FourieRF: Few-Shot NeRFs via Progressive Fourier Frequency Control

Supplementary Material

A. Supplementary Results on NeRF Synthetic and LLFF dataset

First, we note that as part of the supplementary materials we have **included a interactive website**, which provides qualitative comparisons with two closest baselines to our method (methods that have comparable running times): TensoRF [3] and ZeroRF [18]. As can be seen in the provided website, our method significantly outperforms those baselines in terms of quality of reconstructions in the few-shot setting, and has fewer artefacts, especially when considering very few input views. We provide qualitative comparisons both in terms of the novel view synthesis (RGB) as well as depth estimation compared to these baseline approaches. We encourage the reader to consider the videos provided in the interactive website (please allow a few seconds to load the videos) to see the improvement provided by our method.

In addition, below we include details on the statistics of our evaluations on the LLFF dataset in tables 4,5,6 and on the NeRF synthetic dataset in tables 7 and 8. For the LLFF dataset we reproduced the ZeroRF experiments to obtain the per scene score.

B. Details on Implementation and settings

Finally, we provide details surrounding the settings of our implementation and experiments. All of our experiments were run in an nvidia RTX 4090 graphics card. We build our code base in top of the TensoRF [3] repository. Our repository can be found in the following link: https://github.com/diego1401/FourieRF.

Our method uses the AdamW optimizer [9, 11] with $\beta_1 = 0.9, \beta_2 = 0.98$, and a weight decay of 0.2 for synthetic scenes and 0 for real scenes. When performing frequency-control on real scenes we have to deal with matter appearing in front of the camera as a form of overfitting, as highlighted by FreeNeRF [22]. We find that applying their occlusion regularization works without any modification in our pipeline, thus we use their hyper parameters to compute our metrics. Moreover, we note that it is also efficient to use the gradient scaling introduced in the Floaters No More paper [16], this approach does not require to set a hyper parameter. We train for 10k iterations to match with our baselines, mainly ZeroRF [18].

The key hyper parameters of our method differ in the synthetic and real datasets. This can be attributed to the fact that the synthetic dataset has a solid color, white background, which alters the behavior of our method.

For the synthetic dataset, the clipping threshold is initialized as $f_0 = 0.3$, and it is linearly increased with

 $\delta = \frac{1}{2000} = 2 \times 10^{-3}$. We use the same configuration parameters as TensoRF [3] with the following differences. We apply a TV loss (with weight $w_{TV} = 1.0$) on the appearance and density features. We find that setting the weight decay to 0.2 in the optimizer is the key to removing floaters (in our method and in ZeroRF [18]).

For the real dataset, the clipping threshold is initialized as $f_0 = 0.01$, and it is linearly increased until the end of training, i.e. $\delta = \frac{1}{10000} = 10^{-4}$. We use the same configuration parameters as TensoRF [3] with the following differences. We apply a TV loss (with weight $w_{TV} = 1.0$) on the appearance and density features, and an L1 loss (with weight $w_{L1} = 10^{-4}$) on the density features. We find that applying the L1 loss in this type of scenes is more efficient than setting a weight decay for the optimizer.

Method	Statistic	fortress	room	horns	orchids	leaves	fern	flower	trex	mean
FreeNeRF [22]	PSNR \uparrow	23.437	22.020	18.506	15.286	16.250	21.187	20.413	19.941	19.630
	SSIM \uparrow	0.583	0.834	0.585	0.407	0.521	0.662	0.617	0.687	0.612
	LPIPS \downarrow	0.319	0.190	0.355	0.377	0.350	0.286	0.291	0.297	0.308
	PSNR \uparrow	20.633	18.833	13.688	13.900	16.275	18.700	17.880	16.786	17.087
ZeroRF [18]	SSIM \uparrow	0.435	0.663	0.233	0.275	0.533	0.523	0.490	0.517	0.459
	LPIPS \downarrow	0.386	0.392	0.612	0.527	0.398	0.422	0.423	0.451	0.451
Ours	$PSNR \uparrow$	22.109	20.271	18.290	15.103	16.524	20.965	21.062	20.103	19.303
	SSIM \uparrow	0.573	0.792	0.627	0.422	0.587	0.667	0.674	0.745	0.636
	LPIPS \downarrow	0.305	0.294	0.336	0.359	0.290	0.271	0.266	0.271	0.299

Table 4. Details quantitative comparison on the LLFF real dataset 3 views.

Table 5. Details quantitative comparison on the LLFF real dataset 6 views.

Method	Statistic	fortress	room	horns	orchids	leaves	fern	flower	trex	mean
FreeNeRF [22]	PSNR ↑	28.728	27.302	23.592	17.263	19.047	24.647	24.665	24.596	23.730
	SSIM \uparrow	0.832	0.910	0.792	0.555	0.685	0.796	0.797	0.864	0.779
	LPIPS \downarrow	0.162	0.117	0.218	0.291	0.260	0.196	0.162	0.154	0.195
	PSNR \uparrow	23.767	27.083	19.188	14.425	18.475	23.533	21.780	21.957	21.276
ZeroRF [18]	SSIM \uparrow	0.802	0.880	0.606	0.318	0.670	0.753	0.712	0.796	0.692
	LPIPS \downarrow	0.195	0.211	0.387	0.519	0.319	0.280	0.277	0.279	0.308
Ours	$PSNR \uparrow$	29.031	28.792	23.273	17.484	19.187	24.466	24.510	22.019	23.595
	SSIM \uparrow	0.878	0.920	0.815	0.558	0.727	0.792	0.822	0.810	0.790
	LPIPS \downarrow	0.144	0.165	0.217	0.313	0.214	0.210	0.174	0.243	0.210

Table 6. Details quantitative comparison on the LLFF real dataset 9 views.

Method	Statistic	fortress	room	horns	orchids	leaves	fern	flower	trex	mean
FreeNeRF [22]	PSNR ↑	29.421	29.927	25.154	19.083	20.678	26.073	26.182	24.522	25.130
	SSIM ↑	0.865	0.938	0.846	0.662	0.756	0.831	0.843	0.875	0.827
	LPIPS \downarrow	0.124	0.091	0.174	0.237	0.222	0.159	0.133	0.139	0.16
	PSNR ↑	24.350	26.883	21.675	16.125	19.200	24.400	23.240	24.629	22.563
ZeroRF [18]	SSIM \uparrow	0.797	0.903	0.733	0.465	0.700	0.787	0.762	0.850	0.750
	LPIPS \downarrow	0.195	0.189	0.314	0.424	0.300	0.242	0.250	0.229	0.268
Ours	PSNR ↑	29.567	29.011	24.799	19.046	20.839	25.774	26.488	24.562	25.011
	SSIM \uparrow	0.881	0.931	0.860	0.636	0.775	0.825	0.854	0.876	0.830
	LPIPS \downarrow	0.153	0.171	0.194	0.283	0.200	0.187	0.158	0.198	0.193

Method	Statistic	chair	drums	ficus	hotdog	lego	materials	mic	ship	mean
FreeNeRF [22]	PSNR \uparrow	20.22	14.99	17.35	23.58	20.43	21.36	15.05	17.52	18.81
	SSIM \uparrow	0.843	0.746	0.809	0.899	0.818	0.857	0.802	0.687	0.808
	LPIPS \downarrow	0.109	0.280	0.144	0.108	0.156	0.174	0.218	0.318	0.188
	PSNR \uparrow	23.04	16.91	20.12	29.11	22.11	20.50	24.76	19.01	21.94
ZeroRF [18]	SSIM \uparrow	0.880	0.791	0.866	0.944	0.868	0.848	0.944	0.707	0.856
	LPIPS \downarrow	0.074	0.131	0.100	0.075	0.085	0.132	0.050	0.256	0.113
Ours	PSNR \uparrow	24.13	17.33	18.56	27.26	22.41	21.15	23.35	19.64	21.73
	SSIM \uparrow	0.895	0.804	0.848	0.933	0.871	0.858	0.929	0.724	0.858
	LPIPS \downarrow	0.107	0.206	0.120	0.088	0.122	0.129	0.056	0.283	0.139

Table 7. Details quantitative comparison on the NeRF synthetic dataset 4 views.

Table 8. Details quantitative comparison on the NeRF synthetic dataset 6 views.

Method	Statistic	chair	drums	ficus	hotdog	lego	materials	mic	ship	mean
FreeNeRF [22]	PSNR ↑	26.72	18.16	18.46	27.18	24.32	21.63	25.64	20.23	22.77
	SSIM ↑	0.916	0.827	0.840	0.929	0.887	0.853	0.942	0.729	0.865
	LPIPS \downarrow	0.071	0.176	0.161	0.096	0.132	0.202	0.066	0.290	0.149
	PSNR \uparrow	27.62	20.88	22.21	29.93	26.26	21.41	27.40	22.13	24.73
ZeroRF [18]	SSIM \uparrow	0.926	0.869	0.898	0.949	0.913	0.849	0.954	0.756	0.889
	LPIPS	0.074	0.131	0.100	0.075	0.085	0.132	0.050	0.256	0.113
Ours	PSNR ↑	26.62	19.30	19.43	28.84	27.09	21.46	25.78	22.89	23.93
	SSIM \uparrow	0.918	0.838	0.860	0.939	0.915	0.856	0.942	0.767	0.879
	LPIPS \downarrow	0.095	0.182	0.124	0.108	0.103	0.141	0.072	0.261	0.136