878 879

880 881

882

883

884

885

887 888

864 865

	General	ATLANTIS (Erfani et al., 2021), BDD100K (Yu et al., 2020), Dark Zurich (Sakaridis et al., 2019), DRAM (Cohen et al., 2022), FoodSeg103 (Wu et al., 2021), MHPv1 (Li et al., 2018)
-	Earth	FloodNet (Rahnemoonfar et al., 2020), iSAID (Zamir et al., 2019), ISPRS Potsdam (Rottensteiner et al., 2012), UAVid (Lyu et al., 2020), WorldFloods (Mateo-Garcia et al., 2021)
-	Medical	CHASE DB1 (Fraz et al., 2012), CryoNuSeg (Mahbod et al., 2021), Kvasir-Inst. (Jha et al., 2021), PAXRay-4 (Seibold et al., 2022)
-	Engineering	Corrosion CS (Bianchi & Hebdon, 2021), DeepCrack (Liu et al., 2019), PST900 (Shivakumar et al., 2019), ZeroWaste-f (Bashkirova et al., 2022)
-	Agriculture	CUB-200 (Wah et al., 2011), CWFID (Haug & Ostermann, 2015), SUIM (Islam et al., 2020)

Table 5: Grouping of datasets in the MESS collection (Blumenstiel et al., 2023).

A MESS DATASET COMPOSITION

MESS Dataset integrates 22 datasets selected for their unique challenges, grouped into General, Earth, Medical, Engineering, and Agriculture domains. It evaluates model performance on outof-distribution and adversarial examples, featuring visually complex medical images like those in Kvasir-Inst., and granular subclass divisions of common categories as seen in FoodSeg103 Wu et al. (2021) and Caltech-UCSD Birds Wah et al. (2011) datasets. Table 5 displays the dataset grouping breakdown.

B EXTENDED QUALITATIVE ANALYSIS

889 890

Figure 3 showcases additional examples where LISA encounters difficulties with certain classes in 891 FoodSeg103. These images are selected from specific categories that proved challenging for the 892 model. In the first image, LISA struggles to identify *mashed potato*, possibly due to its transformed 893 state from the raw ingredient. The second image presents a biscuit-based cake, where the model 894 incorrectly focuses on crumbs rather than recognizing the entire structure as biscuit. The Hanamaki 895 Baozi example represents an out-of-domain concept, similar to the previously discussed Worm-896 eating Warbler case, highlighting the model's limitations with unfamiliar items. In the salad image, 897 LISA misinterprets individual vegetables as the salad itself, rather than recognizing the complete dish. Lastly, an adversarial example shows an apricot that visually resembles an egg, causing the 899 model to fail in producing any output. This highlights LISA's vulnerability to visual similarities that deviate from expected appearances within a class. These examples illustrate the ongoing chal-900 901 lenges in visual recognition tasks, particularly when dealing with transformed ingredients, culturally specific items, composite dishes, and visually ambiguous subjects. 902

903 Figure 4 presents additional visual examples of the top 10 classes that posed challenges for LISA. 904 The *hair* class consistently proves problematic, with LISA often predicting the entire person instead 905 of isolating the hair. For *upper clothes*, the model's misinterpretation can be attributed to linguistic 906 ambiguity; in this instance, LISA incorrectly identified headwear as upper clothing, despite it being more accurately classified as an accessory. In the soy example, LISA fails to segment the soybean, 907 instead erroneously detecting meatballs. The *tea* image shows the model including the cup in its 908 segmentation rather than isolating the liquid alone. The final example demonstrates partial success, 909 with LISA correctly identifying some cashews. However, it also exhibits a strong bias towards 910 detecting non-relevant vegetables, leading to over-segmentation. 911

912 913

914

C EXTENDED QUANTITATIVE ANALYSIS

Tables 6 and 7 present comprehensive results for text prompted and vision-only models on MESS datasets, respectively. Table 8 shows oracle results, while Table 9 displays TP-VP framework outcomes.

	Dataset	SEEM txt	CAT-Seg	Florence	PALI-Gem	LISA	Supervised
	ATLANTIS	48.4	30.5	14.4	46.8	63.9	45.1
al	BDD100K	32.6	30.6	4.5	25.9	78.0	82.3
lera	Dark Zurich	33.1	45.8	11.4	21.8	41.1	44.8
jer	DRAM	60.4	33.6	29.3	58.6	78.6	42.2
\cup	FoodSeg103	31.0	30.0	18.1	51.3	60.6	53.2
	MHP v1	10.0	33.1	6.5	7.6	19.8	63.9
	FloodNet	59.6	9.2	28.6	62.5	72.9	84.6
Ч	iSAID	9.5	66.5	4.1	4.3	31.3	45.7
lart	ISPRS Potsdam	40.7	53.9	11.0	23.9	41.0	74.0
Щ	UAVid	57.5	39.0	11.5	34.7	59.8	87.2
	WorldFloods	16.9	16.1	14.4	20.3	33.4	65.3
al	CHASE DB1	9.8	49.9	9.1	8.9	16.7	92.7
lic	CryoNuSeg	24.1	39.8	6.7	24.2	31.9	82.2
Чес	Kvasir-Inst.	28.6	51.4	10.2	44.9	23.2	87.6
	PAXRay-4	53.1	42.0	26.7	35.7	54.9	67.8
	Corrosion CS	11.1	25.0	7.7	8.8	13.8	97.1
gin.	DeepCrack	4.2	35.1	5.5	4.5	6.8	73.5
Ën	PST900	14.3	79.4	6.3	2.9	12.1	93.7
_	ZeroWaste-f	26.2	54.5	9.8	12.9	18.5	93.8
·:	CUB-200	89.0	31.4	0.0	68.2	88.1	85.9
\gr	CWFID	13.7	25.3	4.2	7.0	36.6	52.5
~	SUIM	31.0	16.9	18.7	44.9	67.2	49.9

Table 6: Per dataset performance of text prompted methods

	Dataset	SEEM vis	DINOv	VP	SoftMatcher+	Supervised
	ATLANTIS	15.8	52.8	45.0	50.5	45.1
FI I	BDD100K	7.2	37.8	53.1	57.8	82.3
lera	Dark Zurich	4.0	22.6	45.4	52.3	44.8
jen	DRAM	13.4	73.6	55.9	63.0	42.2
0	FoodSeg103	11.8	28.3	54.0	58.9	53.2
	MHP v1	5.6	9.5	34.6	42.0	63.9
	FloodNet	41.6	59.9	56.7	59.0	84.6
ų	iSAID	2.2	4.3	22.8	19.2	45.7
lar1	ISPRS Potsdam	13.0	24.2	41.2	45.8	74.0
щ	UAVid	15.5	34.5	32.7	37.4	87.2
	WorldFloods	11.9	17.3	16.4	14.6	65.3
al	CHASE DB1	10.4	9.6	0.0	0.0	92.7
lic	CryoNuSeg	26.8	24.0	21.2	21.6	82.2
Чeс	Kvasir-Inst.	6.5	24.4	65.7	59.9	87.6
~	PAXRay-4	38.1	39.0	39.0	52.2	67.8
•	Corrosion CS	9.3	10.1	7.2	9.3	97.1
BI.	DeepCrack	3.6	4.5	30.7	39.2	73.5
En	PST900	4.5	4.8	16.4	28.6	93.7
	ZeroWaste-f	10.4	13.9	21.0	25.2	93.8
·	CUB-200	20.7	92.2	85.4	87.0	85.9
50	CWFID	17.5	33.5	41.5	33.3	52.5
4	SUIM	26.9	51.4	52.5	58.9	49.9

Table 7: Per dataset performance of visual prompted methods

	Dataset	SoftMatcher+	LISA	Oracle	Oracle+	Supervised
	ATLANTIS	51.4	63.9	63.9	68.9	45.1
Ъ	BDD100K	58.5	78.0	78.0	79.2	82.3
ler	Dark Zurich	47.7	41.1	47.7	55.0	44.8
jer	DRAM	62.9	78.6	78.6	81.3	42.2
\cup	FoodSeg103	60.5	60.6	60.6	74.0	53.2
	MHP v1	36.7	19.8	36.7	45.3	63.9
	FloodNet	57.4	72.9	72.9	74.8	84.6
Ч	iSAID	26.7	31.3	31.3	35.4	45.7
Garl	ISPRS Potsdam	41.4	41.0	41.4	50.2	74.0
щ	UAVid	35.7	59.8	59.8	65.0	87.2
	WorldFloods	20.0	33.4	33.4	33.4	65.3
al	CHASE DB1	0.0	16.7	16.7	16.7	92.7
dici	CryoNuSeg	24.5	31.9	31.9	34.5	82.2
Лес	Kvasir-Inst.	58.0	23.2	58.0	72.0	87.6
4	PAXRay-4	39.1	54.9	54.9	61.7	67.8
	Corrosion CS	14.8	13.8	14.8	17.6	97.1
.gi	DeepCrack	39.3	6.8	39.3	42.2	73.5
Ε'n	PST900	38.9	12.1	38.7	39.7	93.7
	ZeroWaste-f	21.9	18.5	21.9	30.5	93.8
·:	CUB-200	87.0	88.1	88.1	90.5	85.9
1g	CWFID	41.0	36.6	41.0	48.4	52.5
4	SUIM	54.1	67.2	67.2	75.2	49.9

Table 8: Per dataset performance of Oracle ensembling baselines.

	Dataset	SEEM	LISA	SoftMatcher+	PromptMatcher	Oracle+	Supervised
	ATLANTIS	15.8	63.9	51.4	55.7	68.9	45.1
al	BDD100K	6.9	78.0	58.5	67.3	79.2	82.3
ler	Dark Zurich	4.3	41.1	47.7	51.7	55.0	44.8
Jer	DRAM	13.5	78.6	62.9	69.7	81.3	42.2
0	FoodSeg103	12.0	60.6	60.7	61.9	74.0	53.2
	MHP v1	5.8	19.8	36.7	46.2	45.3	63.9
	FloodNet	40.7	72.9	57.4	61.4	74.8	84.6
th	iSAID	2.3	31.3	26.7	24.3	35.4	45.7
lart	ISPRS Potsdam	13.1	41.0	41.4	45.9	50.2	74.0
Щ	UAVid	14.9	59.8	35.7	52.4	65.0	87.2
	WorldFloods	14.2	33.4	20.0	14.7	33.4	65.3
al	CHASE DB1	10.4	16.7	0.0	0.0	16.7	92.7
lic	CryoNuSeg	27.1	31.9	24.5	24.1	34.5	82.2
Чес	Kvasir-Inst.	6.4	23.2	58.0	60.8	72.0	87.6
4	PAXRay-4	38.1	54.9	39.1	55.5	61.7	67.8
	Corrosion CS	10.4	13.8	14.8	15.2	17.6	97.1
EII.	DeepCrack	3.8	6.8	39.3	42.6	42.2	73.5
Ë	PST900	4.9	12.1	38.9	39.3	39.9	93.7
	ZeroWaste-f	10.1	18.5	21.9	24.6	30.5	93.8
·	CUB-200	21.1	88.1	87.0	88.9	90.5	85.9
191	CWFID	17.5	36.6	41.0	38.4	48.4	52.5
<	SUIM	28.8	67.2	54.1	59.8	75.2	49.9

Table 9: Per dataset performance of visual-text prompted methods

Figure 3: Qualitative examples selected from the most challenging classes of FoodSeg103.

Figure 4: Qualitative analysis on examples of challenging classes for Text Prompting.