by 21.6% from T = 4 to T = 8 for R-SPN (k = 1),1003

but only by 7.5%, and 8.5% for k = 5 and k = 10 respectively. This suggests that using higher1004

values of k not only provides access to higher hops, but also allows this information to reach target1005

nodes earlier on in the computation, enabling better performance with a lower number of layers.1006

24

Shortest Path Networks for Graph Property Prediction

Table 7: Complete results (MAE) for R-SPN with respect to the number of layers (T) and maximum
hop size (k) on all properties of the QM9 dataset.

R-SPN

Property Layers k = 1 k = 5 k = 10

mu
4 4.01±0.04 2.74±0.15 2.68±0.27

6 3.66±0.04 2.41±0.12 2.45±0.22

8 3.59±0.01 2.25±0.17 2.32±0.20

alpha
4 9.37±0.16 1.91±0.04 1.84±0.03

6 7.07±0.14 1.89±0.03 1.82±0.06

8 6.74±0.15 1.86±0.06 1.82±0.02

HOMO
4 2.18±0.01 1.43±0.02 1.46±0.08

6 2.05±0.02 1.30±0.05 1.31±0.07

8 2.00±0.01 1.27±0.03 1.32±0.07

LUMO
4 2.29±0.02 1.33±0.03 1.32±0.03

6 2.13±0.01 1.24±0.04 1.26±0.04

8 2.11±0.02 1.23±0.03 1.26±0.06

gap
4 3.29±0.01 2.05±0.05 2.06±0.05

6 3.02±0.04 1.89±0.04 1.91±0.08

8 2.95±0.02 1.89±0.06 1.94±0.08

R2
4 29.28±0.46 12.36±0.60 13.00±0.60

6 23.26±0.59 11.44±0.57 11.19±0.68

8 22.41±0.64 10.80±0.60 10.82±1.30

ZPVE
4 42.92±1.62 3.25±0.09 2.94±0.07

6 30.31±1.24 3.28±0.08 2.67±0.09

8 29.16±1.14 3.34±0.16 2.73±0.05

U0
4 19.28±0.77 1.21±0.05 1.07±0.03

6 14.01±0.51 1.21±0.05 1.02±0.05

8 13.39±0.37 1.15±0.05 0.96±0.02

U
4 19.58±0.67 1.20±0.04 1.08±0.05

6 13.50±0.51 1.18±0.04 0.94±0.03

8 13.61±0.73 1.21±0.04 0.96±0.04

H
4 19.32±0.42 1.24±0.05 1.07±0.04

6 13.44±0.46 1.20±0.07 0.96±0.04

8 13.65±0.63 1.20±0.05 1.02±0.06

G
4 17.65±0.16 1.19±0.05 0.99±0.03

6 12.85±0.43 1.12±0.04 0.94±0.05

8 12.22±0.71 1.06±0.07 0.94±0.03

Cv
4 7.53±0.30 1.52±0.04 1.43±0.03

6 5.50±0.18 1.40±0.02 1.41±0.07

8 5.45±0.24 1.42±0.05 1.31±0.03

Omega
4 3.29±0.03 0.65±0.01 0.63±0.02

6 3.04±0.04 0.56±0.01 0.56±0.01

8 2.90±0.06 0.55±0.01 0.55±0.02

25

	1 Introduction
	2 Message Passing Neural Networks
	3 Shortest Path Message Passing Neural Networks
	3.1 Information Propagation: Alleviating Over-squashing
	3.2 Expressive Power of Shortest Path Message Passing Networks

	4 Empirical Evaluation
	4.1 Experiment: Do all red nodes have at most two blue nodes at h hops distance?
	4.2 Graph Classification
	4.3 Graph Regression

	5 Related Work
	6 Summary and Outlook
	A Time and Space Complexity of SP-MPNN
	B Proof of lem:graphormer
	C Proof of thm:1WLSP
	D Proof of thm:c2k
	E Comparison of SP and 1-WL kernels
	F The h-Proximity Dataset
	F.1 Motivation
	F.2 Generation Procedure

	G Further Experimental Details
	G.1 Hardware Configuration
	G.2 Dataset Statistics
	G.3 Synthetic Experiment
	G.3.1 Additional Experiments on MoleculeNet datasets

	G.4 Complete R-SPN Results on QM9

