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Navigating Weight Prediction with Diet Diary
Anonymous Author(s)

ABSTRACT
Current research in food analysis primarily concentrates on tasks
such as food recognition, recipe retrieval and nutrition estimation
from a single image. Nevertheless, there is a significant gap in
exploring the impact of food intake on physiological indicators (e.g.,
weight) over time. This paper addresses this gap by introducing
the DietDiary dataset, which encompasses daily dietary diaries and
corresponding weight measurements of real users. Furthermore,
we propose a novel task of weight prediction with a dietary diary
that aims to leverage historical food intake and weight to predict
future weights. To tackle this task, we propose a model-agnostic
time series forecasting framework. Specifically, we introduce a
Unified Meal Representation Learning (UMRL) module to extract
representations for each meal. Additionally, we design a diet-aware
loss function to associate food intake with weight variations. By
conducting experiments on the DietDiary dataset with two state-of-
the-art time series forecasting models, NLinear and iTransformer,
we demonstrate that our proposed framework achieves superior
performance compared to the original models. We will make our
dataset, code, and models publicly available.

CCS CONCEPTS
• Information systems→Multimedia information systems.

KEYWORDS
Weight prediction, food analysis, time series forecasting models

1 INTRODUCTION
Food plays a vital role in human existence, affecting the quality of
life and various physiological indicators, with weight being one of
the most fundamental and critical aspects. [24] indicates that the
relative balance between energy expenditure and dietary intake
determines weight gain or loss. Notably, the energy expenditure in
non-exercise activities (such as sitting) usually accounts for a sig-
nificantly larger portion of total energy expenditure than exercise
[21]. Motivated by these insights, we aim to investigate the impact
of food intake on weight prediction.

Numerous studies have focused on various tasks within the
food domain, such as food classification [11, 25, 35, 37], ingredients
recognition [1, 5, 6], recipe retrieval [19, 46, 48, 53, 54, 63, 64], food
volume prediction [32, 34, 49] as well as calorie and nutritional
information estimation [36, 50, 52]. Nevertheless, these existing
methods typically analyze each food image independently and do
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Figure 1: The overview of the proposed weight prediction
with diet diary task. Given a historical food intake and cor-
responding weight measurement in the past 𝐿 days, the task
aims to predict the weights in the following 𝑇 days.

not investigate the impact of food intake on physiological indicators
(e.g., weight) over a period of time.

To address this gap, this paper navigates weight prediction with
dietary diary. On the one hand, we construct a novel dataset named
DietDiary, which includes daily dietary records and corresponding
weight measurements for 611 participants from a health manage-
ment system. Different from existing datasets in the food domain
such as [2, 5, 38], DietDiary is the first dataset to provide both food
intake and corresponding weight measurements over a period of
time. On the other hand, as illustrated in Figure 1, we define a new
task that aims to leverage historical weight and food intake data
to predict future weights. This task poses two major challenges:
(1) Meal representation learning. Given that food intake can be
represented in various forms, such as textual ingredient labels or
food images, developing an effective method for learning meal
representations for weight prediction is crucial. (2) Modeling the
correlation between food intake and weight changes. Since food
intake is closely related to weight, weight prediction requires more
than just exploring the temporal relationships between historical
and future weights. Understanding the complex correlation and de-
pendencies between dietary intake and weight fluctuations presents
significant challenges to this task.

To address the aforementioned challenges, we propose a novel
framework that integrates food intake information for weight pre-
diction. Specifically, we introduce a Unified Meal Representation
Learning (UMRL) module that leverages CLIP [43] text or image
encoders to extract a unified feature representation of a meal from
various forms of historical food intake. Additionally, we propose
a diet-aware loss function to enable the model to capture the cor-
relation and dependencies between food and weight changes. Im-
portantly, our framework is designed to be compatible with any
existing time series forecasting model for weight prediction that
incorporates food intake information. We evaluate our framework
on the DietDiary dataset using two representative advanced time
series forecasting models, NLinear [59] and iTransformer [31]. The
superior performance of our framework over these models demon-
strates its effectiveness in leveraging food intake information for
weight prediction.

1
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The contributions of this paper can be summarized as follows:

• We construct a new DietDiary dataset, which is the first
dataset providing food intake and corresponding weight
measurements over a period of time.

• We introduce a novel task of weight prediction using di-
etary information. This task uniquely treats food intake
as temporal data and investigates its potential to improve
weight prediction.

• We propose a model-agnostic time series forecasting frame-
work for weight prediction with food intake. Our frame-
work demonstrates significant improvements over existing
methods in weight prediction performance.

2 RELATEDWORK
2.1 Time Series Forecasting
Time series forecasting is a fundamental task in various fields,
including finance, traffic and meteorology. Over the years, to ad-
dress the inherent challenges of predicting future values based
on past observations, numerous models are proposed, such as the
famous ARIMA[3]. With the rise of deep learning, neural network-
based approaches have gained popularity in time series forecasting.
Models such as Long Short-Term Memory (LSTM) networks[22],
DeepAR[44] and Prophet[51] are used to capture long-term depen-
dencies and nonlinear relationships in the data. As Transformer[31]
demonstrates powerful sequence modeling capabilities in natural
language processing[14], computer vision[4, 15] and other domains,
models based on modifying the vanilla Transformer, especially the
attention mechanism, tailored for time series forecasting tasks have
been widely researched, such as Informer[60], Autoformer [56],
Pyraformer [30], and FEDformer [61].

While various research efforts are ongoing to modify attention
structures to achieve better Transformer-based solutions, [59] ques-
tions the effectiveness of the Transformers and proposes a set of
simple and efficient linear models including Linear, NLinear, and
DLinear, which have led more researchers to focus on linear-based
model. TiDE [13] designs a Multi-layer Perceptron (MLP) based
encoder-decoder model to capture covariates and non-linear depen-
dencies. TSMixer [16] patches the time series data and enhances
the learning capability of simple MLP structures. Chen et al. [10]
propose a Time-mixing MLP to model temporal dependency and
a Feature-mixing MLP to analyze the cross-variate information.
Influenced by the outstanding performance of linear models, sev-
eral works continue to employ transformer-based architectures
but seek performance enhancement from alternative perspectives.
PatchTST [41] uses patched data as input and adopts a channel-
independence design that makes a token only contains information
from one channel, instead of changing the structure of the trans-
former. iTransformer [31] inverts the duties of the attention mech-
anism and the feed-forward layer to capture temporal information
to achieve promoted performance and generalization.

In contrast, we propose a model-agnostic time series forecasting
framework to predict weight with food intake. To validate the
effectiveness of our framework, state-of-the-art linear-based model
NLinear [59] and transformer-based model iTransformer [31] are
chosen as our time series forecasting models respectively.

2.2 Food Analysis
With the development of computer vision and the emergence of
various food datasets, research methods and tasks in the food do-
main have gradually become more diverse. Some traditional visual
tasks have been extended to the food domain, such as food classifi-
cation [11, 25, 27, 35, 37], ingredients recognition [1, 5, 6, 29], and
food segmentation [17, 23, 28, 57]. With the release of Recipe1M
[47], cross-modal food-related tasks have been extensively studied,
such as the retrieval of finding the most relevant recipe for a food
image or vice versa [8, 9, 19, 48, 63]. Some works focus on gen-
erating recipes from images [12, 20, 45] or corresponding images
from recipes [42, 62]. These tasks all involve analyzing each image
independently, whereas in this paper, we model temporal dietary
data, which has not been explored in previous studies.

Another research branch involves predicting the nutritional com-
ponents and calorie of food from food images, which aids in mon-
itoring intake patterns. Some works estimate volume first from
voxel [36], point cloud [18, 33] or 3D mesh [40], then mapping
is achieved through data on the calories contained per unit vol-
ume. With the release of Nutrition5K [52], a dataset providing
fine-grained nutritional attributes, food quality and food videos,
some works predict nutrition directly from images by neural net-
work [50, 52, 58]. However, these works only predict nutritional
information without further linking food intake to weight. To the
best of our knowledge, this paper is the first work to utilize dietary
diary to predict weight.

Figure 2: Distribution of the number of recording days for
the participants in DietDiary dataset. The y-axis is in the log
scale.

3 DATASET CONSTRUCTION
We introduce a novel dataset, DietDiary, specifically for analyzing
weight in relation to food intake. In contrast to datasets such as
Food-101 [2], VIREO Food-172 [5, 7], Food2K [39] and Recipe1M [47],
DietDiary encompasses diet diary of three meals over a period of
time, accompanied by daily weight measurement. To the best of
our knowledge, DietDiary is the first dataset in the food domain to
provide this kind of data, offering new opportunities for research
in dietary pattern analysis and its impact on weight management.
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Figure 3: Examples of food images from three meals in DietDiary.

Figure 4: Distribution of Daily Weight Change of all records
in DietDiary.

Figure 5: Top 10 ingredients by occurrence frequency in Di-
etDiary.

3.1 DietDiary Dataset
The DietDiary dataset was collected within a health management
system 1 wherein participants were required to meticulously log
their daily dietary intake, along with their corresponding weight
measurements. The dietary log consists of images of three meals
(i.e., breakfast, lunch, and supper) along with manually labeled
ingredients for each meal. The dataset encompasses a total of 611

1https://www.qiezilife.com/

participants, with over 5k daily records, nearly 30k images, and
over 15k ingredient annotations.

As depicted in Figure 2, the duration of record-keeping among
participants varies, ranging from a minimum of one week to over
one month. A significant majority (91.6%) of the participants main-
tained their records for a duration of one to two weeks. However,
there were also 9 participants recorded their diet and weight for
more than a month. Figure 4 illustrates the distribution of daily
weight fluctuations across all participants. Most users experience
weight changes within ±1 kg per day, with weight loss records com-
prising the majority due to the data source. Additionally, a small
portion of individuals experience changes exceeding 2 kg within a
day.

3.2 Food Images and Ingredient Annotation
Figure 3 presents meal images from various participants, illustrating
typical examples of breakfast, lunch, and supper. It is important to
note that we have manually curated the dataset to exclude images
that are not relevant to food.

The annotation of ingredients in the dataset was standardized
through a series of preprocessing steps. First, we unified the sep-
arators used between phrases, as different participants employed
varying symbols (e.g., “- ", “ / ", “ () ") to delineate ingredients.
Second, the original annotations in Chinese were translated into
English. Third, we adopted the approach as in inverse cooking
[45] to aggregate and categorize ingredients based on common
prefixes or suffixes, for example, "boiled eggs", "steamed eggs", and
"egg slices" are all merged into the "egg" category. Fourth, ingre-
dients that appeared less than five times were excluded from the
dataset. After preprocessing, the total number of unique ingredi-
ents was 197. The ten most frequently occurring ingredients are
depicted in Figure 5, such as "milk", "egg" and "rice", all of which
are common in everyday meals. Furthermore, Figure 6 provides a
comprehensive example from the dataset, showcasing food images,
annotated ingredients, and corresponding weight measurements
for two participants with different weight fluctuation trends. On
the one hand, user A maintained a healthy dietary habit, and the
weight measurements consistently show a decreasing trend. On
the other hand, user B consumed high-calorie foods (such as fried
shrimp and sugar) on the third and fifth days, and also consumed a
large amount of staple food (dumplings and sushi) during supper,
resulting in an increase in corresponding weight records.

3
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Figure 6: Data records for two participants with different weight fluctuation trends in DietDiary. The records leading to weight
gain are highlighted in red.

4 METHOD
In this section, we provide detailed definition of the task in Sec-
tion 4.1 and elaborate on the details of our proposed framework in
Sections 4.2 and 4.3.

4.1 Task Definition
Given the historical weight sequenceW = {𝑤𝑡 }𝐿𝑡=1 and correspond-
ing food intake F = {𝐵𝑟𝑒𝑎𝑘 𝑓 𝑎𝑠𝑡𝑡 , 𝐿𝑢𝑛𝑐ℎ𝑡 , 𝑆𝑢𝑝𝑝𝑒𝑟𝑡 }𝐿𝑡=1 for the past
𝐿 days, the goal of our proposed task is to predict the future weight
sequence Ŵ = {𝑤𝑡 }𝐿+𝑇𝑡=𝐿+1 over the next 𝑇 days, where𝑤𝑡 denotes
the weight value of the t-th day, 𝐵𝑟𝑒𝑎𝑘 𝑓 𝑎𝑠𝑡𝑡 , 𝐿𝑢𝑛𝑐ℎ𝑡 and 𝑆𝑢𝑝𝑝𝑒𝑟𝑡
represent sets of food images or ingredient labels for each meal on
the t-th day. Note that the historical observation takes various data
modalities, including textual ingredient labels or food images, and
numerical weight.

4.2 Proposed Framework
Figure 7 depicts an overview of the proposed framework. The frame-
work primarily consists of three key components: a unified Meal
Representation Learning (UMRL) module, an agnostic time series
forecasting model, and a diet-aware loss computation.

Unified Meal Representation Learning (UMRL) is a module
to extract representation for each meal. Given the historical food
intake (e.g., food images or ingredient labels), UMRL is designed
to obtain representation for breakfast, lunch, and supper for each
day respectively, denoted as 𝑓 = {𝑏𝑡 , 𝑙𝑡 , 𝑠𝑡 }𝐿𝑡=1, where 𝑏𝑡 , 𝑙𝑡 and 𝑠𝑡
are representation for breakfast, lunch, and supper on the t-th day.
More details of UMRL are presented in Section 4.3.

Model-agnostic weight prediction. After obtaining the repre-
sentation of historical food intake from UMRL, we concatenate it
with the historical weightW, denoted as X = {𝑏𝑡 , 𝑙𝑡 , 𝑠𝑡 ,𝑤𝑡 }𝐿𝑡=1, and
feed into a time series forecasting model𝑀 . The weight prediction
result is obtained as follows:

Ŷ = {𝑏𝑡 , 𝑙𝑡 , 𝑠𝑡 , �̂�𝑡 }𝐿+𝑇𝑡=𝐿+1 = M (X), (1)

where 𝑏𝑡 , 𝑙𝑡 , 𝑠𝑡 , �̂�𝑡 are the predicted weights from breakfast, lunch,
supper and weight respectively. Note that our proposed framework
is agnostic to the time series forecasting model, which gives us the
flexibility to utilize existing state-of-the-art models for our task. In
this paper, we choose linear-based NLinear [59] and Transformer-
based iTransformer [31] as𝑀 in Equation 1.

Diet-aware loss computation. We introduce a diet-aware loss
to model the food intake and weight variations. Assume the weight
variation Δ𝑡 of the t-th day is calculated by the following formula:

Δ𝑡 = 𝑤𝑡 −𝑤𝑡−1 . (2)

As each meal contributes to the weight variations, the diet loss is
computed by combining all three meals as follows:

L𝑑𝑖𝑒𝑡 =
1
3
((Δ𝑡 − 𝑏𝑡 )2 + (Δ𝑡 − 𝑙𝑡 )2 + (Δ𝑡 − 𝑠𝑡 )2). (3)

In addition, we compute a weight loss based on the weight predic-
tion from historical weight as follows:

L𝑤𝑒𝑖𝑔ℎ𝑡 = (𝑤𝑡 − �̂�𝑡 )2 . (4)

The overall diet-aware loss to train the proposed framework is
to combine both diet and weight losses:

L = 𝜆L𝑤𝑒𝑖𝑔ℎ𝑡 + (1 − 𝜆)L𝑑𝑖𝑒𝑡 , (5)
4
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Figure 7: Framework Overview. The “Unified Meal Representation Learning" module is proposed to map the historical food
intake into a time series meal feature sequence. The features and historical weight sequence are combined and subsequently
fed into an agnostic time series forecasting model to predict future weights.

Figure 8: The architecture of proposed Unified Meal Repre-
sentation Learning Module.

where 𝜆 is a hyper-parameter to balance the two losses.

4.3 Unified Meal Representation Learning
As shown in Figure 8, we propose Unified Meal Representation
Learning (UMRL) Module to extract representation from historical
food intake for each meal. As the food intake could be either food
images or ingredient labels, we first employ CLIP [43] to encode
both visual or textual inputs to unify the feature extraction. On the
one hand, if the historical food intake is ingredient label, we adopt
pretrained CLIP text encoder to extract the features. On the other
hand, we adopt CLIP image encoder to extract the features from
historical food images. The CLIP model is kept frozen during our
training. Note that the users prefer taking pictures of their meals
rather than typing the concrete ingredient annotations in practice.
As a result, we also investigate employing a pre-trained ingredient
recognition model to automatically obtain ingredient labels from
images, which is illustrated in the bottom left of Figure 8.

The CLIP features of images or ingredient labels are subsequently
averaged to get a feature vector for each meal. Finally, we feed this
vector into a Multilayer Perceptron (MLP) to derive the final meal
representation. Take breakfast food images as an example, denoted
𝐵𝑟𝑒𝑎𝑘 𝑓 𝑎𝑠𝑡𝑡 = {𝑖𝑚𝑔1, ..., 𝑖𝑚𝑔𝑛}𝑁𝑛=1 as a set of breakfast food images
on the t-th day, where 𝑁 is the number of images, the process of
UMRL can be formalized as follows:

Table 1: Statistics of training, testing, and validation sets for
different settings. L-T refers to the setting of using weight
and food intake in 𝐿 history days to predict the weights of
future 𝑇 days.

settings (L-T)
Data split 3-3 3-5 3-7/5-5/7-3 5-7 7-7
train 1,535 1,010 837 672 514
validation 221 149 123 74 57
test 440 296 241 216 164

𝐸𝑛 = 𝐶𝐿𝐼𝑃𝐸𝑛𝑐𝑜𝑑𝑒𝑟 (𝑖𝑚𝑔𝑛),

𝐸 =
1
𝑁

𝑁∑︁
𝑛=1

(𝐸𝑛),

𝑏𝑡 = 𝑀𝐿𝑃 (𝐸),

(6)

where 𝐸𝑛 is the CLIP image feature for 𝑖𝑚𝑔𝑛 , 𝐸 indicates the aver-
aged CLIP image features and 𝑏𝑡 is the breakfast representation.

5 EXPERIMENT
5.1 Experiment Settings
Dataset. We conduct experiments on our DietDiary dataset. In-
spired by time series forcasting task [31, 59], we extensively explore
different combinations of using weight and food intake history in
𝐿 days to predict the weights in future 𝑇 days, denoted as setting
L-T. The settings examined include {3-3, 3-5, 3-7, 5-5, 5-7, 7-3 and
7-7}. For instance, in the 7-3 setting (𝐿 = 7, 𝑇 = 3), we utilize the
historical weight sequence and corresponding food intake from the
past 7 days to predict the weight for the subsequent 3 days during
training. The dataset is partitioned into training, validation, and
test sets in a 7:1:2 ratio for each setting. It is crucial to ensure that
each participant appears exclusively in one of these splits, thereby
preventing any overlap of participants across training, validation,
and testing sets. The settings determine the minimum number of
days required for training. To maximize the utility of the dataset,
we employ different data partitions for different settings. For ex-
ample, the settings 5-5 and 7-3 necessitate a minimum of 10 days
of dietary intake records per participant, whereas the 7-7 setting

5
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Table 2: Performance comparison based on NLinear as time series forecasting model in terms of MSE and MAE. “image",
“ing-users" and “ing-LMM" represent the food intake is food image, ingredient labels provided by users, ingredient labels
predicted by FoodLMM respectively.

setting 3 - 3 3 - 5 3 - 7 5 - 5 5 - 7 7 - 3 7 - 7
metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

NLinear [59] 3.729 1.107 5.390 1.448 6.949 1.710 5.991 1.619 5.331 1.589 5.464 1.600 6.791 1.958

ou
rs image 2.769 0.985 4.765 1.371 6.332 1.636 2.573 1.330 3.219 1.341 2.799 1.213 2.454 1.376

ing-users 2.865 0.998 4.819 1.377 6.307 1.633 2.539 1.333 3.235 1.341 2.742 1.211 2.479 1.370
ing-LMM 2.048 0.962 4.849 1.380 6.312 1.635 2.542 1.345 3.247 1.342 2.968 1.233 2.497 1.365

Table 3: Performance comparison based on iTransformer as time series forecasting model. “image", “ing-users" and “ing-
LMM" represent the food intake is food image, ingredient labels provided by users, ingredient labels predicted by FoodLMM
respectively.

setting 3 - 3 3 - 5 3 - 7 5 - 5 5 - 7 7 - 3 7 - 7
metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

iTransformer [31] 4.023 1.402 5.306 1.717 5.918 1.866 5.711 1.817 6.369 1.966 4.657 1.611 4.851 1.701

ou
rs image 3.436 1.268 5.268 1.710 5.791 1.835 5.478 1.783 4.299 1.616 4.524 1.584 4.411 1.596

ing-users 3.544 1.293 5.202 1.696 5.922 1.861 3.540 1.466 3.746 1.541 4.322 1.545 4.645 1.641
ing-LMM 4.133 1.424 5.047 1.662 5.637 1.802 4.626 1.611 3.657 1.532 3.992 1.486 4.452 1.610

requires at least 14 days. Table 1 presents the dataset statistics for
various settings.

Evaluation metrics.We employ the Mean Squared Error (MSE)
and Mean Absolute Error (MAE) as metrics for performance eval-
uation. Given that users are primarily concerned with long-term
trends in weight prediction, we evaluate performance through au-
toregressive weight prediction. Specifically, during testing, given a
history of 𝐿 days, we initially forecast the weights for the subse-
quent 𝑇 days. Subsequent predictions are then made autoregres-
sively, using the outcomes of previous forecasts as input, until
predictions have been generated for all recorded days of users in
the test set.

Implementation details. Given the remarkable performance
of FoodLMM [58], a Large Multi-modal Model tailored in the food
domain, we choose FoodLMM as our ingredient prediction model.
For convenience, we use "users" to refer to ingredients annotated by
users and "LMM" to refer to ingredients predicted by the FoodLMM.
We evaluate our framework on both the NLinear [59] model, repre-
senting linear time series forcasting models, and the iTransformer
[31] model, representing transformer-based solutions. For iTrans-
former, the dimension of series representation 𝐷 is set to 16 when
𝐿 ∈ {3, 5}, 32 when 𝐿 ∈ {5, 7}. The dimension of feed-forward layer
is twice that of 𝐷 . The number of inverted Transformer blocks and
attention heads are set to 1 and 2 respectively. Both NLinear and
iTransformer are trained using Adam optimizer [26] with batch
size of 32 until early-stopping criteria is met (validation loss does
not decrease after 7 epochs). The learning rate is initially set to
0.005 and decays with each epoch. The 𝜆 in equation 5 is set to {0,
0.1, 0.25, 0.5, 0.75, 1} to explore the influence of the proportion of
diet loss, which will be shown in Section 5.4.

5.2 Performance Comparison
Tables 2 and 3 present the performance of our proposed method,
which leverages state-of-the-art time series forecasting models
NLinear [59] and iTransformer [31], respectively. Compared tomod-
els that do not incorporate food intake information, our method
consistently achieves superior performance over NLinear [59] and
iTransformer [31] across all evaluated settings, with a significant
margin of improvement. Notably, the improvements are observed
consistently with three different types of food intake inputs: food
images, user-provided ingredient labels, and ingredient labels pre-
dicted by FoodLMM. These results clearly demonstrate the effec-
tiveness of incorporating food intake information in enhancing the
accuracy of weight prediction.

An inspiring observation is that the ingredient labels predicted
by FoodLMM often perform comparably or even surpass manually
provided ingredient labels by users in most settings. This finding
is noteworthy considering that acquiring food images is generally
easier than manually annotating ingredients for each meal. Fig-
ure 9 presents four examples comparing ingredient labels between
users and FoodLMM. Typically, users are more prone to omitting
ingredients rather than mislabeling them. For instance, "noodles",
"Chinese parsleycoriander ", and "green onion" in Figure 9 (a), and
“corn" and “Shanghai cabbage" in Figure 9 (b) are missing from the
user-provided labels. Remarkably, FoodLMM successfully identi-
fies these omitted ingredients. However, ingredient recognition
remains a challenging task [7], and the predictions from FoodLMM
are still not perfect. For example, there are three incorrect ingre-
dients predicted by FoodLMM in Figure 9 (b) and (c). In Figure 9
(d), although FoodLMM fails to accurately predict “tomato", the
remaining ingredients are correctly identified.
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Figure 9: Examples of ingredient labels from user (green) and LMM (blue) for the same food image. The "✓" sign means the
correct ingredients, while the "×" sign means the incorrect. The "✓+" sign indicates the ingredients from LMM supplement
those missed by users.

Table 4: The multi-modal fusion results of images and ingre-
dient annotations from users based on NLinear.

setting 5 - 5 5 - 7 7 - 3 7 - 7
metric MSE MAE MSE MAE MSE MAE MSE MAE

NLinear [59] 5.991 1.619 5.331 1.589 5.464 1.600 6.791 1.958

ou
rs image 2.573 1.330 2.751 1.469 3.722 1.340 4.390 1.576

ing-users 2.539 1.333 2.773 1.480 4.327 1.430 4.340 1.567
fusion 2.567 1.319 2.748 1.464 3.623 1.323 4.334 1.566

5.3 Multi-modal Fusion of Food Intake
We further investigate multi-modal fusions of food intake from
both images and ingredient labels by averaging the UMRs of the
same meal across different modalities. Tables 4 and 5 present the
fusion results of images with ingredient annotations from users
and FoodLMM respectively. Except for the MSE of setting 5-5, the
fusion results consistently outperform those of single modality,
whether the ingredient labels are manually provided or predicted by
FoodLMM. This demonstrates that food information from different
modalities can complement each other, which leads to incorporat-
ing both of them achieving better performance. Additionally, the
effectiveness of multi-modal fusion also validates that our proposed
UMRL module can embed food images and ingredient annotations
into a common space and learn unified representations of meals
from different modalities.

5.4 Ablation study
Impact of number of meals. Table 6 presents the impact of in-
corporating different numbers of daily meals on weight prediction
performance. Generally, the inclusion of food intake information,
regardless of the number of meals, manages to improve perfor-
mance. When only one meal is considered, the inclusion of lunch

Table 5: The multi-modal fusion results of images and ingre-
dient annotations from FoodLMM based on NLinear.

setting 5 - 5 5 - 7 7 - 3 7 - 7
metric MSE MAE MSE MAE MSE MAE MSE MAE

NLinear [59] 5.991 1.619 5.331 1.589 5.464 1.600 6.791 1.958

ou
rs image 2.573 1.330 2.751 1.469 3.722 1.340 4.390 1.576

ing-LMM 2.542 1.345 2.765 1.476 4.523 1.461 4.367 1.572
fusion 2.563 1.325 2.741 1.460 3.653 1.328 4.361 1.571

Table 6: Ablation study of number of meals as food intake
based on NLinear as time series forecasting model. Food
images are used as food intake and MAE is reported.

setting 3-3 3-5 3-7 5-7
NLinear [59] 1.107 1.448 1.710 1.589

+ breakfast 0.990 1.407 1.701 1.452
+ lunch 0.986 1.408 1.692 1.450
+ supper 1.032 1.413 1.697 1.450
+ breakfast + lunch 1.004 1.404 1.695 1.375
+ breakfast + supper 0.987 1.424 1.702 1.373
+ lunch + supper 1.012 1.410 1.686 1.374
+ all three meals 0.985 1.371 1.636 1.341

data yields the most significant improvement under most settings.
This is attributed to lunch meals providing the most diverse and
distinct food information within the dataset. Breakfast and supper,
often featuring less distinctive items like congee-like foods (e.g.,
meal replacement powders), do not contribute as significantly as
lunch to the encoder’s effectiveness. For example, the images in
the last row of both breakfast and supper in Figure 3. However,
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the combination of all three meals offers complementary benefits,
leading to the best overall results for weight prediction.

Figure 10: Ablation study of hyper-parameter of 𝜆 based on
NLinear model in terms of MAE.

Hyper-parameter 𝜆.We further conduct an ablation study to in-
vestigate the impact of the hyper-parameter 𝜆 in Equation 5, which
balances the contributions of the weight loss L𝑤𝑒𝑖𝑔ℎ𝑡 and the diet
loss L𝑑𝑖𝑒𝑡 . Figure 10 illustrates the performance of weight predic-
tion under different settings with 𝜆 values ranging from 0 to 1,
specifically 𝜆 ∈ {0, 0.1, 0.25, 0.5, 0.75, 1}. As 𝜆 increases from 0 to
1, which corresponds to a decreasing emphasis on L𝑑𝑖𝑒𝑡 , we ob-
serve an initial improvement in performance followed by a gradual
decline. The best results are achieved at 𝜆 = 0.1 in most of the set-
tings, demonstrating the robustness of the hyper-parameters across
settings. Notably, when 𝜆 = 1, only L𝑤𝑒𝑖𝑔ℎ𝑡 is used to optimize the
model, which is equivalent to NLinear model by excluding food
intake. On the contrary, when 𝜆 = 0 and the model is solely opti-
mized using L𝑑𝑖𝑒𝑡 , resulting in inferior performance by combining
the weight loss. The results show the significance of integrating
both weight and diet losses for effective weight prediction.

5.5 Weight Prediction Visualization
As illustrated in Figure 11, we qualitatively compare the weight
prediction visualization among ground-truth weight (blue), NLinear
model (green), and our framework based on NLinear (orange) using
images as dietary information for different users. It is evident that
both the trend and the exact predicted values of our framework
are closer to the ground truth than those of the NLinear model.
For instance, in subplot (b), the ground truth weight trend shows
an initial decrease, followed by a slight increase, and then another
decrease. The orange line, representing our prediction results, ex-
hibits the same trend and is numerically closer to the ground truth
than the green line of the NLinear model. Similar trends can be
observed in subplots (a), (d), (f), and (g) as well. However, in sub-
plots (c) and (i), even though our prediction results are superior to
the NLinear model, our framework’s predictions do not align well
with the ground truth trend. This discrepancy can be attributed
to variable changes in weight and the accumulation of prediction
errors in long-term predictions. This issue remains an unresolved
challenge in time series forecasting tasks [55, 59].

Figure 11: Weight prediction visualization. In each subplot,
the x-axis represents the number of predicted days, and the
y-axis refers to the weight(kg). The settings for 3-3, 5-5, and
7-3 are displayed in the first (i.e., (a), (b) and (c)), second (i.e.,
(d), (e) and (f)), and third (i.e., (g), (h) and (i)) rows respectively.

6 CONCLUSION
We have investigated weight prediction using diet diary. A new
dataset named DietDiary is constructed which comprises dietary
intake and corresponding daily weight measurements over a pe-
riod. We introduce a new task of predicting weights by leveraging
historical food intake. To address this task, we propose a model-
agnostic time series forecasting framework that achieves significant
improvements in weight prediction. Our experiments highlight the
effectiveness of the proposed UMRL module and diet-aware loss in
learning unified intake representation and establishing a correlation
between food intake and weight change. Furthermore, we examine
three forms of food intake for weight prediction, including images,
ingredient annotations provided by users, and ingredient labels
predicted from a pre-trained ingredient prediction model. Experi-
mental results on two representative time series prediction models,
NLinear [59] and iTransformer [31], demonstrate that incorporat-
ing food intake leads to improved accuracy in weight prediction
across all three forms. We also investigate multi-modal fusions of
dietary information from different modalities (image and text) and
achieve better performance, which demonstrates that multi-modal
food information can complement each other and provide more
effective food information. Through ablation studies, we further
demonstrate the necessity of using all three meals for accurate
weight prediction. While encouraging, this paper primarily focuses
on weight prediction from food intake, exploring the impact of food
to other physiological indicator such as blood glucose, will be our
future work.
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