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ABSTRACT

Recent literature has effectively leveraged diffusion models trained on continu-
ous variables as priors for solving inverse problems. Notably, discrete diffusion
models with discrete latent codes have shown strong performance, particularly
in modalities suited for discrete compressed representations, such as image and
motion generation. However, their discrete and non-differentiable nature has lim-
ited their application to inverse problems formulated in continuous spaces. This
paper presents a novel method for addressing linear inverse problems by leverag-
ing image-generation models based on discrete diffusion as priors. We overcome
these limitations by approximating the true posterior distribution with a variational
distribution constructed from categorical distributions and continuous relaxation
techniques. Furthermore, we employ a star-shaped noise process to mitigate the
drawbacks of traditional discrete diffusion models with absorbing states, demon-
strating that our method performs comparably to continuous diffusion techniques.
To the best of our knowledge, this is the first approach to use discrete diffusion
model-based priors for solving image inverse problems.

1 INTRODUCTION

Diffusion models have gained significant attention as deep generative models, achieving remarkable
success in image (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2021b; Dhariwal & Nichol,
2021; Esser et al., 2024), audio (Liu et al., 2023; Chen et al., 2024a), and video generation (Ho
et al., 2022b;a). These models operate by iteratively corrupting data then learning to reverse
this corruption process, ultimately generating high-quality samples from noise. In parallel with
continuous diffusion models, discrete diffusion models have emerged as a compelling alternative.
These models have gained traction by demonstrating notable results not only in image (Gu et al.,
2022), audio (Yang et al., 2023), and text generation (Austin et al., 2021; Lou et al., 2023a) but also
in more specialized areas such as motion data (Lou et al., 2023b; Pinyoanuntapong et al., 2024),
protein synthesis (Gruver et al., 2024), and graph generation (Vignac et al., 2023).

Building on these advancements, researchers have made significant progress in expanding the ap-
plication of diffusion models. They have explored using diffusion models, trained either directly on
pixel space or on latent representations derived from variational autoencoders (VAEs), to address
inverse problems (Kawar et al., 2022; Chung et al., 2023b; Wang et al., 2023) and carry out vari-
ous conditional-generation tasks (Yu et al., 2023; Bansal et al., 2024; He et al., 2024) without the
need for additional training. These efforts aim to use the powerful generative capabilities of diffu-
sion models to tackle intricate problems and generate conditional outputs, all while preserving the
models’ original trained parameters.

This line of work has been primarily restricted to diffusion models trained in continuous spaces, and
methods using trained discrete diffusion models as priors remain limited Gruver et al. (2024); Chen
et al. (2024b); Li et al. (2024). The inherent nature of the generation process in discrete diffusion
models involves non-differentiable operations, posing a challenge for their application to inverse
problems formulated in continuous spaces. Therefore, controlling discrete diffusion models often
necessitates an additional trained network (Gruver et al., 2024; Nisonoff et al., 2024; Klarner et al.,
2024; Vignac et al., 2023). Training-free methods have been confined to relatively low-dimensional
data (Chen et al., 2024b) or to specific tasks such as image inpainting (Gu et al., 2022).
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Figure 1: Illustration of G2D2. At each time step t, variational categorical distribution p̃α is
optimized with respect to sum of prior loss and likelihood loss, followed by sampling zt−1. Both
terms are continuously differentiable, enabling continuous optimization.

This limitation constrains the utilization of the powerful generative capabilities in domains such as
motion data, where generative models with discrete latent spaces have demonstrated remarkable
success. This constraint motivates the exploration of discrete diffusion models as priors, given their
potential advantages in representing complex data distributions and generating high-fidelity samples.
To the best of our knowledge, in the context of inverse problems for motion data and image data,
there exists no prior work that uses discrete diffusion models as priors.

Controlling the generation of diffusion models without additional training generally involves manip-
ulating the generation trajectory using gradients in continuous space. The primary objective here is
to generate samples from the prior model that have high likelihood with respect to the measurement
equation of the inverse problem or the guidance target. A specific approach to achieve this involves
adjusting samples during the diffusion model’s generation process by using gradients of a loss func-
tion that computes the likelihood. This methodology has been demonstrated in the works of Chung
et al. (2023b) and Yu et al. (2023).

We propose Gradient-guided Discrete Diffusion (G2D2), an inverse problem solving method that
overcomes the aforementioned limitations while using a discrete diffusion model as a prior. Our
focus is on solving image inverse problems using a generative model based on a discrete diffusion
model specifically designed for images with discrete latent variables such as those found in vector-
quantized (VQ)-VAE models. G2D2 overcomes the limitations of previous methods by using a
continuous relaxation technique to optimize the parameters of a variational distribution, effectively
bridging the gap between continuous and discrete domains.

Discrete diffusion models for image data often use a variant called “mask-absorbing” due to its
efficiency. However, this model has a significant drawback in inverse-problem solving. While a
substantial portion of the image structure is determined in the initial stages of generation in discrete
diffusion models (i.e., when only a few tokens are determined), the mask-absorbing type does not
allow transitions from an unmasked state to either a masked state or another unmasked state. Our
experiments show that this restriction imposes a significant limitation on performance.

To address this issue, we use the star-shaped noise process previously proposed in the context of
continuous diffusion models (Okhotin et al., 2024; Zhang et al., 2024). This process removes the
dependency between consecutive sampling steps, thus expanding the solution space that can be
explored. It therefore enables the correction of errors introduced in the early phases of sampling.
Originally proposed to enhance the performance of diffusion models (Okhotin et al., 2024), it was
later introduced as a decoupled noise annealing process in the context of inverse problems using
continuous diffusion models, demonstrating its effectiveness (Zhang et al., 2024). In this study, we
not only demonstrate that this process can be effectively applied to discrete diffusion models, but also
find that it uniquely addresses potential issues inherent in mask-absorbing-type discrete diffusion
processes, specifically the inability to correct errors introduced in the early stages of sampling during
later steps.
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We conduct an experimental investigation to evaluate the performance of G2D2 by comparing it to
current methods using standard benchmark datasets. We consider methods that use both pixel-
domain and latent diffusion models. We also explore the application of a discrete prior-based
motion-data-generation model to solve an inverse problem, specifically path-conditioned genera-
tion, without requiring further training. The results of our study indicate that G2D2 shows promise
in tackling various inverse problems by leveraging pre-trained discrete diffusion models.

2 PRELIMINARIES

2.1 DISCRETE DIFFUSION MODELS FOR IMAGE GENERATION

We first provide a brief overview of VQ-Diffusion (Gu et al., 2022; Tang et al., 2022), an image-
generation model based on discrete diffusion processes. VQ-Diffusion generates images in a two-
step process. It first produces discrete latent representations z0 using a discrete diffusion model
trained on representations obtained from a pre-trained VQ-VAE model (Van Den Oord et al., 2017).
It then transforms these representations into the continuous image space using a decoder. Each
element of z0 ∈ {1, . . . ,K}dz corresponds to one of the embedding vectors from the codebook,
denoted as B := {b1, . . . ,bK},bk ∈ Rdb . During decoding, a variable Z ∈ Bdz is constructed
through codebook assignment, where (Z)i = bz0,i and z0,i denotes the i-th element of z0. This
variable is then fed into a continuous decoder D : Rdb×dz → Rdx0 to obtain the final image:
x0 = D(Z).

In discrete diffusion models, a forward Markov process gradually corrupts the discrete latent rep-
resentation z0, and a reverse process is learned to invert this process. A single step of the forward
process of the Markov chain z0 → · · · → zt → · · · → zT can be represented as,

q(zt,i|zt−1) = vT(zt,i)Qtv(zt−1,i), (1)
where v(zt,i) denotes a one-hot encoded vector representing the token at time step t, and Qt rep-
resents the transition matrix, which determines the probabilities of transitions between tokens. VQ-
Diffusion uses a mask-absorbing-type forward process, which introduces a special masked token
denoted as [MASK] in addition to the K states from the VQ-VAE. The transition matrix is defined
as

Qt =


αt + βt βt βt · · · 0

βt αt + βt βt · · · 0
βt βt αt + βt · · · 0
...

...
...

. . .
...

γt γt γt · · · 1

 , (2)

where the transition probabilities are determined by three parameters: αt, βt, and γt. Specifically, αt

represents the probability of a token remaining unchanged, βt denotes the probability of transitioning
to a different unmasked token, and γt indicates the probability of the token being replaced with the
[MASK] token. The probability βt between unmasked tokens is generally set to a very small value.
These parameters are typically set so that q(zT |z0) assigns all probability mass to the [MASK]
token, and we also adopt this assumption.

During inference, the latent variable z0 corresponding to the clean image is obtained by executing
the following reverse process:

pθ(zt−1|zt) =
∑
z0

q(zt−1|zt, z0)p̃θ(z0|zt), (3)

where q(zt−1|zt, z0) represents the posterior distribution determined by the forward process, and p̃θ
denotes the denoising network that predicts the denoised token distribution at t. The output of p̃θ
is generally modeled as independent categorical distributions for each dimension in z0. In text-to-
image models such as VQ-Diffusion, p̃θ is trained with text conditioning. While the true distribution
q(z0) is not dimensionally independent, the whole Markov reverse process in (3) produces a distri-
bution over categorical variables with correlations across dimensions. We distinguish between the
clean distribution p̃θ(z0|zt) estimated using the model and clean distribution pθ(z0|zt) obtained
through multiple reverse diffusion steps.

3
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2.2 LINEAR-INVERSE-PROBLEM SETTINGS

Inverse problems involve estimating unknown data from measurement data. We specifically focus
on linear inverse problems in the image domain. The relationship between the measurement image
y ∈ Rdy and unknown ground-truth image x0 ∈ Rdx0 can be represented as

y = Ax0 + η, (4)

where A ∈ Rdy×dx0 is referred to as the forward linear operator, which describes the process by
which the measurement data y are obtained from data x0. We assume this operator is known. The
term η represents measurement noise, which we assume follows an isotropic Gaussian distribution
with a known variance σ2

η . Consequently, the likelihood function q(y|x0) can be described as
N (y;Ax0, σ

2
ηI).

One of the primary challenges in inverse problems is their ill-posed nature. This means that for any
given measurement y, multiple candidate solutions may exist. To address this issue and determine
x0, a common approach is to assume a prior distribution for x0, such as a Laplace distribution.
Diffusion models have been utilized as more powerful and expressive priors, offering enhanced
capabilities in solving these inverse problems (Kawar et al., 2022; Chung et al., 2023b; Wang et al.,
2023; Rout et al., 2023). These methods are able to produce images that not only fit the measurement
data but also exhibit high likelihood for the prior model. Given a prior q(x0), the objective in the
inverse problem is to sample from the posterior distribution q(x0|y), which, according to Bayes’
theorem, is proportional to q(y|x0)q(x0).

These methods can be categorized based on how they incorporate the information from the mea-
surement data y into the generation trajectory of diffusion models. Methods such as denoising
diffusion restoration models (DDRM) (Kawar et al., 2022) and denoising diffusion null-space mod-
els (DDNM) (Wang et al., 2023) leverage the assumption of linear operators, using singular value
decomposition of the forward process to control the generative process. In contrast, methods such
as diffusion posterior sampling (DPS) (Chung et al., 2023b) and posterior sampling with latent dif-
fusion (PSLD) (Rout et al., 2023) operate by propagating the gradient of a loss term through the
generative process. This loss term is designed to maximize the measurement likelihood, specifically
by minimizing the term ∥y −Ax0∥22.

However, the application of these methods to generative models that use discrete diffusion models
as priors is not straightforward. This limitation stems from two primary factors. First, with the
former methods, diffusion models are assumed trained in the pixel domain. Second, while the
latter methods can be extended to latent diffusion-type models, they encounter difficulties when
handling discrete diffusion models, in which the generative process is inherently discrete. The core
challenge lies in the lack of a direct mechanism to propagate gradients of the loss function through
the generative process in discrete diffusion models. In such models, after generating discrete data,
a non-differentiable operation (i.e., codebook assignment) is followed by a decoding operation into
continuous space, which prevents the application of conventional gradient-based guidance.

3 GRADIENT-GUIDED DISCRETE DIFFUSION, G2D2

Figure 2: At time step t, z0 is sampled from the
prior model p̃θ(z0|zt) and decoded. These results
are generated with prompt “A face of monkey”,
without any guidance. By initial ∼10 steps (t =
90), coarse structure of image has already been
determined.

Besides the lack of a straightforward mecha-
nism to propagate gradients of the loss func-
tion through the generative process, a prelim-
inary study reveals another main issue of di-
rectly applying the graphical model of a gen-
eral mask-absorbing discrete diffusion model to
sampling in an inverse-problem context. Fig-
ure 2 shows images decoded from z0, which are
sampled from the denoising model p̃θ(z0|zt)
conditioned on the intermediate noisy discrete
latent z90 or z80, along with the generated im-
age from the full reverse process. These images
are generated using a pre-trained VQ-Diffusion
model (Gu et al., 2022) with the prompt “A face of monkey” (where T = 100). The results indicate
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that the majority of the image structure is determined within the initial approximately 10% of the
steps.

This observation highlights a problem for commonly used mask-absorbing discrete diffusion models
in the context of inverse problems. The issue arises from the definition of Qt in (2), where βt is
usually set to be extremely small. In the forward process, therefore, unmasked tokens are highly
likely to either remain as identical unmasked tokens or transition to masked tokens. Masked tokens
also remain unchanged thereafter.

This characteristic indicates that in the reverse process, the probability of unmasked tokens reverting
to masked tokens or transitioning to different unmasked tokens is negligible. Consequently, when
sampling to satisfy the measurement model, errors occurring in the early stages of sampling become
nearly impossible to correct in the later phases.

One solution to this problem is the “re-masking” operation, which reverts unmasked tokens back
to masked tokens. Similar approaches have been used with discrete predictor-corrector meth-
ods (Lezama et al., 2023) and predictor-corrector techniques for continuous-time discrete diffu-
sion (Campbell et al., 2022; Zhao et al., 2024) to improve image-generation quality. However, those
that involve reversing time steps can increase computational complexity. To address this, we demon-
strate that by considering a noise process that is independent at each time step and different from the
one used during the training of the prior, we can naturally resolve the inherent issues associated with
mask-absorbing discrete diffusion models. We also show that despite this difference in the noise
process, the prior model can still be used within our framework.

3.1 STAR-SHAPED NOISE PROCESS FOR INVERSE PROBLEM SOLVING

Markov noise process
Measurement

Star-shaped noise process
(Proposed)

Measurement

Figure 3: Graphical models using Markov noise
process (upper) and the star-shaped noise process
(lower)

Inspired by Okhotin et al. (2024) and Zhang
et al. (2024), G2D2 employs the star-shaped
noise process. Figure 3 illustrates the differ-
ences between the Markov forward noise pro-
cess (upper), which is used in general dis-
crete diffusion models, and the star-shaped
noise process (lower), both incorporating the
relationship with the measurement y. In the
star-shaped noise process, the noisy discrete
latents z1, . . . , zT are conditionally indepen-
dent given z0. We assume that the distri-
bution q(zt|z0) adopts the same form as the
original forward Markov process, specifically
q(zt,i|z0) = vT(zt,i)Qtv(z0,i), with Qt =
Qt · · ·Q1.

We aim to sample from the posterior qstar(z0|y)
given the measurement y based on this graphi-
cal model. Given that the transformation from
z0 to x0 is nearly deterministic in general decoders, we omit the random variable x0 in the subse-
quent discussion for simplicity.

To discuss the implementation of the sampling method based on the graphical model, we first in-
troduce the conditional joint distribution qsampling(z0:T |y) = q(zT |y)

∏T
t=1 q(zt−1|zt,y). This

conditional joint distribution has several properties:

1. A single step of qsampling inherently enables the “re-masking” operation. In the star-shaped
noise process, the positions of mask tokens in zt−1 and zt are mutually independent and uncorre-
lated. Consequently, the conditional distribution q(zt−1|zt,y) enables a “re-masking” operation,
wherein unmasked tokens present in zt can become masked tokens in zt−1. This property suggests
that in mask-absorbing discrete diffusion, errors that occur in the initial stages of sampling can be
corrected in subsequent steps, which provides an advantage when solving inverse problems.

2. The marginal distribution qsampling(z0|y) is identical to the target distribution qstar(z0|y) if
the conditional distributions q(zt−1|zt,y) are correctly specified based on the graphical model

5
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of the star-shaped noise process. The statement and proof are provided in the Appendix. This
indicates that if sampling from each step q(zt−1|zt,y) in qsampling is feasible, then it is possible to
sample from the target marginal posterior qstar(z0|y).

3. The conditional joint distribution qsampling differs from that of the graphical model,
i.e., qsampling(z0:T |y) ̸= qstar(z0:T |y). In a standard Markov forward process, the decom-
position of the joint distribution in a star-shaped noise process takes the form qstar(z0:T |y) =

q(zT |y)
∏T

t=1 q(zt−1|zt:T ,y). However, qsampling deviates from this formulation by disregarding
the dependencies on larger time steps, zt+1:T .

In subsequent sections, we introduce a variational distribution to approximate qsampling, which in-
herently enables the re-masking operation based on Property 1. As established by Property 3, the
joint distribution of qsampling differs from that of the star-shaped noise process graphical model. Nev-
ertheless, Property 2 ensures that they share identical marginal distributions. Moreover, given that
qsampling focuses on only two adjacent variables, we can formulate an algorithm to approximate its
distribution using a variational approach.

3.2 G2D2 BASED ON STAR-SHAPED NOISE PROCESS

Based on the discussion in the previous section, we aim to implement qsampling on the graphical
model of the star-shaped noise process, which inherently incorporates a re-masking process. Specif-
ically, we introduce a variational distribution pα(z0:T |y) to approximate qsampling(z0:T |y), with the
ultimate goal of ensuring that the marginal distribution pα(z0|y) approximates the true posterior
q(z0|y). The distribution pα is decomposed as

pα(zt−1|zt,y) =
∑
z0

q(zt−1|z0)p̃α(z0|zt,y), (5)

where p̃α(z0|zt,y) is a categorical distribution parameterized by α ∈ RT×dz×K , defined as
p̃α(z0,i|zt,y) = Cat (z0,i;αt,i,·), i.e., p̃α(z0,i = k|zt,y) = αt,i,k. This decomposition stems from
the fact that the distribution q(zt−1|zt,y) can be expressed as

∑
z0

q(zt−1|z0)q(z0|zt,y) based on
the conditional independence. Note that both q(zt−1|z0) and p̃α(z0|zt,y) have a mean field struc-
ture with independent categorical distributions across dimensions. Consequently, pα(zt−1|zt,y),
obtained by marginalizing over z0, inherits this mean field property. For notational convenience, we
denote the slice of distribution parameter α at time step t as αt ∈ Rdz×K .

In G2D2, the variational distribution pα is obtained by optimizing an objective function derived
from the following theorem:
Theorem 3.1. Let pα be a distribution with the parameterization given by the decomposition in (5).
Then, for any measurement y, the following inequality holds for the Kullback-Leibler (KL) diver-
gence between the marginal distributions:

DKL (pα(z0|y)∥q(z0|y)) ≤
T∑

t=1

Ezt∼pα(zt|y) [DKL (p̃α(z0|zt,y)∥q(z0|zt,y))] . (6)

The full definitions of the terms are provided in the Appendix.

The proof is provided in the Appendix. Based on this inequality, we aim to minimize each term in
the sum on the right-hand side. Since p̃α is a different categorical distribution at each t, we minimize
α for each time step, ultimately aiming to minimize the left-hand side. Each term on the right-hand
side of (6) takes the following form:
Lemma 3.2. The KL divergence between the variational distribution p̃α(z0|zt,y) and true condi-
tional q(z0|zt,y) can be decomposed into two terms:

DKL (p̃α(z0|zt,y)∥q(z0|zt,y)) = DKL (p̃α(z0|zt,y)∥q(z0|zt))− Ez0∼p̃α(z0|zt,y) [log q(y|z0)] ,
(7)

The full definitions of these terms are provided in the Appendix.

This decomposition enables us to separately consider the fit to the prior and the consistency with the
measurement data.
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The first term on the right-hand side of (7) remains intractable. However, it is important to note that
the star-shaped noise process shares the conditional distribution q(zt|z0) with the original Markov
noise process. Consequently, the reverse conditional distribution q(z0|zt) will also be identical for
both processes. Since the prior of the pre-trained discrete diffusion models is trained to approximate
this distribution, we substitute this prior model p̃θ(z0|zt) for q(z0|zt) into the objective function
of (7). This substitution transforms the term into a KL divergence between two categorical distribu-
tions, enabling the computation of gradients with respect to the parameter α.

The second term involves an expectation calculation over a categorical distribution, for which we
use the Gumbel-Softmax re-parameterization trick (Jang et al., 2016; Maddison et al., 2016). The
implementation of this trick is discussed in the subsequent section. This approach makes the term
differentiable with respect to the categorical distribution’s parameter α, facilitating continuous op-
timization. The explicit form of the resultant loss function is detailed in the Appendix.

Based on Theorem 3.1 and Lemma 3.2, G2D2 optimizes the parameter α of pα for t = T, . . . , 1
while sequentially sampling z0:T . In the optimization step, any continuous optimization method,
such as Adam (Kingma, 2014), can be used. Implementation considerations are discussed in the
following section. This algorithm is detailed in Algorithm 1, and G2D2 is illustrated in Figure 1.

Algorithm 1 Gradient-Guided Discrete Diffusion, G2D2
Require: Input condition y, pre-trained discrete diffusion model pθ , forget coefficient γ
1: zT ∼ q(zT )
2: for t = T, . . . , 1 do
3: if t = T then
4: Initialize: αt = log p̃θ(z0|zt)
5: else
6: Initialize: αt = exp(γ logαt+1 + (1− γ) log p̃θ(z0|zt))
7: end if
8: // continuous optimization
9: αt = argminαt

DKL (p̃α(z0|zt,y)∥p̃θ(z0|zt))− Ez0∼p̃α(z0|zt,y) [log q(y|z0)]
10: Sample zt−1 ∼ pα(zt−1|zt,y) =

∑
z0

q(zt−1|z0)p̃α(z0|zt,y)
11: end for
12: return x0 by decoding z0

3.3 IMPLEMENTATION CONSIDERATIONS

Gumbel-Softmax dequantization We use the Gumbel-Softmax trick (Jang et al., 2016; Maddi-
son et al., 2016) to make the computation of the second term in (7) differentiable. At time step
t, this process begins by generating Gumbel-Softmax samples using parameters of p̃α as follows:
ẑ0,i,k = softmax ((logαt,i,k + gi,k) /τ), where gi,k represents samples drawn from the Gumbel
distribution, and τ is the temperature parameter. This procedure generates a “soft” categorical
sample for each dimension in z0, indicating the proportional selection of each codebook element.
As these proportions correspond to the contribution rate of each codebook element, we construct
ZGumbel ∈ Rdz×db as their weighted sum: (ZGumbel)i =

∑K
k=1 ẑ0,i,kbk. Finally, we pass ZGumbel

through the decoder to obtain the image x0 = D(ZGumbel). By substituting this image into the
likelihood function q(y|x0), we have the differentiable objective with respect to the variational pa-
rameter αt, enabling continuous optimization. For linear inverse problems, the objective function
will include the term ∥y − Ax0(αt)∥22, excluding the constant term derived from measurement
noise.

Optimization initialization strategy At time step t, we are required to optimize the variational
parameter αt. To expedite this process, we can leverage the optimized values from the previous time
step as the initialization for the optimization process, effectively reducing the number of required
optimization steps. To achieve this, we introduce a forgetting coefficient γ and initialize αt through
a weighted sum of the previous optimized variables and the prior model’s output in the logarithm
domain, given by αt = exp(γ logαt+1 + (1− γ) log p̃θ(z0|zt)).

7
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Ground truth

Measurements

Figure 4: Images sampled from the prior model p̃θ(z0|zt) using intermediate zt during the process
of G2D2 in image inverse problem solving. The progression demonstrates how initial structural
errors are gradually corrected as the sampling proceeds in G2D2.

3.4 APPLICATION OF G2D2 TO MASKED GENERATIVE MODELS

As discussed in (Zheng et al., 2024), mask-absorbing discrete diffusion models and masked genera-
tive models, such as MaskGIT (Chang et al., 2022), share a similar framework. Except for temporal
conditioning, these models are nearly identical and are trained to approximate q(z0|zt). Therefore,
G2D2 can be straightforwardly applied to masked generative models. We give an example of solving
inverse problems using a masked generative model as a prior model for motion data in the following
section.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

We evaluate G2D2 on inverse problems in image processing and compare it with other diffusion
model-based inverse-problem-solving methods. We also demonstrate gradient-based guidance on a
discrete-latent variable-based motion-domain generative model without additional training, showing
the applicability of G2D2 to other domains.

Image inverse problems and evaluation metrics We conduct experiments on two tasks: (1)
super-resolution (SR) and (2) Gaussian deblurring. For the SR task, the linear forward operator
downscales the image by a factor of 4 using a bicubic resizer. For the Gaussian-deblurring task, we
set the kernel size to 61 × 61 with a Gaussian kernel standard deviation of 3.0. The measurements
are obtained by applying the forward operator to the ground truth images normalized to the range
[−1, 1], followed by the addition of Gaussian noise with a standard deviation of 0.05. As metrics,
we use the learned perceptual image patch similarity (LPIPS) (Zhang et al., 2018) score to measure
perceptual proximity to the original image, and the peak signal-to-noise ratio (PSNR) to measure
the closeness of the signal.

Datasets Following previous studies, we use the ImageNet (Deng et al., 2009) and Flickr-Faces-
HQ (FFHQ) (Karras et al., 2019) datasets. The size of both datasets is 256×256. For comparison,
we use a subset of 100 images from each validation set.

Baselines We compare DPS (Chung et al., 2023b), DDRM (Kawar et al., 2022), which use diffu-
sion models trained in the pixel domain, and PSLD (Rout et al., 2023) and ReSample (Song et al.,
2024), which use diffusion models trained in the latent space acquired from VAE (latent diffusion
models) as baselines with G2D2.
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Implementation details Regarding G2D2, for both the ImageNet and FFHQ experiments, we use
a pre-trained VQ-Diffusion model 1 that is trained on the ITHQ dataset (Tang et al., 2022). In all
experiments, we optimize the parameters αt of the variational categorical distribution within the
G2D2 algorithm’s optimization step using the Adam optimizer Kingma (2014). To balance the prior
and likelihood terms in the objective function, we introduce hyperparameters. For the image inverse
problem experiments, we used text prompts for the VQ-Diffusion model: “a photo of [Class
Name]” for ImageNet and “a high-quality headshot of a person” for FFHQ.

Details of the experiments and comparison methods are provided in the Appendix.

4.2 IMAGE INVERSE PROBLEM SOLVING ON IMAGENET AND FFHQ

Figure 5 shows the qualitative results of image inverse problem solving, and Tables 1 and 2 list
the quantitative results. G2D2 performs comparably to the other methods using diffusion models
trained in the continuous domain. Note that the pre-trained models used for each method are dif-
ferent, which particularly contributes to the superiority of pixel-domain methods on FFHQ. With
DDRM, it is assumed that the amount of measurement noise is known and require the singular value
decomposition of the linear operator. We also show images in the intermediate phase of the G2D2
algorithm in Figure 4.

Table 1: Quantitative evaluation on ImageNet 256×256. Performance comparison of different meth-
ods on various linear tasks in image domain. Values show the mean over 100 images.

Prior Type Method SR (×4) Gaussian deblurring
LPIPS↓ PSNR↑ LPIPS↓ PSNR↑

Pixel-domain DPS (Chung et al., 2023b) 0.367 22.61 0.443 19.04
DDRM (Kawar et al., 2022) 0.352 24.00 0.246 27.30

LDM PSLD (Rout et al., 2023) 0.332 24.43 0.365 24.04
ReSample (Song et al., 2024) 0.382 22.63 0.438 22.32

Discrete G2D2 (proposed) 0.349 23.20 0.375 22.71
G2D2 w/ Markov noise process 0.409 21.48 0.431 21.78
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Figure 5: Qualitative results of G2D2 and DPS.

4.3 ABLATION STUDY ON GRAPHICAL MODELS

It is possible to derive a similar algorithm to G2D2 that uses a Markov noise process as the graphical
model. However, as discussed at the beginning of Section 3, this graphical model does not allow

1https://huggingface.co/microsoft/vq-diffusion-ithq
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Table 2: Quantitative evaluation on FFHQ 256×256. Performance comparison of different methods
on various linear tasks in image domain. Values show mean over 100 images.

Prior Type Method SR (×4) Gaussian deblurring
LPIPS↓ PSNR↑ LPIPS↓ PSNR↑

Pixel-domain DPS (Chung et al., 2023b) 0.227 26.73 0.225 26.02
DDRM (Kawar et al., 2022) 0.242 28.23 0.201 31.12

LDM PSLD (Rout et al., 2023) 0.276 27.62 0.304 27.37
ReSample (Song et al., 2024) 0.507 22.98 0.329 25.69

Discrete G2D2 (proposed) 0.271 26.93 0.287 26.35
G2D2 w/ Markov noise process 0.395 23.94 0.365 25.16

for the “re-masking” operation, which means it cannot correct errors that occur early in the sam-
pling process. We refer to this variant as G2D2 w/ Markov noise process, and its performance is
presented in Tables 1 and 2 on ImageNet and FFHQ, respectively. Additional qualitative results are
provided in the Appendix C.3. The results indicate that the introduction of the star-shaped noise
process significantly improves performance, making G2D2 comparable to continuous-based meth-
ods.

4.4 MOTION INVERSE PROBLEM SOLVING

Figure 6: Results of executing
G2D2 using a motion gener-
ation model as a prior in the
motion inverse problem (path
following generation task).

As discussed in Section 3.4, our method can also be applied to
Masked generative models. We conduct experiments to manipulate
Generative Masked Motion Model (MMM) Pinyoanuntapong et al.
(2024), a generative model for motion data, using gradient guid-
ance. Specifically, we perform a path following task where gen-
eration is conditioned on the position information of the hip joint.
Since joint position information can be calculated from motion data,
this can also be treated within the framework of inverse problems.
While there have been examples of achieving path following in mo-
tion generation models with continuous latent spaces (Song et al.,
2023b; Uchida et al., 2024), we are the first to accomplish this us-
ing a motion generation model with discrete latent variables in a
training-free manner. Appendix C.11 provides additional samples
and detailed experimental information.

5 CONCLUSION

We proposed G2D2 for solving inverse problems using discrete diffusion models as priors. We
demonstrated that G2D2 effectively addresses the limitation of discrete diffusion in inverse problem-
solving by using a continuous relaxation technique and star-shaped noise process. Specifically,
G2D2 approximates the posterior in inverse problems by optimizing the parameters of a variational
distribution, composed of parameterized categorical distributions, at each time step of the diffusion
process. Our experiments show that G2D2 performs comparable to its continuous counterparts,
opening up possibilities for training-free applications of discrete diffusion models across a wide
range of tasks.

Limitations and future works G2D2 does not significantly surpass its continuous counterparts in
terms of computational speed or performance. We anticipate that these limitations can be mitigated
through the optimization of efficiency and the enhancement of prior models. The application to
more complex problem settings, including nonlinear inverse problems, as well as to other domains
such as audio and video, constitutes future work.
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Ethics statement Our G2D2 method, which uses discrete diffusion models as priors for solving
inverse problems, carries potential risks similar to those of previously proposed techniques in this
field. We acknowledge that these methods, including ours, may inadvertently perpetuate biases
present in training data or be misused for generating misleading or harmful content. We are com-
mitted to addressing these ethical concerns and promoting responsible use of our technology. We
urge users of our method to exercise caution and consider the ethical implications of its applications.

Reproducibility statement We will provide as detailed a description as possible regarding the
reproduction of experiments in the Appendix, and we plan to release our code when this paper is
published.
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A.1 LEVERAGING DIFFUSION MODELS AS PRIOR MODELS FOR INVERSE PROBLEMS

Pixel-Domain Diffusion Models for Inverse Problems Several methods have been proposed that
utilize pixel-domain diffusion models for solving inverse problems. DDRM and DDNM (Kawar
et al., 2022; Wang et al., 2023) assume linear operators and known noise levels, leveraging the
singular value decomposition (SVD) of these operators. ΠGDM (Song et al., 2023a) can handle
certain classes of non-linear operators, such as low dynamic range, where a pseudo-inverse operator
can be defined. Notably, ΠGDM does not require SVD or gradient computations for such a case.

DPS (Chung et al., 2023b) broadens the applicability to cases where operator gradients can be com-
puted, enabling it to handle both linear and non-linear operators like phase retrieval and non-linear
blur. Other notable methods in this category include RePaint (Lugmayr et al., 2022) and RED-
Diff (Mardani et al., 2024).

Latent Diffusion Models for Inverse Problems Recent work has also explored the use of latent
diffusion models for inverse problems. PSLD (Rout et al., 2023) extends the ideas of DPS to latent
diffusion models, demonstrating provable sample recovery for linear inverse problems. ReSam-
ple (Song et al., 2024) achieves data consistency by solving an optimization problem at each step
during sampling.

Of particular relevance to our work is DAPS (Zhang et al., 2024), which, like our approach, adopts
a graphical model during sampling that differs from the one used during training of the prior model.
This approach, known as the noise decoupling scheme, offers new possibilities for adapting diffusion
models to various inverse problems.

Application of Inverse Problem Solving in Various Domains Solving inverse problems using
diffusion models has enabled various real-world applications. In the image domain, diffusion mod-
els have been extensively studied and applied to tasks such as image deblurring, super-resolution,
and inpainting (Lugmayr et al., 2022; Chung et al., 2023a; Zhu et al., 2023). In the audio domain,
methods such as those proposed by Song et al. (2021a), Chung et al. (2023c), and Bian et al. (2024)
have been developed to address tasks like dereverberation and audio restoration. Similarly, in the
medical imaging domain, approaches like those introduced by Song et al. (2021a), Chung et al.
(2023c), and Bian et al. (2024) have been used to improve image reconstruction and enhance di-
agnostic accuracy. These advancements demonstrate the versatility and effectiveness of diffusion
models across different domains.

A.2 CONDITIONAL GENERATION USING DISCRETE DIFFUSION MODELS AS PRIORS

While our work focuses on inverse problems, it is important to consider related approaches in con-
ditional generation tasks using discrete diffusion models as priors. These methods, primarily devel-
oped in the context of graph generation and protein design, introduce new conditioning to pre-trained
models rather than directly addressing inverse problems.

The predominant strategy in this field involves training additional guidance networks. For instance,
in protein sequence generation, LaMBO-2 (Gruver et al., 2024) and Cemri et al. (2024) learn net-
works that evaluate how intermediate features of samples during generation achieve the desired
objectives. Similarly, CGD (Klarner et al., 2024) learns a guidance model for corrupted data. Other
examples requiring additional training include Nisonoff et al. (2024) and DiGress (Vignac et al.,
2023) for graph generation.

In contrast, Chen et al. (2024b) proposes a training-free approach to guide discrete diffusion models
for generating Electronic Health Record data. This method employs Langevin dynamics sampling
to minimize a given loss function by adjusting the parameters of the final layer of the prior model’s
transformer output. However, this approach faces scalability issues with models having large dis-
crete latent spaces, such as VQ-Diffusion, as it requires evaluating all possible discrete states to
compute the loss function.

Another training-free method for guiding generative models with discrete latents is proposed by Li
et al. (2024). This approach avoids gradient computation of the loss function, instead evaluating the
loss on multiple generated samples and conducting sampling based on these values. However, like
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Chen et al. (2024b), this method is expected to be inefficient for models with relatively large discrete
latent spaces.

B PROOFS

Full Statement of Theorem 3.1 In this section, we provide detailed proofs for the main theoretical
results presented in the paper.
Theorem B.1 (Full version of Theorem 3.1). Let pα be a distribution with the parameterization
given by the decomposition in (5). Then, for any measurements y, the following inequality holds for
the KL divergence between the marginal distributions:

DKL (pα(z0|y)∥q(z0|y)) ≤
T∑

t=1

Ezt∼pα(zt|y) [DKL (p̃α(z0|zt,y)∥q(z0|zt,y))] , (8)

where pα(z0|y) is the variational marginal distribution parameterized by α, q(z0|y) is the true
posterior distribution, p̃α(z0|zt,y) is the variational conditional distribution as defined in (5),
q(z0|zt,y) is the true conditional distribution, pα(zt|y) is the marginal distribution at time step
t, and T is the total number of time steps in the diffusion process.

Proof. To prove the inequality in Theorem 3.1, we start by noting that the KL divergence between
the marginal distributions pα(z0|y) and q(z0|y) can be bounded by the KL divergence between the
joint distributions pα(z0:T |y) and q(z0:T |y):

DKL (pα(z0|y) ∥ q(z0|y)) ≤ DKL (pα(z0:T |y) ∥ q(z0:T |y)) . (9)

This inequality holds because marginalization cannot increase the KL divergence between distribu-
tions.

Next, we decompose the joint KL divergence using the chain rule and the definitions of the distribu-
tions:

DKL (pα(z0:T |y) ∥ q(z0:T |y)) = Epα(z0:T |y)

[
log

pα(z0:T |y)
q(z0:T |y)

]
= Epα(z0:T |y)

[
log

pα(zT |y)
∏T

t=1 pα(zt−1|zt,y)
q(zT |y)

∏T
t=1 q(zt−1|zt,y)

]

= Epα(z0:T |y)

[
log

pα(zT |y)
q(zT |y)

+
T∑

t=1

log
pα(zt−1|zt,y)
q(zt−1|zt,y)

]

= DKL (pα(zT |y) ∥ q(zT |y)) +
T∑

t=1

Epα(z0:T |y)

[
log

pα(zt−1|zt,y)
q(zt−1|zt,y)

]
.

(10)

In the context of mask-absorbing state diffusion, the distribution pα(zT |y) is the same as q(zT |y)
because zT is fully determined by the diffusion process and is independent of α. Therefore, the first
term is zero:

DKL (pα(zT |y) ∥ q(zT |y)) = 0. (11)

This simplifies (10) to:

DKL (pα(z0:T |y) ∥ q(z0:T |y)) =
T∑

t=1

Epα(z0:T |y)

[
log

pα(zt−1|zt,y)
q(zt−1|zt,y)

]
. (12)
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We can further simplify the expectation over z0:T by focusing on zt and zt−1:

DKL (pα(z0:T |y) ∥ q(z0:T |y)) =
T∑

t=1

Ezt∼pα(zt|y) [DKL (pα(zt−1|zt,y) ∥ q(zt−1|zt,y))] . (13)

Now, for each term in the sum, we apply the chain rule for KL divergence to relate zt−1 and z0:

DKL (pα(zt−1|zt,y) ∥ q(zt−1|zt,y))
+ Ezt−1∼pα(zt−1|zt,y) [DKL (p̃α(z0|zt−1, zt,y) ∥ q(z0|zt−1, zt,y))]

= DKL (p̃α(z0|zt,y) ∥ q(z0|zt,y))
+ Ez0∼p̃α(z0|zt,y) [DKL (pα(zt−1|z0, zt,y) ∥ q(zt−1|z0, zt,y))] . (14)

In this equation, the left-hand side represents the KL divergence between pα and q at time t−1 con-
ditioned on zt, plus the expected KL divergence between their respective conditional distributions
of z0. The right-hand side represents the KL divergence between p̃α and q directly conditioned on
zt, plus an expected KL divergence over z0.

The crucial observation here is that the last term on the right-hand side is zero. This is because pα
and q share the same reverse diffusion process when conditioned on z0 and zt, i.e.,

pα(zt−1|z0, zt,y) = q(zt−1|z0)
= q(zt−1|z0, zt,y). (15)

Therefore, the KL divergence between these conditional distributions is zero:

DKL (pα(zt−1|z0, zt,y) ∥ q(zt−1|z0, zt,y)) = 0. (16)

Substituting back into (14), we obtain:

DKL (pα(zt−1|zt,y) ∥ q(zt−1|zt,y))
= DKL (p̃α(z0|zt,y) ∥ q(z0|zt,y))
− Ezt−1∼pα(zt−1|zt,y) [DKL (p̃α(z0|zt−1, zt,y) ∥ q(z0|zt−1, zt,y))] . (17)

Since the KL divergence is always non-negative, the expected KL divergence on the right-hand side
is non-negative, which implies:

DKL (pα(zt−1|zt,y) ∥ q(zt−1|zt,y)) ≤ DKL (p̃α(z0|zt,y) ∥ q(z0|zt,y)) . (18)

Substituting (18) back into (13), we obtain an upper bound on the joint KL divergence:

DKL (pα(z0:T |y) ∥ q(z0:T |y)) ≤
T∑

t=1

Ezt∼pα(zt|y) [DKL (p̃α(z0|zt,y) ∥ q(z0|zt,y))] . (19)

Combining (9) and (19), we conclude:

DKL (pα(z0|y) ∥ q(z0|y)) ≤
T∑

t=1

Ezt∼pα(zt|y) [DKL (p̃α(z0|zt,y) ∥ q(z0|zt,y))] . (20)

This establishes the inequality stated in the theorem.
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Full Statement of Lemma 3.2
Lemma B.2 (Full version of Lemma 3.2). The KL divergence between the variational distribution
p̃α(z0|zt,y) and the true posterior q(z0|zt,y) can be decomposed into two terms:

DKL (p̃α(z0|zt,y)∥q(z0|zt,y)) = DKL (p̃α(z0|zt,y)∥q(z0|zt))− Ez0∼p̃α(z0|zt,y) [log q(y|z0)] ,
(21)

where the first term in the right-hand side represents the KL divergence between the variational
distribution and the prior distribution without the measurement condition, and the second term is
the expected value of the negative log-likelihood − log q(y|z0) under the variational distribution.

Proof. We begin by considering the KL divergence between the variational distribution p̃α(z0|zt,y)
and the true posterior q(z0|zt,y). Given that z0 is a discrete variable, the KL divergence can be
expressed as a sum:

DKL (p̃α(z0|zt,y)∥q(z0|zt,y)) =
∑
z0

p̃α(z0|zt,y) log
p̃α(z0|zt,y)
q(z0|zt,y)

. (22)

By applying Bayes’ theorem to the true posterior q(z0|zt,y), we have:

q(z0|zt,y) =
q(z0|zt)q(y|z0)

q(y|zt)
. (23)

Since q(y|zt) does not depend on z0, it can be treated as a constant and ignored in the KL divergence
calculation. Substituting Eq. (23) into Eq. (22), we obtain:

DKL (p̃α(z0|zt,y)∥q(z0|zt,y)) =
∑
z0

p̃α(z0|zt,y) log
p̃α(z0|zt,y)

q(z0|zt)q(y|z0)
. (24)

Next, we split the logarithm in the numerator and denominator:

DKL (p̃α(z0|zt,y)∥q(z0|zt,y)) =
∑
z0

p̃α(z0|zt,y)
[
log

p̃α(z0|zt,y)
q(z0|zt)

− log q(y|z0)
]
. (25)

This expression can be decomposed into two terms:

1. The first term represents the KL divergence between the variational distribution
p̃α(z0|zt,y) and the prior q(z0|zt):

DKL (p̃α(z0|zt,y)∥q(z0|zt)) =
∑
z0

p̃α(z0|zt,y) log
p̃α(z0|zt,y)
q(z0|zt)

. (26)

2. The second term is the negative expected log-likelihood under the variational distribution:

Ez0∼p̃α(z0|zt,y) [− log q(y|z0)] = −
∑
z0

p̃α(z0|zt,y) log q(y|z0). (27)

Thus, the KL divergence between p̃α(z0|zt,y) and q(z0|zt,y) can be decomposed as follows:

DKL (p̃α(z0|zt,y)∥q(z0|zt,y)) = DKL (p̃α(z0|zt,y)∥q(z0|zt))− Ez0∼p̃α(z0|zt,y) [log q(y|z0)] .
(28)

This concludes the proof.
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Lemma B.3. The marginal distribution qsampling(z0|y) is identical to the target distribution q(z0|y).

Proof. We aim to show that:

qsampling(z0|y) = q(z0|y). (29)

Starting from the definition of qsampling:

qsampling(z0:T |y) = q(zT |y)
T∏

t=1

q(zt−1|zt,y). (30)

Marginalizing over z1:T :

qsampling(z0|y) =
∑
z1:T

q(zT |y)
T∏

t=1

q(zt−1|zt,y). (31)

Since the forward process completely corrupts z0, we have q(zT |z0) = q(zT ), making zT indepen-
dent of z0. Consequently, q(zT |y) = q(zT ) because zT is independent of y. Therefore:

qsampling(z0|y) =
∑
z1:T

q(zT )

T∏
t=1

q(zt−1|zt,y). (32)

Since q(zT ) is constant with respect to z0 and y, it can be factored out:

qsampling(z0|y) = q(zT )
∑
z1:T

T∏
t=1

q(zt−1|zt,y). (33)

The sum over z1:T of the product of reverse transitions represents the total probability of generating
z0 from any zT using the reverse process conditioned on y. Since zT is sampled independently of
y and z0, the reverse process effectively generates z0 solely based on y. Therefore, the distribution
over z0 is determined entirely by the reverse process:

qsampling(z0|y) = q(zT ) · (probability of generating z0 from reverse process). (34)

Since q(zT ) is a normalization constant and the reverse process is designed to sample z0 from
q(z0|y), we conclude:

qsampling(z0|y) = q(z0|y). (35)

C DETAILS ON EXPERIMENTS

C.1 IMAGE INVERSE PROBLEMS

Implementation of Forward Operators and Dataset Selection In our image inverse problem
experiments, the definition and implementation of the forward operator are based on the DPS imple-
mentation2. To ensure a diverse representation of ImageNet classes without genre bias, we select a
subset consisting of 100 images from classes 0, 10, . . . , 990 using the imagenet val 1k.txt
provided by Pan et al. (2021)3. For our experiments with the FFHQ dataset, we use images
0, 1, . . . , 99 from the validation set.

2https://github.com/DPS2022/diffusion-posterior-sampling
3https://github.com/XingangPan/deep-generative-prior/
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C.2 IMPLEMENTATION DETAILS OF G2D2 IN INVERSE PROBLEM SETTINGS

The implementation of G2D2 is based on the VQ-Diffusion model from the diffusers library 4.
For the prior model, we use the pre-trained model available at https://huggingface.co/
microsoft/vq-diffusion-ithq. In our experiments, the number of time steps T for sam-
pling is set to 100.

Parameterization of Star-Shaped Noise Process In G2D2, the star-shaped noise process follows
the same cumulative transition probability q(zt|z0) as the original Markov noise process. For the
Markov noise forward process where q(zt|zt−1) is defined using Qt as in Equation 2, the cumulative
transition probability is computed as q(zt,i|z0) = vT(zt,i)Qtv(z0,i), where Qt = Qt · · ·Q1. Here,
Qt can be computed in closed form as:

Qtv(z0,i) = αtv(z0,i) + (γt − βt)v(K + 1) + βt, (36)

where αt =
∏t−1

i=1 αi, γt = 1−
∏t−1

i=1(1− γi), and βt = (1−αt − γt)/(K +1). These parameters
can be calculated and stored in advance. The parameter settings follow those used during the training
of the prior model. Specifically, α1 is set to 0.99999, αT to 0.000009, γ1 to 0.000009, and γT to
0.99999. For both αt and γt, values are linearly interpolated between steps 1 and T . This scheduling
results in a linear increase in the number of [MASK] states as t increases, ultimately leading to all
variables transitioning to the [MASK] state. Additionally, the transition probability βt between
unmasked tokens is set to be negligibly small, as αt and γt sum to nearly 1.

Optimization in the Algorithm and Instantiation of the Objective Function In the continuous
optimization phase, we optimize the parameters α of the categorical distribution using the Adam op-
timizer. The optimization objective is a weighted sum of the KL divergence term and the likelihood
term, defined as:

αt = argmin
αt

{ηKLDKL (p̃α(z0|zt,y)∥p̃θ(z0|zt)) + ∥y −Ax0(αt)∥2} , (37)

where ηKL controls the trade-off between the KL term and the likelihood term.

Marginalization over z0 in Algorithm 1 The marginalization over z0 in line 10 of Algorithm 1,
specifically the term

∑
z0

q(zt−1|z0)p̃α(z0|zt,y), can be computed in closed form. This com-
putation is feasible because both distributions involved in the marginalization are dimensionally
independent categorical distributions, as discussed by Austin et al. (2021) and Gu et al. (2022).

Dynamic Learning Rate and KL Coefficient Scheduling Some parameters are dynamically ad-
justed during inference. Both the learning rate for Adam (lAdam) and the KL divergence coefficient
(ηKL) are scheduled using weight vectors that decay logarithmically over the inference steps. These
weights are computed based on initial scaling factors.

The learning rate weight vector wlr and the KL coefficient weight vector wKL are defined as follows:

wlr(t) = 10

(
λlr, schedule

2 ·( 2t
T −1)

)
,

wKL(t) = 10

(
λKL, schedule

2 ·( 2t
T −1)

)
.

Here, λlr, schedule and λKL, schedule represent the initial scaling factors for the learning rate and KL
coefficient, respectively, and T is the total number of inference steps. When λlr, schedule > 0, the
learning rate weight vector wlr(t) starts with relatively large values when t is large and decays
exponentially as t decreases. Specifically, wlr(t) reaches its minimum near t = 1 and its maximum
near t = T . This scheduling enables stronger optimization during the initial inference steps, with
the learning rate gradually decreasing in the later steps.

At each step t, the parameters are set as follows:

lAdam(t) = lAdam, base · wlr(t), ηKL(t) = ηKL, base · wKL(t).
4https://huggingface.co/docs/diffusers/main/en/api/pipelines/vq_

diffusion
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Task-Specific and Common Hyperparameters The hyperparameters for Gaussian deblurring
and super-resolution tasks used in the experiments are shown in Table 3.

Dataset Task Hyperparameter Value
ImageNet Gaussian Deblurring ηKL, base 0.0003

λKL, schedule 2.0
lAdam, base 1.0
λlr, schedule 0.5

ImageNet Super-resolution ηKL, base 0.0001
λKL, schedule 2.0
lAdam, base 0.5
λlr, schedule 2.0

FFHQ Gaussian Deblurring ηKL, base 0.0003
λKL, schedule 2.0
lAdam, base 0.5
λlr, schedule 0.5

FFHQ Super-resolution ηKL, base 0.0003
λKL, schedule 2.0
lAdam, base 0.3
λlr, schedule 2.0

Table 3: Hyperparameters for Gaussian Deblurring and Super-resolution tasks on ImageNet and
FFHQ datasets.

The following hyperparameters are shared across all experiments: The number of iterations for
the optimization is set to 30, the temperature for Gumbel-Softmax relaxation is 1.0, and the forget
coefficient is 0.3. For the classifier-free guidance scale, we use 5.0 in ImageNet experiments and 3.0
in FFHQ experiments.

C.3 G2D2 WITH MARKOV NOISE PROCESS

As discussed in Section 4.3, a variant of G2D2 can be derived by introducing the original Markov
noise process in the graphical model. In that case, the algorithm is shown in Algorithm 2. The
key point here is that the qMarkov(zt−1|z0, zt) part is identical to that of the original Markov noise
process, which is expressed as

qMarkov(zt−1,i|z0, zt) =
(vT(zt,i)Qtv(zt−1,i))(v

T(zt−1,i)Qt−1v(z0,i))

vT(zt,i)Qtv(z0,i)
. (38)

In the mask-absorbing type of Markov noise process, this posterior distribution does not revert to-
kens that have once become unmasked states back to masked tokens. As a result, it becomes difficult
to correct errors that occur in the early stages of sampling in subsequent steps.

Algorithm 2 G2D2 with Markov Noise Process
Require: Input condition y, pre-trained discrete diffusion model pθ , forget coefficient γ
1: zT ∼ q(zT )
2: for t = T, . . . , 1 do
3: if t = T then
4: Initialize: αt = log p̃θ(z0|zt)
5: else
6: Initialize: αt = exp(γ logαt+1 + (1− γ) log p̃θ(z0|zt))
7: end if
8: // continuous optimization
9: αt = argminαt

DKL (p̃α(z0|zt,y)∥p̃θ(z0|zt))− Ez0∼p̃α(z0|zt,y) [log q(y|z0)]
10: Sample zt−1 ∼ pα(zt−1|zt,y) =

∑
z0

qMarkov(zt−1|z0, zt)p̃α(z0|zt,y)
11: // Note: The term qMarkov(zt−1|z0, zt) uses the posterior distribution of

the original Markov noise process.
12: end for
13: return x0 by decoding z0
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C.4 SETTINGS FOR COMPARISON METHODS

In this subsection, we detail the experimental settings for the comparison method.

DPS (Chung et al., 2023b) We use the same parameter settings as described in the original paper.
The guidance scale is set to 1.0 for FFHQ & Super resolution, 1.0 for FFHQ & Gaussian deblurring,
1.0 for ImageNet & Super resolution, and 0.4 for ImageNet & Gaussian deblurring. The number
of time steps is set to 1000. For pre-trained models, we use the unconditional model provided by
Dhariwal & Nichol (2021) 5 for ImageNet. For FFHQ, we use the model provided by Choi et al.
(2021) 6.

DDRM (Kawar et al., 2022) We use the official implementation 7. The time steps are set to
T = 20, with η = 0.85 and ηb = 1.0 as the hyperparameters. For ImageNet, we use the same
pre-trained model as DPS. Although there is no official implementation using a pre-trained model
trained on FFHQ, both DDRM and Choi et al. (2021) are based on the implementation of Dhariwal
& Nichol (2021). Therefore, in our experiments, DDRM uses the same pre-trained model as DPS.

PSLD (Rout et al., 2023) We use the official implementation 8. For the pre-trained model, we
employ stable-diffusion v-1.5 (Rombach et al., 2022) 9. As this model handles 512×512 pixel
images, we first upscale the ground truth image to 512×512. We then apply the forward operator to
the upscaled image and use the result as observed data for our method. Finally, we downsample the
output to 256×256. For hyperparameters, we use η = 1.0 and γ = 0.1.

ReSample (Song et al., 2024) We use the official implementation 10. For pre-trained models, we
employ two models from the latent diffusion models repository 11: LDM-VQ-4 trained on FFHQ,
and LDM-VQ-8 trained on ImageNet with class conditioning. We use T = 500 DDIM steps with τ
set to 10−4. The maximum number of optimization steps is set to 500. The variance hyperparameter
γ is set to 40. For the ImageNet experiments, we input the class labels of the ground truth data to
the model.

C.5 GPU MEMORY USAGE AND COMPUTATIONAL SPEED

We analyze the GPU memory consumption and computational speed of our proposed method,
G2D2, in comparison with other methods. Table 4 presents a overview of these metrics for vari-
ous methods. The measurement are conducted using a single NVIDIA A6000 GPU for the Gaussian
deblurring task on ImageNet. G2D2 has the lowest memory usage among all methods and the fastest
computational speed among gradient-based methods.

Table 4: Comparison of GPU Memory Usage and Computational Speed

Method GPU Memory Usage (GiB) Computational Time (s)
G2D2 (Proposed) 4.7 194
DPS 10.7 277
DDRM 5.8 4
PSLD 20.9 738
ReSample 7.1 555

C.6 IMPACT OF THE FORGET COEFFICIENT

Figure 7 shows the reduction in the loss function and the final results for the Gaussian deblurring
task on ImageNet when the forget coefficient is set to 0.3 and 1.0. The case with a forget coefficient

5https://github.com/openai/guided-diffusion
6https://github.com/jychoi118/ilvr_adm
7https://github.com/bahjat-kawar/ddrm
8https://github.com/LituRout/PSLD
9https://github.com/CompVis/stable-diffusion

10https://github.com/soominkwon/resample
11https://github.com/CompVis/latent-diffusion
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of 1.0 corresponds to not using the optimization results from the previous step at all. Introducing the
forget coefficient allows for a faster reduction in the loss function and achieves higher performance
with the same computational resources.

Measurement

Ground truth

Forget coefficient Forget coefficient 

Figure 7: Reduction in the loss function and final results for the Gaussian deblurring task on Ima-
geNet with forget coefficients of 0.3 and 1.0. The forget coefficient of 1.0 corresponds to not using
the optimization results from the previous step.

C.7 IMPACT OF TEXT CONDITIONING ON THE PRIOR MODEL

To examine the necessity of text conditioning, we investigate the effect of the presence or absence
of prompts given to VQ-Diffusion on performance. Table 5 shows the performance for each setting.
“Not Used” for text conditioning indicates that classifier-free guidance in the prior model is set to
1.0 (equivalent to unconditional sampling). The prompts we provide to VQ-Diffusion in our method
are “a photo of [Class Name]” for ImageNet experiments and “a high-quality headshot of a person”
for FFHQ experiments. It should be noted that these prompts are extremely general and do not
describe specific details of the images. From these results, we can confirm that prompt conditioning
contributes to a certain level of performance improvement.

Dataset Text conditioning SR (×4) Gaussian Deblurring
LPIPS↓ PSNR↑ LPIPS↓ PSNR↑

ImageNet Not Used 0.355 23.32 0.410 22.21
Used 0.349 23.20 0.375 22.71

FFHQ Not Used 0.300 26.60 0.328 25.43
Used 0.271 26.93 0.288 24.42

Table 5: Performance comparison with and without text conditioning

C.8 FAILURE MODES OF G2D2

We conduct an analysis of failure modes. Figure 8 shows the results of G2D2 and the images during
inference for the Gaussian deblurring task on FFHQ. When the ground truth image is a relatively
young (child’s) face, the generated face images appear to be drawn towards a distribution of more
adult faces. This is likely due to the use of the prompt “a high-quality headshot of a person”. As a
result, there is a consistent bias towards adult face images throughout the generation process, leading
to artifacts in the final image. In the absence of a prompt, the intermediate generated images are not
influenced by any specific textual guidance. As a result, the final image tends to have fewer artifacts.
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While the star-shaped noise process can correct early errors, if errors persist until the later stages,
it becomes more difficult to correct them from that point onwards. In other words, when there is
a mismatch between the distribution conditioned by the prompt and the target image, it becomes
challenging for G2D2 to handle it effectively.

To improve these issues, techniques such as simultaneous optimization of prompts may be neces-
sary. Prompt-tuning techniques, as proposed in reference Chung et al. (2024), could be effective in
addressing these challenges.

Without Prompt

Measurement

Ground Truth

With prompt: “a high-quality headshot of a person”

Measurement

Ground Truth

Figure 8: Failure modes of G2D2: Gaussian deblurring results on the FFHQ dataset. Due to the
mismatch between the prompt and the target image, errors remain uncorrected throughout the pro-
cess, resulting in artifacts in the estimated image.

C.9 ADDITIONAL QUALITATIVE RESULTS OF G2D2 AND COMPARISON METHODS.

We present additional qualitative results of G2D2 and comparison methods. Figures 9 through 12
showcase the results for super-resolution (SR) and Gaussian blur (GB) tasks on ImageNet and FFHQ
datasets.

C.10 ADDITIONAL QUALITATIVE RESULTS OF G2D2 WITH MARKOV NOISE PROCESS

To compare G2D2 and G2D2 with Markov noise process, we present their respective qualitative
results in Figures 13 and 14. The latter approach does not include re-masking operations in its
sampling process, which means that once a token becomes unmasked, it cannot be modified in
subsequent iterations. The unnatural artifacts observed in the resulting images are likely attributable
to this limitation. This observation underscores the validity of adopting the star-shaped noise process
in our proposed method.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Measurement DPS DDRM PSLD ReSample
G2D2 

(Proposed) Ground truth

Super resolution (x4, 

Figure 9: Qualitative results of G2D2 and comparison methods.

Measurement DPS DDRM PSLD ReSample
G2D2 

(Proposed) Ground truth

Gaussian Deblur (

Figure 10: Qualitative results of G2D2 and comparison methods.

C.11 INVERSE PROBLEMS ON MOTION DATA

We develop G2D2 based on the official implementation of MMM (Pinyoanuntapong et al., 2024) 12.
This method learns a masked generative model on the discrete latent space obtained by a motion

12https://github.com/exitudio/MMM
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Measurement DPS DDRM PSLD ReSample
G2D2 

(Proposed) Ground truth

Super resolution (x4, 

Figure 11: Qualitative results of G2D2 and comparison methods.

Measurement DPS DDRM PSLD ReSample
G2D2 

(Proposed) Ground truth

Gaussian Deblur (

Figure 12: Qualitative results of G2D2 and comparison methods.

tokenizer trained on the VQVAE framework (Van Den Oord et al., 2017). G2D2 uses the provided
pre-trained model as a prior distribution.

We conduct experiments on the path following task (Song et al., 2023b; Uchida et al., 2024). The
objective is to generate motion data m0 ∈ Rdm×L that follows a given path ypath ∈ R3×L. Here,
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Measurement
G2D2 

(Proposed) Ground truth
G2D2 w/ 

Markov noise process

Super resolution (x4, 

Figure 13: Qualitative results comparing G2D2 and G2D2 with Markov noise process (Super-
resolution task).

ypath represents the coordinates of the hip joint at each time frame, L denotes the number of frames
in the motion data, and dm is the dimensionality of each motion data point.

The likelihood loss used in the optimization process of G2D2 measures how closely the generated
motion follows the target path. It is defined as

log q(ypath|m0) =

L∑
l=1

∥ypath,l −Apathm0,l∥2, (39)

where Apath is a linear operator that extracts the path across the frames.

In our experiments, we use two types of paths (forward: a path moving forward at a constant speed,
and zigzag: a path moving forward while zigzagging) and two prompts: ”A person walks with
his hands up” and ”A person does a cart wheel.” We also perform unconditional generation. The
qualitative results are shown in Figure 15.

We conduct experiments with a total of T = 25 time steps. For hyperparameters, we set the number
of iterations for optimization to 20 and the Gumbel-Softmax temperature to 1.0. The forget coeffi-
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Measurement
G2D2 

(Proposed) Ground truth
G2D2 w/ 

Markov noise process

Gaussian Deblur (

Figure 14: Qualitative results comparing G2D2 and G2D2 with Markov noise process (Gaussian
deblurring task).

cient is set to 0.7. We adopt the dynamic learning rate scheduling described in the Appendix C.2.
The base Adam learning rate lAdam, base is set to 0.3, and the KL divergence weight ηKL is set to 0.05.
Additionally, we set λKL, schedule and λlr, schedule to 0.0 and 1.0, respectively.

C.12 QUANTITATIVE COMPARISON WITH OTHER METHODS FOR CONTROLLABLE MOTION
GENERATION

We conduct a comparison between G2D2 and existing methods in the controllable motion genera-
tion task. For comparison, we select OmniControl (Xie et al., 2024) and Guided Motion Diffusion
(GMD) (Karunratanakul et al., 2023). The quantitative results are cited from their respective papers.

The comparison is performed on a path following task, specifically generating motion based on
a prescribed trajectory for the pelvis. Following OmniControl’s setup, we compare the following
metrics under the sparse condition of 5 frames out of 196 frames in the HumanML3D test set:
FID, R-Precision, Diversity, Foot Skating ratio, Trajectory error (50cm), Location error (50cm), and
Average error.
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The results are presented in the Table 6.

It’s important to note that while OmniControl and GMD are fine-tuned for this specific task, G2D2 is
a method that can be used without additional training. However, OmniControl and GMD show better
performance in trajectory and location errors, suggesting that there is still room for improvement in
the current version of G2D2.

We propose that methods like G2D2 can be used in combination with fine-tuned approaches. Addi-
tionally, there’s potential to further enhance G2D2’s performance by incorporating techniques such
as the time-traveling method used in FreeDoM (Yu et al., 2023).

Method FID R-prec. Diversity Foot Traj. Err Loc. err. Avg.
(↓) (↑) (9.503→) skating (↓) (50cm, ↓) (50cm, ↓) err. (↓)

G2D2 0.248 0.770 9.381 0.048 0.272 0.116 0.230
OmniControl (Xie et al., 2024) 0.278 0.705 9.582 0.058 0.053 0.015 0.043
GMD Karunratanakul et al. (2023) 0.523 0.599 N/A 0.086 0.176 0.049 0.139

Table 6: Comparison of methods for controllable motion generation

Path

Prompt “A person walks with 
his hands up”

“A person
does a cart wheel”

Forward

Zigzag

Unconditional

Figure 15: Qualitative results of motion inverse problem solving.
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