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ABSTRACT

Adversarial robustness is an important standard for measuring the quality of
learned models, and adversarial training is an effective strategy for improving
the adversarial robustness of models. In this paper, we disclose that adversarially
trained models are vulnerable to two-faced attacks, where slight perturbations in
input features are crafted to make the model exhibit a false sense of robustness in
the verification phase. Such a threat is significantly important as it can mislead
our evaluation of the adversarial robustness of models, which could cause un-
predictable security issues when deploying substandard models in reality. More
seriously, this threat seems to be pervasive and tricky: we find that many types of
models suffer from this threat, and models with higher adversarial robustness tend
to be more vulnerable. Furthermore, we provide the first attempt to formulate this
threat, disclose its relationships with adversarial risk, and try to circumvent it via
a simple countermeasure. These findings serve as a crucial reminder for practi-
tioners to exercise caution in the verification phase, urging them to refrain from
blindly trusting the exhibited adversarial robustness of models.

1 INTRODUCTION

Adversarial robustness plays a crucial role in evaluating modern machine learning models (Pater-
son et al., 2021; Hutchinson et al., 2020), especially in safety-critical tasks like autonomous driv-
ing (Feng et al., 2021). It is well-known that naturally trained models usually have low accuracy
on adversarial examples (Szegedy et al., 2014; Biggio et al., 2013), thereby being hard to exhibit
sufficient robustness required for passing the verification phase (Paterson et al., 2021). To mitigate
this issue, a widely adopted technique is adversarial training, which enhances the adversarial robust-
ness of models by incorporating adversarial examples into training (Goodfellow et al., 2015; Madry
et al., 2018). This enables the model to adapt and withstand potential verification-time adversarial
examples (Athalye et al., 2018). Recently, adversarial training was further shown to be capable of
mitigating the threat of training-time availability attacks (Huang et al., 2021; Tao et al., 2021).

However, adversarial training may not be all you need for constructing robust models. A recent study
showed that adversarial training may fail to provide adversarial robustness in the verification phase
when the provided training data is manipulated by training-time stability attacks (Tao et al., 2022a),
which discloses the vulnerability of adversarial training under such a training-time threat. It is worth
noting that to enhance the model deployment success rate, it is necessary to conduct model verifi-
cation and long-term monitoring (Paleyes et al., 2022). This motivates us to consider whether there
exists a verification-time threat that can fool the adversarially trained models by slightly perturbing
the provided data in the verification phase.

In this work, we for the first time show that adversarially trained models can be vulnerable to a new
type of verification-time threat called two-faced attacks. Two-faced attacks focus on the robustness
of the validation phase in the machine learning workflow (Paterson et al., 2021) shown in Figure 1(a).
In contrast to the commonly known adversarial examples that deliberately induce models to make
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(a) Machine learning workflow.
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(b) Varying AT methods.
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(c) Varying network architectures.

Figure 1: (a) Machine learning workflow, we focus on the robustness of the verification phase;
(b) ResNet-18 trained by PGD-AT, TRADES, MART, and FAT on CIFAR-10; (c) Different model
architectures trained by PGD-AT on CIFAR-10.

incorrect predictions, two-faced attacks aim to give a false sense of high adversarial robustness of
(substandard) adversarially trained models. For example, as shown in Figure 1(b), ResNet-18 (He
et al., 2015) trained by PGD-AT on CIFAR-10 (Krizhevsky, 2009) has the actual verification robust-
ness (i.e., adversarial accuracy) of only 51.72%, while it becomes 82.81% after two-faced attacks.
Moreover, as post-deployment monitoring metrics overlap with validation metrics (Paleyes et al.,
2022), researchers relying on these indicators may choose not to modify the model, leading to a
series of security issues. Figure 1(c) shows that robust models with different architectures are vul-
nerable to two-faced attacks. Therefore, two-faced attacks are significantly important and cannot be
simply ignored before model deployment in safety-critical applications.

To provide a comprehensive study on two-faced attacks, we verify the adversarial robustness of
various network architectures (e.g., ResNet-18 and WideResNet-28-10) on multiple benchmark
datasets including CIFAR-10, SVHN (Netzer et al., 2011), CIFAR-100 (Krizhevsky, 2009), and
Tiny-ImageNet (Yao et al., 2015), employing different adversarial training methods including PGD-
AT (Madry et al., 2018), TRADES (Zhang et al., 2019), MART (Wang et al., 2020b), FAT (Zhang
et al., 2020), and THRM (Tao et al., 2022b). In addition, we validate various off-the-shelf adversar-
ially trained models from RobustBench (Croce et al., 2021), with diverse architectures and training
strategies. We also evaluate the threat of two-faced attacks against different robustness verification
methords and examine the transferability of two-faced attacks. All experimental results consistently
show that these models exhibit higher robustness under two-faced attacks compared with their actual
robustness, which demonstrates that adversarially trained models are indeed vulnerable to two-faced
attacks, and such attacks may be widespread.

Furthermore, we introduce the concept of two-faced risk for the first time to understand two-faced
attacks theoretically and empirically. Specifically, we theoretically establish the relationship be-
tween the two-faced risk and the adversarial risk. We also empirically quantify the two-faced risk
of adversarially trained models under varying levels of adversarial risk. Our results present an in-
triguing trade-off between the two-faced risk and the adversarial risk: models that are more robust
against adversarial examples tend to be more vulnerable to two-faced attacks. This indicates an
inherent difficulty in defending against the threat of two-faced attacks.

In summary, our study reveals the threat of two-faced attacks in the model verification phase, which
may be widespread in adversarially trained models. These findings serve as a crucial reminder for
practitioners to exercise caution during the validation phase, urging them to refrain from blindly
trusting the exhibited adversarial robustness of models, otherwise an unqualified model may cause
serious consequences when deployed in safety-critical scenarios.

2 PRELIMINARIES

In this section, we formally introduce two types of evasion attacks (Biggio et al., 2013), namely
adversarial attacks (Szegedy et al., 2014) and hypocritical attacks (Tao et al., 2022b). It is worth
noting that some training-time poisoning attacks (e.g., unlearnable examples (Huang et al., 2021; Fu
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et al., 2022; Tao et al., 2021)) are also related to our work to some degree, but we do not introduce
these poisoning attacks since our work focuses on verification-time evasion attacks.

Setup. We consider a classification task with the input data (x, y) ∈ Rd × [K] is sampled from an
underlying distribution D. The goal is to train a DNN classifier fθ : Rd → [K] that can accurately
predict the label y given an input x.

Adversarial Attacks. Adversarial attacks refer to the creation of adversarial examples by an ad-
versary to mislead the model into making incorrect predictions. Given a classifier fθ and an input
example (x, y), the ϵ-bounded adversarial instance xadv is defined as:

xadv = x+ argmax
∥δ∥≤ϵ

1 (fθ (x+ δ) ̸= y) , (1)

where ∥·∥ represents the norm (e.g., the ℓ2 or ℓ∞ norm), and 1(·) denotes the indicator function that
returns 1 if the argument is true otherwise 0.

Adversarial Risk. Since adversarial examples are extremely threatening to the model, the de-
fender needs to train a model with high robustness to effectively mitigate this threat. The primary
objective is to train a model that has a low adversarial risk under the defense budget ϵ:

Radv (fθ,D) = E
(x,y)∼D

[
max

∥x′−x∥≤ϵ
1 (fθ (x

′) ̸= y)

]
. (2)

Adversarial training (Madry et al., 2018; Athalye et al., 2018) is a widely adopted paradigm to
accomplish this objective. Popular adversarial training methods include PGD-AT (Madry et al.,
2018), TRADES (Zhang et al., 2019), and MART (Wang et al., 2020b).

Hypocritical Attacks. Hypocritical attacks (Tao et al., 2022b) refer to the creation of hypocritical
examples by a false friend to induce the model to correctly classify originally misclassified inputs.
Hypocritical attacks perturb a misclassified input (x, y) so that the model can classify it correctly.
Given a classifier fθ and an input (x, y), the ϵ-bounded hypocritical example xhyp is defined as:

xhyp = x+ argmax
∥δ∥≤ϵ

1 (fθ (x+ δ) = y) . (3)

It was shown that hypocritical attacks can make the model exhibit extremely high verification accu-
racy, thereby concealing the deficiencies of the model. Adversarial training can mitigate hypocritical
attacks to some degree, but these attacks are still in need of special countermeasures.

3 STUDY ON TWO-FACED ATTACKS

In this section, we formally introduce the two-faced attacks studied in this paper, which aim to make
the model have a false sense of high adversarial robustness.

3.1 FORMULATION OF TWO-FACED EXAMPLES

Two-Faced Attacks. The aforementioned two types of attacks focus on improving or reducing
the accuracy of a model, while two-faced attacks focus on deceptively enhancing the adversarial
accuracy, i.e., adding a perturbation δ to data so that it can still be correctly classified in various
adversarial verification algorithms. Given a classifier fθ and an input (x, y), the ϵ-bounded two-
faced example xtf is defined as follows:

xtf = x+ argmin
∥δ∥≤ϵ

[
max
∥t∥≤ϵ

1 (fθ (x+ δ + t) ̸= y)

]
. (4)

For the practical implementation of Eq. (4), we can replace the indicator function with the commonly
used cross-entropy loss function (ℓCE) and optimize it using the projected gradient descent (PGD)
method. It is worth noting that Eq. (4) poses a challenging bi-level optimization problem for training
a DNN classifier. To approximate the solution, we employ the following optimization procedure:
we first calculate the inner perturbation t∗ = argmax∥t∥≤ϵℓCE(fθ(x + δ∗ + t), y) via PGD, and
then calculate the outer perturbation δ∗ = argmin∥δ∥≤ϵℓCE(fθ(x+ δ + t∗), y) via PGD. The two
procedures are repeated in an alternating way. The detailed process is presented in Algorithm 1.
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Algorithm 1 Two-Faced Examples Generation
Input: Model fθ, Sample (x, y), Number of Iterations N
Output: Optimized perturbation xtf

1: Initialize the perturbation δ∗

2: for n = 1 to N do
3: Find the optimal perturbation t∗ = argmax∥t∥≤ϵℓCE(fθ(x+ δ∗ + t), y)

4: Find the optimal perturbation δ∗ = argmin∥δ∥≤ϵℓCE(fθ(x+ δ + t∗), y)
5: end for
6: Calculate the perturbed instance xtf = x+ δ∗

7: Return xtf
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Figure 2: (a) Adversarial risk and two-faced risk of ResNet-18 under different λ on CIFAR-10;
(b) Adversarial risk and two-faced risk of WideResNet-28-10 under different RobustBench models
on CIFAR-10: Wang et al. (2023), AWP (Wu et al., 2020), MART (Wang et al., 2020b), and Pre-
Training (Hendrycks et al., 2019).

3.2 FORMULATION OF TWO-FACED RISK

Two-Faced Risk. To provide a better understanding of the threat posed by two-faced attacks,
we introduce the concept of two-faced risk. Given a classifier fθ, the two-faced risk on a data
distribution D under the ϵ-bounded perturbation is defined as follows:

Rtf (fθ,D) = E
(x,y)∼D

[
1− min

∥δ∥≤ϵ
max
∥t∥≤ϵ

1 (fθ (x+ δ + t) ̸= y)

]
. (5)

In Eq. (5), it is intuitive to observe that for any instance x that is misclassified by fθ, we have
1 − min∥δ∥≤ϵ max∥t∥≤ϵ 1 (fθ (x+ δ + t) ̸= y) = 0. This means that the two-faced risk of mis-
classified examples is always 0, and thus we should focus only on correctly classified examples. For
the examples that are correctly classified by fθ, we can further partition them into the examples that
are correctly and robustly classified (denoted by Dcr

fθ
) and the examples that are correctly classified

but not robustly classified (denoted by Dcnr
fθ

), where an example is considered correctly and robustly
classified if it can still be correctly classified under an ϵ-bounded perturbation. For the input (x, y)
from distribution Dcr

fθ
, we have 1 − min∥δ∥≤ϵ max∥t∥≤ϵ 1 (fθ (x+ δ + t) ̸= y) = 1. Therefore,

we concentrate on the two-faced risk on Dcnr
fθ

, i.e., Rtf(fθ,Dcnr
fθ
).

Based on the above definition and analysis, we theoretically establish the relationship between two-
faced risk and adversarial risk in the following theorem.
Theorem 1. Rtf (fθ,D) = 1−

(
1−Rtf

(
fθ,Dcnr

fθ

))
· Radv (fθ,D)−Rnat (fθ,D) · Rtf

(
fθ,Dcnr

fθ

)
,

where Rnat (fθ,D) = E(x,y)∼D [1 (fθ (x) ̸= y)]. The proof of Theorem 1 is provided in Ap-
pendix A. In Theorem 1, Rtf(fθ,Dcnr

fθ
) can be considered as the success rate of two-faced attack,

which provides a more meaningful measure of the resistance of the model to two-faced examples.
To further empirically investigate the relationship between two-faced risk and adversarial risk, we
construct models exhibiting varying levels of adversarial risk. This can be accomplished through the
technique of adversarial training, which will be formally defined in the next section.
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To investigate the association between two-faced risk and adversarial risk, we conducted two distinct
experiments. i) We utilized TRADES with varying parameters λ to generate ResNet-18 models with
different adversarial risk on the CIFAR-10 and calculated the corresponding two-faced risk. The ex-
perimental results are depicted in Figure 2(a). ii) We employed different WideResNet-28-10 models
from the RobustBench (Croce et al., 2021) and calculated their two-faced risk, respectively. The ex-
perimental results are depicted in Figure 2(b). Results show that two-faced risk and adversarial risk
exhibit contrasting trends. Specifically, as the adversarial risk increases, the two-faced risk gradually
decreases. This indicates an inherent difficulty in defending against the threat of two-faced attacks.

3.3 DISCUSSION ON COUNTERMEASURES

In this subsection, we discuss possible countermeasures to circumvent the threat of two-faced at-
tacks. We have shown in Figure 1 that the models trained by conventional adversarial training
methods are still vulnerable to two-faced examples. To mitigate the issue, here we present a simple
adaptive defense by increasing the budget used in adversarial training.

Let us take PGD-AT (Madry et al., 2018) as an example. It works by leveraging projected gradient
descent to generate adversarial examples and minimizing the cross-entropy loss on these examples:

LPGD-AT = E
(x,y)∼D

[
max
∥δ∥≤ϵ

ℓCE (fθ (x+ δ) , y)

]
. (6)

Conventionally, the defense budget ϵ used in PGD-AT, and TRADES equals the budget used in
evaluating adversarial robustness (Madry et al., 2018; Zhang et al., 2019). We propose to enlarge
the defense budget ϵ to reduce the attack success rate of two-faced examples. Our intuition is that an
ϵ-bounded two-faced example can be successfully found due to the insufficiency of the conventional
defense budget to ensure the model’s decision boundary at an ϵ-distance from unseen points. We
postulate that a larger defense budget would be able to mitigate the issue.
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Figure 3: Comparison between countermea-
sures in terms of adversarial risk and two-
faced risk under ℓ∞ norm. Each point repre-
sents a model trained with different defense
budgets ϵ or regularization parameters λ.

Indeed, our experiments also validate the efficacy
of this simple strategy in reducing two-faced risk.
Specifically, we use PGD-AT to train models under
ℓ∞ norm with a larger defense budget (12/255 ∼
20/255). During the verification phase, we con-
duct two-faced attacks with ϵ = 8/255. Results on
CIFAR-10 are summarized in Figure 3. As a com-
parison, we also plot the performance of TRADES
with larger regularization parameters, which has
been shown to be effective in reducing two-faced
risk in Figure 2. Appendix C provides detailed
results. The default regularization parameter λ in
TRADES is set to 6 (Zhang et al., 2019). It turns out
that the proposed adaptive defense achieves a bet-
ter trade-off than TRADES with larger regulariza-
tion parameters. In summary, countermeasures are
effective in mitigating two-faced attacks, while the
two-faced risk of models remains non-negligible.

4 EXPERIMENTS

In this section, we conduct extensive experiments to demonstrate the effectiveness of two-faced
attacks on different datasets and different network architectures. To demonstrate the threat of two-
faced attacks more effectively, we assume that the adversary has access to the trained model and
verification dataset to craft two-faced examples. The adversarial accuracy of the model on the veri-
fication dataset is used as the robustness metric of the model.

4.1 EXPERIMENTS ON ROBUSTLY TRAINED MODELS

We first train ResNet-18 models by employing three adversarial training methods, namely PGD-AT,
TRADES, and THRM, across various datasets under ℓ∞ threat model with ϵ = 8/255 (or ℓ2 threat
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Table 1: Robustness (%) of adversarially trained ResNet-18 under ℓ∞ threat model.

Dataset Verification
Examples

Poisoning
(PGD-AT)

Poisoning
(TRADES)

Poisoning
(THRM)

Quality
(PGD-AT)

Quality
(TRADES)

Quality
(THRM)

CIFAR-10
Clean 51.13 52.60 28.51 51.72 52.95 23.87

Hypocritical 77.68 76.79 45.39 78.58 77.58 40.09
Two-faced 81.36 79.50 77.67 82.81 80.19 75.54

SVHN
Clean 51.51 51.66 0.00 41.23 55.49 13.53

Hypocritical 82.05 78.47 1.00 76.31 83.24 31.86
Two-faced 86.70 82.91 4.51 79.99 86.70 56.46

CIFAR-100
Clean 28.23 29.53 1.13 28.85 29.98 19.04

Hypocritical 52.08 53.02 10.85 52.30 53.54 42.31
Two-faced 56.08 55.87 9.86 55.31 56.41 56.52

Tiny-ImageNet
Clean 21.76 21.12 20.55 21.99 21.77 19.28

Hypocritical 42.19 44.10 41.86 44.12 45.30 41.39
Two-faced 44.28 45.65 44.67 46.72 47.18 46.37

Table 2: Robustness (%) of adversarially trained models under ℓ∞ threat model on CIFAR-10.

Verification
Examples Carmon et al. (2019) Xu et al. (2023) Debenedetti et al. (2022) Dai et al. (2021)

Clean 62.60 68.59 59.71 64.40
Hypocritical 84.65 77.93 83.77 84.63
Two-faced 89.14 88.70 90.16 86.63

Rice et al. (2020) Wong et al. (2020) Zhang et al. (2019) Zhang et al. (2020)

Clean 57.41 46.87 55.35 57.30
Hypocritical 81.98 76.89 80.37 80.50
Two-faced 85.00 81.71 84.16 83.74
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Figure 4: The attack success rate of two-faced attack of the adversarially trained models.

model with ϵ = 0.5). The number of PGD iterations is set to 10 and 20 for training and verification
time, respectively. ‘Quality’ represents the original training dataset, and ‘Poisoning’ represents the
training dataset that has been perturbed to maximize adversarial risk under ℓ∞ threat model with
ϵ = 8/255 (or ℓ2 threat model with ϵ = 0.5), and the number of iterations for PGD is set to 100 (Tao
et al., 2021). More experimental details are provided in Appendix B.

Table 1 shows the robustness of models with ℓ∞ threat model on different types of verification
examples (i.e., clean examples, hypocritical examples, and two-faced examples). The ”Clean” row
represents the real robustness of models. It turns out that all three adversarial training methods obtain
moderate robustness against adversarial perturbations. The adversarially trained models exhibit a
noticeable improvement in adversarial robustness on hypocritical and two-faced examples. The
models exhibit their highest level of robustness on two-faced examples, because hypocritical attacks
focus on the accuracy of models, while two-faced attacks focus on the robustness of models. For
instance, on CIFAR-10, the Quality (PGD-AT) model shows a robustness (adversarial accuracy) of
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Table 3: Robustness (%) of adversarially trained ResNet-18 uder ℓ2 threat model.

Dataset Verification
Examples

Poisoning
(PGD-AT)

Poisoning
(TRADES)

Quality
(PGD-AT)

Quality
(TRADES)

CIFAR-10
Clean 69.04 70.07 69.85 70.98

Hypocritical 87.06 85.12 87.39 85.90
Two-faced 88.92 86.01 89.26 86.89

SVHN
Clean 67.57 69.51 67.56 69.86

Hypocritical 90.63 88.79 90.95 89.66
Two-faced 93.44 91.57 94.19 92.69

CIFAR-100
Clean 41.28 43.06 41.34 43.96

Hypocritical 61.89 60.07 62.51 61.14
Two-faced 64.85 61.25 65.42 62.32

Tiny-ImageNet
Clean 44.78 44.90 60.01 45.83

Hypocritical 59.13 57.87 74.18 58.60
Two-faced 60.18 58.29 73.79 58.94

Table 4: Robustness (%) of adversarially trained ResNet-18 under different verification methods.

Training
Method

Threat
Model

Verification
Examples DI-FGSM APGDCE FABT Square

PGD-AT
ℓ∞

Clean 55.01 51.00 48.60 55.02
Two-faced 84.79 81.47 77.39 82.68

ℓ2
Clean - 69.54 69.27 80.09

Two-faced - 88.38 88.04 93.20

TRADES
ℓ∞

Clean 54.71 52.43 49.89 53.81
Two-faced 81.40 79.39 76.31 79.39

ℓ2
Clean - 70.81 69.89 78.29

Two-faced - 86.63 85.78 90.65

78.58% on hypocritical examples and 82.81% on two-faced examples, whereas its real robustness
stands at a lower rate of 51.72%. Table 3 show the robustness of models with ℓ2 threat model,
and similar conclusions can be drawn. Additionally, we evaluated several robust models sourced
from the publicly accessible RobustBench. The results are shown in Table 2. As can be observed
from Table 2 that even for models with different architectures or adversarial training methods, they
exhibit higher false robustness on two-faced examples. Resultes in Appendix C also indicate that
the elevated false robustness achieved by two-faced attacks does not come at the expense of reduced
accuracy; on the contrary, it even leads to falsely elevated accuracy.

In order to compare the threat of two-faced attacks against different adversarially trained models
intuitively, we illustrate the attack success rate of two-faced attacks in Figure 4. As can be seen
from Figure 4, THRM has a lower attack success rate than PGD-AT and TRADES, which suggests
that THRM may exhibit a certain level of resilience against two-faced attacks. Another intriguing
observation is that as the adversarial risk of the model increases, the attack success rate of the two-
faced attacks diminishes. For example, it can be seen from Table 1 that the adversarial risk of PGD-
AT is higher than that of TRADES on CIFAR-10 (i.e., PGD-AT achieves lower robust accuracy on
clean examples than TRADES), while in Figure 4(a), the two-faced attack success rate of PGD-AT
is higher than that of TRADES. This phenomenon is consistent with our analysis in Section 3.2:
models that have lower adversarial risks tend to have higher two-faced risks.

Furthermore, we are curious about whether the two-faced attack is effective against different robust-
ness verification methods. We first generate two-faced examples for adversarially trained models
and then use three white-box verification methods: DI-FGSM (Xie et al., 2018), APGDCE (Croce
& Hein, 2020), and FABT (Croce & Hein, 2020), as well as one black-box verification method:
Square (Andriushchenko et al., 2020), implemented within the torchattacks library (Kim, 2020),
on both Clean and Two-faced examples (keeping the perturbation norm and budget consistent with
the training methods). Table 4 presents the relevant results on CIFAR-10. It can be observed from
Table 4 that the same two-faced examples, under different robustness verification methods, consis-
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Table 5: Transferability of Two-faced Attacks on CIFAR-10 under ℓ∞ threat model.

Clean MLP VGG-16 ResNet-18 WideResNet-28-10

MLP 27.51 49.9 32.82 32.04 30.85

VGG-16 48.51 56.32 79.28 69.77 65.02

ResNet-18 51.72 58.18 73.55 84.79 71.62

WideResNet-28-10 53.91 58.4 72.06 74.89 85.93

Table 6: Robustness (%) of naturally trained MLP and ResNet-18 under ℓ2 threat model.

Dataset Verification
Examples

MLP ResNet-18

Poisoning Quality Poisoning Quality

CIFAR-10
Clean 0.73 19.68 0.00 0.08

Hypocritical 24.93 54.23 0.16 0.91
Two-faced 31.00 57.54 5.19 17.38

SVHN
Clean 4.52 30.07 0.00 9.43

Hypocritical 47.73 73.04 0.01 14.90
Two-faced 52.98 76.71 0.51 53.00

CIFAR-100
Clean 4.44 12.07 0.00 0.18

Hypocritical 20.45 31.07 0.16 2.44
Two-faced 25.92 32.83 0.12 7.47

Tiny-ImageNet
Clean 6.28 6.45 0.00 2.92

Hypocritical 13.50 13.95 1.95 19.18
Two-faced 13.60 14.16 0.08 37.27

tently exhibit higher robustness. This indicates that the two-faced attack is capable of generating
falsely elevated verification robustness across different robustness verification methods.

Table 5 shows the transferability of two-faced attacks. All models in the table are trained with
PGD-AT (ℓ∞). We employ PGD (ℓ∞) as the robustness verification method. The results for ℓ2
are shown in Appendix C. Cell (i, j) indicates the verification robustness of model i on two-faced
examples generated by model j. It can be observed that within each row, model i exhibits the highest
verification robustness on two-faced examples generated by itself. Additionally, the verification
robustness on two-faced examples generated by various models is consistently higher than the real
robustness. This indicates that the two-faced attacks possess a certain degree of transferability.

4.2 EXPERIMENTS ON NATURALLY TRAINED MODELS

The above experimental results show that two-faced attacks are a great threat to adversarially trained
models. Here, we are curious about whether two-faced attacks are still effective for naturally trained
models to trick researchers into deploying substandard models. We naturally train MLP and ResNet-
18 on Poisoning and Quality datasets. More experimental details are provided in Appendix D.

Table 6 shows the robustness of naturally trained MLP and ResNet-18 on various datasets. The ta-
ble indicates that both models show improved verification robustness on hypocritical and two-faced
examples compared to Clean examples, with two-faced examples being the highest in most case.
It’s worth noting that both models exhibit low robustness on Clean examples, especially the model
trained on Poisoning data, where its robustness approaches zero. This is because naturally trained
models rely on non-robust features to improve accuracy, resulting in lower robustness (Tsipras et al.,
2019). Poisoning data is intentionally designed to reduce the robustness of models trained on it,
hence these models have near-zero robustness on clean verification examples. However, in con-
trast to adversarially trained models, naturally trained models exhibit very low false robustness on
two-faced verification examples. For instance, the false robustness of naturally trained ResNet-18
on two-faced verification examples is even lower than the true robustness of adversarially trained
ResNet-18 on Clean examples. This suggests that deceiving researchers into deploying these low-
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robustness models might be challenging. Results of naturally trained models under ℓ∞ threat model
on different datasets and naturally trained different architectures on CIFAR-10 are provided in Ap-
pendix D, and similar conclusions hold. Visualizations of perturbations in Appendix D show that
two-faced attacks enhance the robust features of verification examples for adversarially trained mod-
els. However, for naturally trained models, the perturbations lack distinct robust features. This can
explain why two-faced attacks pose a less threat to naturally trained models.

5 RELATED WORK

In this section, we review related studies on relevant topics, including adversarial examples, hypo-
critical examples, and adversarial training.

Adversarial Examples. Adversarial examples refer to the examples formed by intentionally in-
troducing subtle perturbations into the dataset, causing the model to output an incorrect prediction
with high confidence (Szegedy et al., 2014). The threat posed by adversarial examples lies in their
ability to easily deceive deep learning models, even those trained on large-scale data with high accu-
racy (Nguyen et al., 2014). For instance, in the field of image recognition, making minor pixel mod-
ifications to the input image can lead the model to misclassify it as a different category (Moosavi-
Dezfooli et al., 2016a). Since adversarial examples can pose a significant challenge to security, many
attack techniques have been designed to find them (Goodfellow et al., 2015; Papernot et al., 2016;
Moosavi-Dezfooli et al., 2016b; Kurakin et al., 2016; Dong et al., 2018; Chen et al., 2018; Wang
et al., 2020a; Croce & Hein, 2020). Most of the previous works focus on reducing the performance
of well-trained models, while this paper aims to hypocritically improve the verification robustness
of adversarially trained models.

Hypocritical Examples. A recent study introduced a new type of threat called hypocritical ex-
amples (Tao et al., 2022b), which refers to initially misclassified inputs that are subtly manipulated
by a false friend, causing the model to correctly predict the labels. Hypocritical examples cannot
be simply ignored before model deployment because they can be maliciously exploited during the
evaluation process to conceal the errors of inaccurate models. If deployers trust the performance
of the evaluated model on hypocritical examples and utilize such seemingly high-performing mod-
els in real-world scenarios, unexpected failures may be encountered. Later work further found that
hypocritical examples can be used as poisons in the training process to produce poorly-performed
models (Tao et al., 2021; Huang et al., 2021; Fu et al., 2022; Tao et al., 2022a). It is noteworthy
that hypocritical examples focus on the natural accuracy of models, while our studied two-faced
examples focus on the adversarial accuracy (robustness) of models.

Adversarial Training. Adversarial training is a highly effective approach for enhancing the ro-
bustness of deep learning models. It involves the generation of adversarial examples using special-
ized attack methods during the training phase. These adversarial examples are then combined with
normal examples to update the model parameters, enabling the model to adapt and defend against
such perturbations. Previous studies have introduced various adversarial training methods (Good-
fellow et al., 2015; Madry et al., 2018; Zhang et al., 2019; Wang et al., 2020b; Zhang et al., 2020;
Wu et al., 2020; Zhang et al., 2020; Pang et al., 2021). Although these adversarial training methods
can effectively resist the influence of adversarial examples, they cannot fully resist the influence of
the two-faced examples proposed in this paper.

6 CONCLUSION

In this paper, we for the first time showed that adversarially trained models are vulnerable to a new
threat in the verification phase called two-faced attacks, where slightly perturbed features of input
data can make the model exhibit a false sense of adversarial robustness. Such a threat is signif-
icantly important as it can mislead our evaluation of the adversarial robustness of models, which
could cause unpredictable security issues when deploying substandard models in reality. More se-
riously, we found that many types of substandard models suffer from this threat, which means this
threat may be pervasive. We provided formulations of two-faced examples and two-faced risk. We
theoretically and empirically showed that two-faced risk and adversarial risk exhibit contrasting
trends. We also tried to circumvent it via a simple countermeasure by enlarging the budget used in
adversarial training. Experimental results consistently supported our claims.
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A PROOF OF THEOREM 1

Theorem 2. (restated) Rtf (fθ,D) = 1−
(
1−Rtf

(
fθ,Dcnr

fθ

))
· Radv (fθ,D)−Rnat (fθ,D) ·

Rtf

(
fθ,Dcnr

fθ

)
.

Proof. To simplify the presentation, we let f denote fθ and 1 (f (x′′) = y) =
max∥δ∥≤ϵ min∥t∥≤ϵ 1 (f (x+ δ + t) = y) . We have:

Rtf (f,D)

= E
(x,y)∼D

[
1− min

∥δ∥≤ϵ
max
∥t∥≤ϵ

1 (f (x+ δ + t) ̸= y)

]
= E

(x,y)∼D
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∥δ∥≤ϵ
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∥t∥≤ϵ

1 (f (x+ δ + t) = y)

]
= E

(x,y)∼D
[1 (f (x′′) = y)]

= E
(x,y)∼D
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(x,y)∼D
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f
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1−Rtf

(
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f

))
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(
f,Dcnr

f

)

B EXPERIMENTAL DETAILS

We conduct all experiments using NVIDIA GeForce RTX 3090 GPUs. We implement the experi-
mental code using PyTorch.

B.1 TRAINING DETAILS

CIFAR-10. CIFAR-10 (Krizhevsky, 2009) is a widely used image dataset in computer vision re-
search. It consists of 60,000 32 × 32 pixel color images (50,000 images for training and 10,000
images for testing), representing 10 different classes. We take the original training data as the Qual-
ify training data and use the method in Appendix B.4 to generate the Poisoning training data. We
use the original test data set as the Clean validation data. For the training set, we use 32 × 32 ran-
dom cropping with a 4-pixel padding and random horizontal flip as the data augmentation method.
We train ResNet-18 (He et al., 2015), DenseNet-121 (Huang et al., 2016), and WideResNet-28-
10 (Zagoruyko & Komodakis, 2016) models using SGD with a learning rate of 0.1, momentum of
0.9, and weight decay of 5 × 10−4. Additionally, the MLP and VGG-16 (Simonyan & Zisserman,
2014) models are trained with SGD using a learning rate of 0.01, momentum of 0.9, and weight
decay of 5 × 10−4. For all architectures, the training epoch is fixed at 110 with batch size 128 and
learning rate was decayed by a factor of 0.1 in the 100-th epoch and the 105-th epoch respectively.

CIFAR-100. CIFAR-100 (Krizhevsky, 2009) is a widely used image dataset in computer vision
research. It consists of 60,000 32 × 32 pixel color images (50,000 images for training and 10,000
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images for testing), representing 100 different classes. We take the original training data as the
Qualify training data and use the method in Appendix B.4 to generate the Poisoning training data.
We use the original test data set as the Clean validation data. For the training set, we use 32 ×
32 random cropping with a 4-pixel padding and random horizontal flip as the data augmentation
method. We train ResNet-18 models using SGD with a learning rate of 0.1, momentum of 0.9, and
weight decay of 5×10−4. Additionally, the MLP models are trained with SGD using a learning rate
of 0.01, momentum of 0.9, and weight decay of 5×10−4. For all architectures, the training epoch is
fixed at 110 with batch size 128 and learning rate was decayed by a factor of 0.1 in the 100-th epoch
and the 105-th epoch respectively.

SVHN. SVHN (Netzer et al., 2011) is a widely used image dataset in computer vision research. It
consists of 630,420 32 × 32 pixel color images (73,257 images for training and 26,032 images for
testing), representing 10 different classes. We take the original training data as the Qualify training
data and use the method in Appendix B.4 to generate the Poisoning training data. We use the original
test data set as the Clean validation data. For the training set, we use 32× 32 random cropping with
a 4-pixel padding and random horizontal flip as the data augmentation method. We train ResNet-18
and MLP models using SGD with a learning rate of 0.01, momentum of 0.9, and weight decay of
5 × 10−4. For all architectures, the training epoch is fixed at 60 with batch size 128 and learning
rate was decayed by a factor of 0.1 in the 50-th epoch and the 55-th epoch respectively.

Tiny-ImageNet. Tiny-ImageNet (Yao et al., 2015) is a widely used image dataset in computer
vision research. It consists of 110000 64 × 64 pixel color images (100,000 images for training
and 100,000 images for testing), representing 200 different classes. We take the original training
data as the Qualify training data and use the method in Appendix B.4 to generate the Poisoning
training data. We use the original test data set as the Clean validation data. For the training set,
we use 64 × 64 random cropping with a 4-pixel padding and random horizontal flip as the data
augmentation method. We train ResNet-18 and MLP models using SGD with a learning rate of 0.1,
momentum of 0.9, and weight decay of 5 × 10−4. For all architectures, the training epoch is fixed
at 60 with batch size 64 and learning rate was decayed by a factor of 0.1 in the 50-th epoch and the
55-th epoch respectively.

B.2 ADVERSARIAL TRAINING

We perform robust training algorithms including PGD-AT, TRADES, and THRM by following the
common settings (Madry et al., 2018; Pang et al., 2021). Specifically, we use projected gradient
descent (PGD) with random initial perturbations. We set the PGD step to 10 and the step size to
ϵ/4. We employ the ℓ2 and ℓ∞ norms for ℓ2 with ϵ = 0.5 and for ℓ∞ with ϵ = 8/255. Additionally,
unless otherwise specified, the default value for the λ parameter in TRADES and THRM is set to 5.

B.3 VERIFICATION DETAILS

During the verification of two-faced attacks and adversarial attacks, we set the PGD step to 20 and
the step size to ϵ/4. We employ the ℓ2 and ℓ∞ norms for ℓ2 with ϵ = 0.5 and for ℓ∞ with ϵ = 8/255.

B.4 POISONING DATASET

The creation of the Poisoning dataset involves modifying images to increase generalization error
while preserving the original labels (Ilyas et al., 2019). Each (x, y) pair in the Poisoning dataset is
generated as follows: a target class t is deterministically chosen based on the source class y, using
a predetermined permutation of labels. Subsequently, a slight adversarial perturbation is applied
to x, aiming to cause its misclassification as t by a naturally trained model. The perturbations are
constrained within the ℓ2-norm with ϵ = 0.5 or ℓ∞-norm with ϵ = 8/255. The PGD is employed
with 100 iterations and a step size of ϵ/4.

14



Published as a conference paper at ICLR 2024

Table 7: Experiments of models with different robustness on CIFAR-10. Models were trained on
Quality data by modifying the TRADES parameter λ under the ℓ∞ threat model.

λ
Robustness Risk

Clean Hypocritical Two-faced Rnat(fθ, D) Radv(fθ, D
+
fθ
) Rtf(fθ, D

cnr
fθ
)

0 0.0 0.0 0.02 6.08 100.00 0.02
2 50.97 80.95 84.79 14.16 40.59 96.98
3 52.42 80.0 83.61 15.64 37.78 97.64
4 52.66 79.28 82.24 17.08 36.46 97.75
5 52.92 78.38 81.11 18.21 35.31 97.64

10 52.82 75.6 77.93 21.64 32.66 98.31
20 51.39 72.02 73.97 25.68 30.93 98.47
40 49.51 68.26 69.76 29.84 29.35 98.05
60 46.66 64.45 65.9 33.61 29.75 97.52
80 42.93 59.8 61.09 38.66 29.96 98.64
100 46.34 62.97 64.18 35.42 28.30 97.81

Table 8: Transferability of Two-faced Attacks on CIFAR-10 with ℓ2 perturbation. All models in the
table are trained using PGD-AT (ℓ2). We employ PGD (ℓ2) as the robustness verification method.

Clean MLP VGG-16 ResNet-18 WideResNet-28-10

MLP 24.64 58.17 27.87 27.61 26.65

VGG-16 66.08 69.59 87.34 80.05 77.95

ResNet-18 69.85 70.4 82.54 89.26 82.09

WideResNet-28-10 70.8 73.13 82.2 83.63 90.91

C EXPERIMENTS ON ROBUSTLY TRAINED MODELS

C.1 OMITTED TABLES

C.2 VISUALIZATION OF PERTURBATION

In order to gain a deeper understanding of two-faced attacks, we visualize two perturbations for
both the non-robust and robust models. Figure 5(a) presents the results of the non-robust model
obtained from applying natural training (NT) on SVHN. Figure 5(b) presents the results of the
robust model obtained from employing PDG-AT (under ℓ∞ threat model with ϵ = 8/255) on SVHN.
Figure 5(c) presents the results of the robust model obtained from employing TRADES (under ℓ∞
threat model with ϵ = 8/255 and λ = 6) on SVHN. We observed that both hypocritical and two-
faced attacks produce chaotic perturbations on the non-robust model in Figure 5(a), while the two
attacks in Figure 5(b) and Figure 5(c) could see the contour information of the original picture when
the perturbations were generated on the two robust models. Since the generation of perturbations
requires the calculation of the gradient of the input image, we believe that the gradient information of
the models generated by adversarial training contains some effective information about the original
data, while the information of naturally trained models is little. This phenomenon could explain why
two-faced attacks are effective for adversarially trained models but not for naturally trained models.

C.3 ACCURACY OF ROBUSTLY TRAINED MODELS

Table 9 to 11 show the accuracy of adversarially trained models on Clean verification examples and
two-faced examples. From these tables, it can be observed that the accuracy on two-faced verifi-
cation examples is consistently higher than that on Clean verification examples. This indicates that
our proposed two-faced attack not only introduces false higher robustness to adversarially trained
models during verification but also results in false higher accuracy.
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Figure 5: Visualization of the clean examples, hypocritical examples, and two-faced examples on
the SVHN dataset. (a) Results of the natural trained (NT) model; (b) Results of the model trained
with PGD-AT; (c) Results of the model trained with TRADES. The perturbations in (a) are chaotic,
while those in (b) and (c) exhibit clear semantics.

Table 9: Accuracy (%) of adversarially trained (PGD-AT) models under different threat model on
CIFAR-10.

Threat Model Verification Examples MLP VGG-16 ResNet-18 DenseNet-121 WideResNet-28-10

ℓ∞
Clean 50.33 80.02 83.97 81.74 87.84

Two-faced 71.36 93.83 95.89 94.56 97.65

ℓ2
Clean 58.31 92.94 89.39 88.85 95.81

Two-faced 64.11 96.83 96.85 96.47 98.09

Table 10: Accuracy (%) of adversarially trained ResNet-18 under ℓ∞ threat model.

Dataset Verification
Examples

Poisoning
(PGD-AT)

Poisoning
(TRADES)

Quality
(PGD-AT)

Quality
(TRADES)

CIFAR-10 Clean 82.26 79.8 83.97 80.73
Two-faced 95.07 94.00 95.89 94.41

SVHN Clean 86.89 84.05 81.33 88.01
Two-faced 97.99 97.01 96.90 97.98

CIFAR-100 Clean 57.79 56.61 56.51 57.00
Two-faced 80.41 79.82 77.36 80.54

Tiny-ImageNet Clean 45.28 46.22 47.57 47.78
Two-faced 66.41 71.20 68.63 72.90

Table 11: Accuracy (%) of adversarially trained ResNet-18 with ℓ2 perturbation.

Dataset Verification
Examples

Poisoning
(PGD-AT)

Poisoning
(TRADES)

Quality
(PGD-AT)

Quality
(TRADES)

CIFAR-10 Clean 89.06 85.95 89.39 86.84
Two-faced 96.59 94.10 96.85 94.74

SVHN Clean 93.71 91.67 94.51 92.78
Two-faced 98.72 97.99 98.96 98.35

CIFAR-100 Clean 65.07 61.25 65.71 62.35
Two-faced 82.70 77.20 83.20 77.96

Tiny-ImageNet Clean 60.20 58.36 60.96 59.07
Two-faced 73.22 69.89 74.46 71.30
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Table 12: Experiments of ResNet-18 with different robustness (%) on CIFAR-10. Models were
trained on Quality data by modifying the THRM parameter λ under the ℓ∞ threat model.

λ
Robustness Risk

Clean Two-faced Rnat(fθ, D) Radv(fθ, D
+
fθ
) Rtf(fθ, D

cnr
fθ
)

1 4.53 39.55 5.56 95.20 38.95
5 23.87 75.54 8.75 73.84 76.68

10 32.75 79.5 11.83 62.85 84.35
20 35.85 73.14 9.79 60.25 68.59
40 43.22 76.03 20.59 45.57 90.66
60 43.66 73.02 24.56 42.12 92.38
80 41.92 71.98 25.22 43.94 91.47
100 43.9 69.51 29.08 38.09 94.78

Table 13: Experiments of ResNet-18 with different robustness (%) on CIFAR-100. Models were
trained on Quality data by modifying the THRM parameter λ under the ℓ∞ threat model.

λ
Robustness Risk

Clean Two-faced Rnat(fθ, D) Radv(fθ, D
+
fθ
) Rtf(fθ, D

cnr
fθ
)

1 8.15 47.96 23.27 89.38 58.05
5 13.53 56.46 25.07 81.94 69.92

10 20.75 55.10 28.09 71.14 67.14
20 24.95 52.75 31.58 63.53 63.95
40 26.13 50.66 34.86 59.89 62.88
60 26.51 49.56 36.99 57.93 63.15
80 25.91 47.09 38.70 57.73 59.85
100 25.98 46.16 39.51 57.05 58.48

Table 14: Experiments of ResNet-18 with different robustness (%) on CIFAR-10. Models were
trained on Quality data by PGD-AT with different ϵ under the ℓ∞ threat model.

ϵ
Robustness Risk

Clean Two-faced Rnat(fθ, D) Radv(fθ, D
+
fθ
) Rtf(fθ, D

cnr
fθ
)

8/255 28.85 55.31 43.49 48.94 95.66
12/255 30.53 51.25 48.38 40.85 98.24
14/255 30.10 46.68 52.95 36.02 97.82
16/255 29.20 42.85 56.93 32.20 98.41
18/255 27.59 38.32 61.52 28.30 98.53
20/255 26.42 35.26 64.68 25.19 99.32
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D EXPERIMENTS ON NATURALLY TRAINED MODELS

D.1 OMITTED TABLES

Table 15: Robustness (%) of naturally trained VGG-16 and WideResNet-28-10 with ℓ∞ threat model
on CIFAR-10.

Dataset Verification
Examples

VGG-16 WideResNet-28-10

Poisoning Quality Poisoning Quality

CIFAR-10
Clean 0.00 0.00 0.00 0.00

Hypocritical 1.04 0.05 0.00 0.00
Two-faced 0.00 0.08 0.00 0.01

Table 16: Robustness (%) of naturally trained models with ℓ∞ threat model on different datasets.

Dataset Verification
Examples

MLP ResNet-18

Poisoning Quality Poisoning Quality

CIFAR-10
Clean 0.51 0.79 0.00 0.00

Hypocritical 29.67 32.81 0.00 0.00
Two-faced 33.49 36.53 0.00 0.02

SVHN
Clean 0.00 2.96 0.00 0.60

Hypocritical 0.08 41.59 0.00 1.14
Two-faced 6.20 36.52 0.00 11.66

CIFAR-100
Clean 0.07 1.32 0.00 0.01

Hypocritical 3.67 16.85 0.07 0.17
Two-faced 8.27 20.68 0.00 0.17

Tiny-ImageNet
Clean 0.00 0.07 0.00 0.00

Hypocritical 0.71 4.91 0.16 0.67
Two-faced 1.43 7.31 0.08 0.93
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