
Under review as a conference paper at ICLR 2021

A Proof of Main Theorem

Proof. The cross-entropy loss `(h(xi;w),y) of a single sample xi is defined by:

`(h(xi;w),yi) = −
dy∑
c

(1− 1[~(xi;w)c 6= yc]) log h(xi;w)c (14)

Where dy is the number of classes and 1 is the indicator function which takes the value of 1
for the incorrect class and 0 for the correct class, z(xi;w) is the softmax input. The softmax
output z(xi;w)c for class c is given by

h(xi,w)c = σ(z)c =
exp z(xi;w)c∑dy
k=1 exp z(xi;w)k

=

(
1 +

dy∑
k 6=c

exp (z(xi;w)k − z(xi;w)c)

)−1
(15)

Hence combining Equations 14 and 15, the loss per sample can be written as

`(h(xi;w),yi) = log

(
1 +

dy∑
k 6=c(i)

exp (zk,c(i))

)
(16)

in which c(i) denotes the correct class for the data point xi and zk,c(i) = z(xi;w)k −
z(xi;w)c(i). Note that, for the per sample loss `(h(xi;w),yi) → 0, exp(zk,c(i)) → 0
∀k 6= c(i). Using the chain rule

∂2`(h(xi;w),yi)

∂wl∂wm
=

∑
k 6=c(i) exp(zk,c(i))[

∂2zk,c(i)
∂wl∂wm

+
∂zk,c(i)
∂wl

∂zk,c(i)
∂wm

]

1 +
∑
i 6=c exp(zk,c(i))

−
∑
k 6=c(i),u 6=c(i) exp(zk,c)

∂zk,c(i)
∂wl

exp(zu,c(i))
∂zu,c(i)
∂wm

(1 +
∑
k 6=c(i) exp(zk,c(i)))2

(17)

As shown in Milne (2019), the network is differentiable at the majority of points in weight
space. Specifically the zero set of non-zero real analytic functions (the network is piecewise
analytic in the weights) has Lebesgue measure zero. Hence all we need to show is that the
output derivatives tend to ∞ more slowly than the loss tends to 0. To do this we consider

∂m∏
m ∂w

m
µm,φm

dx∑
i=1

γ∑
j=1

xiAi,j

H∏
k=1

w
(k)
i,j =

dx∑
i=1

xiAi,j

γ/
∏
m nm∑

k 6=m

w
(k)
i,j (1− 1[wmµm,φm]) (18)

We are interested in the limit where the output for the correct class z(xi;w)c(i) → ∞.In
which case, at least one of the w(k)

i,j must diverge. The dependence on the weights w(k)
i,j of

z(xi,w) and its derivatives (see (18)) is clearly polynomial. It follows immediately that, in
the studied zero-loss limit, exp(z(xi,w)q)→ 0 exponentially quickly in the diverging w(k)

i,j ,
and so

∂mz(xi;w)q∏
m ∂w

m
µm,φm

exp (z(xi;w)q)→ 0 (19)

also exponentially quickly (though with some unimportant polynomial pre-factor).

Hence in the limit `(h(xi;w),yi)→ 0, all terms in Equation 17 have norms tending to zero.
Hence ∂2`(h(xi;w),yi)

∂wl∂wm
→ 0. Taking l = m and summing over m we have 0 trace and using the

Frobenius norm identity, i.e. taking the sum of squares over l,m we have
∑P
i λ

2
i → 0 and

hence λ1 → 0.
Remark. By writing the loss in terms of the activation σ at the output of the final layer
f(w), i.e L(w) = σ(f(w)). The Hessian may be expressed using the chain rule as

H(w)jk =
1

N

N∑
n=1

(dy∑
c=0

dy∑
l=0

∂2σ(f(w))

∂fl(w)∂fc(w)

∂fl(w)

∂wj

∂fc(w)

∂wc
+

dy∑
c=0

∂σ(f(w))

∂wj

∂2fc(w)

∂wj∂wk

)
(20)

13

Under review as a conference paper at ICLR 2021

Where, for the cross-entropy loss and softmax output at exactly 0 loss, ∂fl(w)
∂wj

= 0 and
∂2σ(f(w))

∂fl(w)∂fc(w) = 0. However, in practice, since the weights are finite, we never have 0 loss.
Hence, unlike our proof which shows that the Hessian is given by a product of a polynomial
and exponential in the weights which we expect to go to 0 in the limit of large weights and
low loss, this simple result does yield information prior to the loss being exactly 0.

B Spectral Plots

B.1 MLP

0.01 14.3710 7
10 5
10 3

10 1

(a) Acc = 94.4, γ = 0

0.01 14.9910 7
10 5
10 3

10 1

(b) Acc = 96.46, γ = 10−4

0.02 17.7610 7
10 5
10 3

10 1

(c) Acc = 96.7, γ = 5× 10−4

Figure 3: Hessian spectrum for MLP after 50 epochs of SGD on the MNIST dataset, for
various L2 regularisation coefficients γ

B.2 CNN

3.58 49.0110 8
10 6
10 4
10 2
100

(a) V al = 53.9, γ = 0

3.36 65.6710 8
10 6
10 4
10 2
100

(b) V al = 55.4, γ = 10−4

4.5 127.310 8
10 6
10 4
10 2
100

(c) V al = 54.8, γ = 5× 10−4

Figure 4: Hessian spectrum for CNN after 300 epochs of SGD on the CIFAR-100 dataset,
for various L2 regularisation coefficients γ

B.3 PreResNet164

0.490 0.510 1.520 2.52510
8

10
6

10
4

10
2

10
0

(a) V al = 73.12, γ = 0

4.42 11.4910 8
10 6
10 4
10 2
100

(b) V al = 75.96, γ = 1e−4

7.57 2.63 12.83 23.0410
8

10
6

10
4

10
2

10
0

(c) V al = 77.36, γ = 5e−4

Figure 5: Hessian spectrum for PreResNet-164 after 300 epochs of SGD on the CIFAR-100
dataset, for various L2 regularisation coefficients γ

B.4 WideResNet

C Experiment Details

C.1 Image Classification Experiments

Hyper parameter Tuning For SGD and Gadam, we set the momentum parameter to
be 0.9 whereas for Adam, we set (β1, β2) = (0.9, 0.999) and ε = 10−8, their default values.

14

Under review as a conference paper at ICLR 2021

0.220 0.410 1.050 1.69310
8

10
6

10
4

10
2

10
0

(a) V al = 75.2, λ = 0

15.38 39.1310 9
10 7
10 5
10 3
10 1

(b) V al = 79.50, λ = 1e−4

18.85 0.77 20.39 40.0010
8

10
6

10
4

10
2

10
0

(c) V al = 80.6, λ = 5e−4

Figure 6: Hessian spectrum for WideResNet28×10 after 300 epochs of SGD on the CIFAR-100
dataset, for various L2 regularisation coefficients γ, Batch Norm Train mode

For SGD, we use a grid searched initial learning rates in the range of [0.01, 0.03, 0.1] for all
experiments with a fixed weight decay; for Adam and all its variants, we use grid searched
initial learning rate range of [10−4, 3× 10−3, 10−3]. After the best learning rate has been
identified, we conduct a further search on the weight decay, which we find often leads to a
trade off between the convergence speed and final performance. For CIFAR experiments,
we search in the range of [10−4, 10−3] whereas for ImageNet experiments, we search in the
range of [10−6, 10−5]. For decoupled weight decay, we search the same range for the weight
decay scaled by initial learning rate.

C.2 Experimental Details

For all experiments with SGD, we use the following learning rate schedule for the learning
rate at the t-th epoch, similar to Izmailov et al. (2018):

αt =


α0, if t

T ≤ 0.5

α0[1− (1−r)(tT −0.5)
0.4] if 0.5 < t

T ≤ 0.9

α0r, otherwise
(21)

where α0 is the initial learning rate. In the motivating logistic regression experiments on
MNIST, we used T = 50. T = 300 is the total number of epochs budgeted for all CIFAR
experiments. We set r = 0p01 for all experiments. For experiments with iterate averaging,
we use the following learning rate schedule instead:

αt =


α0, if t

Tavg
≤ 0.5

α0[1−
(1−αavgα0

)(tT −0.5)
0.4] if 0.5 < t

Tavg
≤ 0.9

αavg, otherwise

(22)

where αavg refers to the (constant) learning rate after iterate averaging activation, and in
this paper we set αavg = 1

2α0. Tavg is the epoch after which iterate averaging is activated,
and the methods to determine Tavg was described in the main text. This schedule allows
us to adjust learning rate smoothly in the epochs leading up to iterate averaging activation
through a similar linear decay mechanism in the experiments without iterate averaging, as
described above.

D Lanczos algorithm

In order to empirically analyse properties of modern neural network spectra with tens of
millions of parameters N = O(107), we use the Lanczos algorithm (Meurant and Strakoš,
2006), provided for deep learning by Granziol et al. (2019). It requires Hessian vector
products, for which we use the Pearlmutter trick (Pearlmutter, 1994) with computational
cost O(NP), where N is the dataset size and P is the number of parameters. Hence
for m steps the total computational complexity including re-orthogonalisation is O(NPm)
and memory cost of O(Pm). In order to obtain accurate spectral density estimates we
re-orthogonalise at every step (Meurant and Strakoš, 2006). We exploit the relationship
between the Lanczos method and Gaussian quadrature, using random vectors to allow us to

15

Under review as a conference paper at ICLR 2021

learn a discrete approximation of the spectral density. A quadrature rule is a relation of the
form, ∫ b

a

f(λ)dµ(λ) =

M∑
j=1

ρjf(tj) +R[f] (23)

for a function f , such that its Riemann-Stieltjes integral and all the moments exist on the
measure dµ(λ), on the interval [a, b] and where R[f] denotes the unknown remainder. The
nodes tj of the Gauss quadrature rule are given by the Ritz values and the weights (or mass)
ρj by the squares of the first elements of the normalised eigenvectors of the Lanczos tri-
diagonal matrix (Golub and Meurant, 1994). The main properties of the Lanczos algorithm
are summarized in the theorems 2,3
Theorem 2. Let HN×N be a symmetric matrix with eigenvalues λ1 ≥ .. ≥ λn and cor-
responding orthonormal eigenvectors z1, ..zn. If w1 ≥ .. ≥ wm are the eigenvalues of the
matrix Tm obtained after m Lanczos steps and q1, ...qk the corresponding Ritz eigenvectors
then

λ1 ≥ w1 ≥ λ1 −
(λ1 − λn) tan2(w1)

(ck−1(1 + 2ρ1))2

λn ≤ wk ≤ λm +
(λ1 − λn) tan2(w1)

(ck−1(1 + 2ρ1))2

(24)

where ck is the chebyshev polyomial of order k

Proof: see (Golub and Van Loan, 2012).
Theorem 3. The eigenvalues of Tk are the nodes tj of the Gauss quadrature rule, the weights
wj are the squares of the first elements of the normalised eigenvectors of Tk

Proof: See (Golub and Meurant, 1994). The first term on the RHS of equation 23 using
Theorem 3 can be seen as a discrete approximation to the spectral density matching the first
m moments vTHmv (Golub and Meurant, 1994; Golub and Van Loan, 2012), where v is the
initial seed vector. Using the expectation of quadratic forms, for zero mean, unit variance
random vectors, using the linearity of trace and expectation

EvTr(vTHmv) = TrEv(vvTHm) = Tr(Hm) =

N∑
i=1

λi = N

∫
λ∈D

λdµ(λ) (25)

The error between the expectation over the set of all zero mean, unit variance vectors v and
the monte carlo sum used in practice can be bounded (Hutchinson, 1990; Roosta-Khorasani
and Ascher, 2015). However in the high dimensional regime N →∞, we expect the squared
overlap of each random vector with an eigenvector of H, |vTφi|2 ≈ 1

N ∀i, with high probability.
This result can be seen by computing the moments of the overlap between Rademacher
vectors, containing elements P (vj = ±1) = 0.5. Further analytical results for Gaussian
vectors have been obtained (Cai et al., 2013).

E Mathematical Preliminaries

For an input/output pair [x ∈ Rdx ,y ∈ Rdy] and a given model h(·; ·) : Rdx × RP → Rdy .
Without loss of generality, we consider the family of models functions parameterized by the
weight vector w, i.e., H := {h(·;w) : w ∈ RP }, with a given loss `(h(x;w),y) : Rdy ×Rdy →
R.

The empirical risk (often denote the loss in deep learning), its gradient and Hessian are given
by

Remp(w) =
1

N

N∑
i=1

`(h(xi;w),yi), gemp(w) = ∇Remp, Hemp(w) = ∇2Remp (26)

The Hessian describes the curvature at that point in weight space w and hence the risk
surface can be studied through the Hessian. By the spectral theorem, we can rewrite

16

Under review as a conference paper at ICLR 2021

Hemp(w) =
∑P
i=1 λiφiφ

T
i in terms of its eigenvalue, eigenvector pairs [λi,φi]. In order to

characterise Hemp(w) by a single value, authors typically consider the spectral norm, which
is given by the largest eigenvalue of Hemp(w) or the normalised trace, which gives the mean
eigenvalue. The Hessian contains P 2 elements, so cannot be stored or eigendecomposed for
all but the simplest of models. Stochastic Lanczos Quadrature can be used Meurant and
Strakoš (2006), with computational complexity O(P) to give tight bounds on the extremal
eigenvalues and good estimations of Tr(H) and Tr(H2), along with a moment matched
approximation of the spectrum. We use the Deep Learning implementation provided by
Granziol et al. (2019). DNNs are typically trained using stochastic gradient descent with
momentum, where we iteratively update the weights

zk+1 ← ρzk +∇R(wk)

wk+1 ← wk − αzk+1
(27)

Where ρ is the momentum. The gradient is usually taken on a randomly selected sub-sample
of size B � N . An epoch is defined as a full training pass of the data, so comprises ≈ N/B
iterations. Often L2 regularisation (also termed weight decay) is added to the loss, which
corresponds to Remp(w)→ Remp(w) + µ/2||w||2.

17

	Proof of Main Theorem
	Spectral Plots
	MLP
	CNN
	PreResNet164
	WideResNet

	Experiment Details
	Image Classification Experiments
	Experimental Details

	Lanczos algorithm
	Mathematical Preliminaries

