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ABSTRACT

Scaling Transformers to longer sequence lengths has been a major problem in the
last several years, promising to improve performance in language modeling and high-
resolution image understanding, as well as to unlock new applications in code, audio,
and video generation. The attention layer is the main bottleneck in scaling to longer
sequences, as its runtime and memory increase quadratically in the sequence length.
FLASHATTENTION (Dao et al., 2022) exploits the asymmetric GPU memory hier-
archy to bring significant memory saving (linear instead of quadratic) and runtime
speedup (2-4× compared to optimized baselines), with no approximation. However,
FLASHATTENTION is still not nearly as fast as optimized matrix-multiply (GEMM)
operations, reaching only 25-40% of the theoretical maximum FLOPs/s. We observe
that the inefficiency is due to suboptimal work partitioning between different thread
blocks and warps on the GPU, causing either low-occupancy or unnecessary shared
memory reads/writes. We propose FLASHATTENTION-2, with better work partition-
ing to address these issues. In particular, we (1) tweak the algorithm to reduce the
number of non-matmul FLOPs (2) parallelize the attention computation, even for a
single head, across different thread blocks to increase occupancy, and (3) within each
thread block, distribute the work between warps to reduce communication through
shared memory. These yield around 2× speedup compared to FLASHATTENTION,
reaching 50-73% of the theoretical maximum FLOPs/s on A100 and getting close
to the efficiency of GEMM operations. We empirically validate that when used
end-to-end to train GPT-style models, FLASHATTENTION-2 reaches training speed
of up to 225 TFLOPs/s per A100 GPU (72% model FLOPs utilization).

1 INTRODUCTION

Scaling up the context length of Transformers (Vaswani et al., 2017) is a challenge, since the attention
layer at their heart has runtime and memory requirements quadratic in the input sequence length.
Ideally, we would like to go beyond the standard 2k sequence length limit to train models to understand
books, high resolution images, and long-form videos. Just within the last year, there have been several
language models with much longer context than before: GPT-4 (OpenAI, 2023) with context length
32k, MosaicML’s MPT with context length 65k, and Anthropic’s Claude with context length 100k.
Emerging use cases such as long document querying and story writing have demonstrated a need for
models with such long context.

To reduce the computational requirement of attention on such long context, there have been numerous
methods proposed to approximate attention (Kitaev et al., 2020; Roy et al., 2021; Wang et al., 2020;
Katharopoulos et al., 2020; Choromanski et al., 2020; Beltagy et al., 2020; Zaheer et al., 2020; Chen
et al., 2021). Though these methods have seen some use cases, as far as we know, most large-scale
training runs still use standard attention. Motivated by this, Dao et al. (2022) proposed to reorder the
attention computation and leverages classical techniques (tiling, recomputation) to significantly speed
it up and reduce memory usage from quadratic to linear in sequence length. This yields 2-4×wall-clock
time speedup over optimized baselines, up to 10-20×memory saving, with no approximation, and as a
result FLASHATTENTION has seen wide adoption in large-scale training and inference of Transformers.

However, context length increases even more, FLASHATTENTION is still not nearly as efficient as
other primitives such as matrix-multiply (GEMM). In particular, while FLASHATTENTION is already
2-4× faster than a standard attention implementation, the forward pass only reaches 30-50% of the
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theoretical maximum FLOPs/s of the device (Fig. 6), while the backward pass is even more challenging,
reaching only 25-35% of maximum throughput on A100 GPU (Fig. 7). In contrast, optimized GEMM
can reach up to 80-90% of the theoretical maximum device throughput. Through careful profiling, we
observe that FLASHATTENTION still has suboptimal work partitioning between different thread blocks
and warps on the GPU, causing either low-occupancy or unnecessary shared memory reads/writes.

Building on FLASHATTENTION, we propose FLASHATTENTION-2 with better parallelism and work
partitioning to address these challenges.

1. In Section 3.1, we tweak the algorithms to reduce the number of non-matmul FLOPs while not
changing the output. While the non-matmul FLOPs only account for a small fraction of the total
FLOPs, they take longer to perform as GPUs have specialized units for matrix multiply, and as
a result the matmul throughput can be up to 16× higher than non-matmul throughput. It is thus
important to reduce non-matmul FLOPs and spend as much time as possible doing matmul FLOPs.

2. We propose to parallelize both the forward pass and backward pass along the sequence length dimen-
sion, in addition to the batch and number of heads dimension. This increases occupancy (utilization
of GPU resources) in the case where the sequences are long (and hence batch size is often small).

3. Even within one block of attention computation, we partition the work between different warps
of a thread block to reduce communication and shared memory reads/writes.

In Section 4, we empirically validate that FLASHATTENTION-2 yields significant speedup compared
to even FLASHATTENTION. Benchmarks on different settings (with or without causal mask, different
head dimensions) show that FLASHATTENTION-2 achieves around 2× speedup over FLASHATTEN-
TION, reaching up to 73% of the theoretical max throughput in the forward pass, and up to 63% of
the theoretical max throughput in the backward pass. During LLM inference, FLASHATTENTION-2’s
kernel is up to 7× faster than the attention kernel from FasterTransformer. When used end-to-end
to train GPT-style models, we reach training speed of up to 225 TFLOPs/s per A100 GPU.

2 BACKGROUND

We provide some background on the performance characteristics and execution model of GPUs. We
also describe the standard implementation of attention, as well as FLASHATTENTION.

2.1 HARDWARE CHARACTERISTICS

GPU performance characteristics. The GPU consists of compute elements (e.g., floating point arith-
metic units) and a memory hierarchy. Most modern GPUs contain specialized units to accelerate matrix
multiply in low-precision (e.g., Tensor Cores on Nvidia GPUs for FP16/BF16 matrix multiply). The
memory hierarchy comprise of high bandwidth memory (HBM), and on-chip SRAM (aka shared mem-
ory). As an example, the A100 GPU has 40-80GB of high bandwidth memory (HBM) with bandwidth
1.5-2.0TB/s and 192KB of on-chip SRAM per each of 108 streaming multiprocessors with bandwidth
estimated around 19TB/s (Jia et al., 2018; Jia and Van Sandt, 2021). As the L2 cache is not directly
controllable by the programmer, we focus on the HBM and SRAM for the purpose of this discussion.

Execution Model. GPUs have a massive number of threads to execute an operation (called a kernel).
Threads are organized into thread blocks, which are scheduled to run on streaming multiprocessors
(SMs). Within each thread blocks, threads are grouped into warps (a group of 32 threads). Threads
within a warp can communicate by fast shuffle instructions or cooperate to perform matrix multiply.
Warps within a thread block can communicate by reading from / writing to shared memory. Each
kernel loads inputs from HBM to registers and SRAM, computes, then writes outputs to HBM.

2.2 STANDARD ATTENTION IMPLEMENTATION

Given input sequences Q,K,V ∈R𝑁×𝑑 where 𝑁 is the sequence length and 𝑑 is the head dimension,
we want to compute the attention output O∈R𝑁×𝑑:

S=QK> ∈R𝑁×𝑁 , P=softmax(S) ∈R𝑁×𝑁 , O=PV∈R𝑁×𝑑 ,

where softmax is applied row-wise.1 For multi-head attention (MHA), this same computation is
performed in parallel across many heads, and parallel over the batch dimension (number of input
sequences in a batch).

1For clarity of exposition, we omit the scaling of QK> (typically by 1/d), and optionally elementwise masking
on S and/or dropout applied to P
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The backward pass of attention proceeds as follows. Let dO∈R𝑁×𝑑 be the gradient of O with respect
to some loss function. Then by the chain rule (aka backpropagation):

dV=P>dO∈R𝑁×𝑑 dP=dOV> ∈R𝑁×𝑁

dS=dsoftmax(dP) ∈R𝑁×𝑁 dQ=dSK∈R𝑁×𝑑 dK=dS>Q∈R𝑁×𝑑 ,

where dsoftmax is the gradient (backward pass) of softmax applied row-wise. One can work out
that if 𝑝 = softmax(𝑠) for some vector 𝑠 and 𝑝, then with output gradient 𝑑𝑝, the input gradient
𝑑𝑠= (diag(𝑝)−𝑝𝑝>)𝑑𝑝.

Standard attention implementations materialize the matrices S and P to HBM, which takes 𝑂 (𝑁2)
memory. Often 𝑁� 𝑑 (typically 𝑁 is on the order of 1k–8k and 𝑑 is around 64–128). The standard
attention implementation (1) calls the matrix multiply (GEMM) subroutine to multiply S = QK>,
writes the result to HBM, then (2) loads S from HBM to compute softmax and write the result P to
HBM, and finally (3) calls GEMM to get O=PV. As most of the operations are bounded by memory
bandwidth, the large number of memory accesses translates to slow wall-clock time. Moreover, the
required memory is 𝑂 (𝑁2) due to having to materialize S and P. Moreover, one has to save P∈R𝑁×𝑁

for the backward pass to compute the gradients.

2.3 FLASHATTENTION

To speed up attention on hardware accelerators such as GPU, (Dao et al., 2022) proposes an algorithm
to reduce the memory reads/writes while maintaining the same output (without approximation).

2.3.1 FORWARD PASS

FLASHATTENTION applies the classical technique of tiling to reduce memory IOs, by (1) loading
blocks of inputs from HBM to SRAM, (2) computing attention with respect to that block, and then (3)
updating the output without writing the large intermediate matrices S and P to HBM. As the softmax
couples entire rows or blocks of row, online softmax (Milakov and Gimelshein, 2018; Rabe and Staats,
2021) can split the attention computation into blocks, and rescale the output of each block to finally get
the right result (with no approximation). By significantly reducing the amount of memory reads/writes,
FLASHATTENTION yields 2-4×wall-clock speedup over optimized baseline attention implementations.

We describe the online softmax technique (Milakov and Gimelshein, 2018) and how it is used in
attention (Rabe and Staats, 2021). For simplicity, consider just one row block of the attention matrix
S, of the form

[
S(1) S(2)

]
for some matrices S(1) ,S(2) ∈R𝐵𝑟×𝐵𝑐 , where 𝐵𝑟 and 𝐵𝑐 are the row and

column block sizes. We want to compute softmax of this row block and multiply with the value, of

the form
[
V(1)

V(2)

]
for some matrices V(1) ,V(2) ∈R𝐵𝑐×𝑑 . Standard softmax would compute:

𝑚=max(rowmax(S(1) ),rowmax(S(2) )) ∈R𝐵𝑟 ℓ=rowsum(𝑒S(1)−𝑚)+rowsum(𝑒S(2)−𝑚) ∈R𝐵𝑟

P=
[
P(1) P(2)

]
=diag(ℓ)−1

[
𝑒S
(1)−𝑚 𝑒S

(2)−𝑚
]
∈R𝐵𝑟×2𝐵𝑐

O=
[
P(1) P(2)

] [V(1)
V(2)

]
=diag(ℓ)−1𝑒S(1)−𝑚V(1)+𝑒S(2)−𝑚V(2) ∈R𝐵𝑟×𝑑 .

Online softmax instead computes “local” softmax with respect to each block and rescale to get the
right output at the end:

𝑚 (1) =rowmax(S(1) ) ∈R𝐵𝑟 ℓ (1) =rowsum(𝑒S(1)−𝑚(1) ) ∈R𝐵𝑟

P̃(1) =diag(ℓ (1) )−1𝑒S(1)−𝑚(1) ∈R𝐵𝑟×𝐵𝑐 O(1) = P̃(1)V(1) =diag(ℓ (1) )−1𝑒S(1)−𝑚(1)V(1) ∈R𝐵𝑟×𝑑

𝑚 (2) =max(𝑚 (1) ,rowmax(S(2) ))=𝑚

ℓ (2) =𝑒𝑚
(1)−𝑚(2) ℓ (1)+rowsum(𝑒S(2)−𝑚(2) )=rowsum(𝑒S(1)−𝑚)+rowsum(𝑒S(2)−𝑚)=ℓ

P̃(2) =diag(ℓ (2) )−1𝑒S(2)−𝑚(2)

O(2) =diag(ℓ (1)/ℓ (2) )O(1)+P̃(2)V(2) =diag(ℓ (2) )−1𝑒𝑠 (1)−𝑚V(1)+diag(ℓ (2) )−1𝑒𝑠 (2)−𝑚V(2) =O.

We show how FLASHATTENTION uses online softmax to enable tiling (Fig. 1) to reduce memory
reads/writes.
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Figure 1: Diagram of how FLASHATTENTION forward pass is performed, when the keyK is partitioned
into two blocks and the valueV is also partitioned into two blocks. By computing attention with respect
to each block and rescaling the output, we get the right answer at the end, while avoiding expensive
memory reads/writes of the intermediate matrices S and P. We simplify the diagram, omitting the step
in softmax that subtracts each element by the row-wise max.

2.3.2 BACKWARD PASS

In the backward pass, by re-computing the values of the attention matrices S and P once blocks
of inputs Q,K,V are already loaded to SRAM, FLASHATTENTION avoids having to store large
intermediate values. By not having to save the large matrices S andP of size 𝑁×𝑁 , FLASHATTENTION
yields 10-20×memory saving depending on sequence length (memory required in linear in sequence
length 𝑁 instead of quadratic). The backward pass also achieves 2-4× wall-clock speedup due to
reduce memory reads/writes.

The backward pass applies tiling to the equations in Section 2.2. Though the backward pass is simpler
than the forward pass conceptually (there is no softmax rescaling), the implementation is significantly
more involved. This is because there are more values to be kept in SRAM to perform 5 matrix multiples
in the backward pass, compared to just 2 matrix multiples in the forward pass.

3 FLASHATTENTION-2:
ALGORITHM, PARALLELISM, AND WORK PARTITIONING

We describe the FLASHATTENTION-2 algorithm, which includes several tweaks to FLASHATTENTION
to reduce the number of non-matmul FLOPs. We then describe how to parallelize the computation
on different thread blocks to make full use the GPU resources. Finally we describe we partition the
work between different warps within one thread block to reduce the amount of shared memory access.
These improvements lead to 2-3× speedup as validated in Section 4.

3.1 ALGORITHM

We tweak the algorithm from FLASHATTENTION to reduce the number of non-matmul FLOPs. This
is because modern GPUs have specialized compute units (e.g., Tensor Cores on Nvidia GPUs) that
makes matmul much faster. As an example, the A100 GPU has a max theoretical throughput of 312
TFLOPs/s of FP16/BF16 matmul, but only 19.5 TFLOPs/s of non-matmul FP32. Another way to think
about this is that each non-matmul FLOP is 16×more expensive than a matmul FLOP. To maintain
high throughput (e.g., more than 50% of the maximum theoretical TFLOPs/s), we want to spend as
much time on matmul FLOPs as possible.

3.1.1 FORWARD PASS

We revisit the online softmax trick as shown in Section 2.3 and make two minor tweaks to reduce
non-matmul FLOPs:

1. We do not have to rescale both terms of the output update by diag(ℓ (2) )−1:

O(2) =diag(ℓ (1)/ℓ (2) )O(1)+diag(ℓ (2) )−1𝑒S(2)−𝑚(2)V(2) .
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We can instead maintain an “un-scaled” version of O(2) and keep around the statistics ℓ (2) :
Õ(2) =diag(ℓ (1) )−1O(1)+𝑒S(2)−𝑚(2)V(2) .

Only at the every end of the loop do we scale the final Õ(last) bydiag(ℓ (last) )−1 to get the right output.
2. We do not have to save both the max 𝑚 ( 𝑗) and the sum of exponentials ℓ ( 𝑗) for the backward pass.

We only need to store the logsumexp 𝐿 ( 𝑗) =𝑚 ( 𝑗)+log(ℓ ( 𝑗) ).
In the simple case of 2 blocks in Section 2.3, the online softmax trick now becomes:

𝑚 (1) =rowmax(S(1) ) ∈R𝐵𝑟 ℓ (1) =rowsum(𝑒S(1)−𝑚(1) ) ∈R𝐵𝑟

˜O(1) =𝑒S
(1)−𝑚(1)V(1) ∈R𝐵𝑟×𝑑 𝑚 (2) =max(𝑚 (1) ,rowmax(S(2) ))=𝑚

ℓ (2) =𝑒𝑚
(1)−𝑚(2) ℓ (1)+rowsum(𝑒S(2)−𝑚(2) )=rowsum(𝑒S(1)−𝑚)+rowsum(𝑒S(2)−𝑚)=ℓ

P̃(2) =diag(ℓ (2) )−1𝑒S(2)−𝑚(2)

Õ(2) =diag(𝑒𝑚(1)−𝑚(2) )Õ(1)+𝑒S(2)−𝑚(2)V(2) =𝑒𝑠 (1)−𝑚V(1)+𝑒𝑠 (2)−𝑚V(2)

O(2) =diag(ℓ (2) )−1Õ(2) =O.

We describe the full FLASHATTENTION-2 forward pass in Algorithm 1.

Algorithm 1 FLASHATTENTION-2 forward pass

Require: Matrices Q,K,V∈R𝑁×𝑑 in HBM, block sizes 𝐵𝑐 , 𝐵𝑟 .
1: Divide Q into 𝑇𝑟 =

⌈
𝑁
𝐵𝑟

⌉
blocks Q1, ...,Q𝑇𝑟 of size 𝐵𝑟 × 𝑑 each, and divide K,V in to 𝑇𝑐 =

⌈
𝑁
𝐵𝑐

⌉
blocks K1,...,K𝑇𝑐 and V1,...,V𝑇𝑐 , of size 𝐵𝑐×𝑑 each.

2: Divide the outputO∈R𝑁×𝑑 into𝑇𝑟 blocksO𝑖 ,...,O𝑇𝑟 of size 𝐵𝑟×𝑑 each, and divide the logsumexp
𝐿 into𝑇𝑟 blocks 𝐿𝑖 ,...,𝐿𝑇𝑟 of size 𝐵𝑟 each.

3: for 1≤ 𝑖≤𝑇𝑟 do
4: Load Q𝑖 from HBM to on-chip SRAM.
5: On chip, initialize O(0)

𝑖
= (0)𝐵𝑟×𝑑 ∈R𝐵𝑟×𝑑 ,ℓ (0)

𝑖
= (0)𝐵𝑟

∈R𝐵𝑟 ,𝑚
(0)
𝑖

= (−∞)𝐵𝑟
∈R𝐵𝑟 .

6: for 1≤ 𝑗 ≤𝑇𝑐 do
7: Load K 𝑗 ,V 𝑗 from HBM to on-chip SRAM.
8: On chip, compute S( 𝑗)

𝑖
=Q𝑖K

𝑇
𝑗
∈R𝐵𝑟×𝐵𝑐 .

9: On chip, compute 𝑚
( 𝑗)
𝑖

= max(𝑚 ( 𝑗−1)
𝑖

,rowmax(S( 𝑗)
𝑖
)) ∈ R𝐵𝑟 , P̃( 𝑗)

𝑖
= exp(S( 𝑗)

𝑖
−𝑚 ( 𝑗)

𝑖
) ∈

R𝐵𝑟×𝐵𝑐 (pointwise), ℓ ( 𝑗)
𝑖

=𝑒𝑚
𝑗−1
𝑖
−𝑚( 𝑗)

𝑖 ℓ
( 𝑗−1)
𝑖
+rowsum(P̃( 𝑗)

𝑖
) ∈R𝐵𝑟 .

10: On chip, compute O( 𝑗)
𝑖

=diag(𝑒𝑚
( 𝑗−1)
𝑖

−𝑚( 𝑗)
𝑖 )O( 𝑗−1)

𝑖
+P̃( 𝑗)

𝑖
V 𝑗 .

11: end for
12: On chip, compute O𝑖 =diag(ℓ (𝑇𝑐)𝑖

)−1O(𝑇𝑐)
𝑖

.
13: On chip, compute 𝐿𝑖 =𝑚

(𝑇𝑐)
𝑖
+log(ℓ (𝑇𝑐)

𝑖
).

14: Write O𝑖 to HBM as the 𝑖-th block of O.
15: Write 𝐿𝑖 to HBM as the 𝑖-th block of 𝐿.
16: end for
17: Return the output O and the logsumexp 𝐿.

Causal masking.
One common use case of attention is in auto-regressive language modeling, where we need to apply
a causal mask to the attention matrix S (i.e., any entry S𝑖 𝑗 with 𝑗 > 𝑖 is set to −∞).

1. As FLASHATTENTION and FLASHATTENTION-2 already operate by blocks, for any blocks where
all the column indices are more than the row indices (approximately half of the blocks for large
sequence length), we can skip the computation of that block. This leads to around 1.7-1.8× speedup
compared to attention without the causal mask.

2. We do not need to apply the causal mask for blocks whose row indices are guaranteed to be strictly
less than the column indices. This means that for each row, we only need apply causal mask to
1 block (assuming square block).

Correctness, runtime, and memory requirement. As with FLASHATTENTION, Algorithm 1 returns
the correct output O=softmax(QK>)V (with no approximation), using 𝑂 (𝑁2𝑑) FLOPs and requires
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𝑂 (𝑁) additional memory beyond inputs and output (to store the logsumexp 𝐿). The proof is almost
the same as the proof of Dao et al. (2022, Theorem 1), so we omit it here.

3.1.2 BACKWARD PASS

The backward pass of FLASHATTENTION-2 is almost the same as that of FLASHATTENTION. We
make a minor tweak to only use the row-wise logsumexp 𝐿 instead of both the row-wise max and
row-wise sum of exponentials in the softmax. We include the backward pass description in Algorithm 2
for completeness.

Multi-query attention and grouped-query attention. Multi-query attention (MQA) (Shazeer, 2019)
and grouped-query attention (GQA) (Ainslie et al., 2023) are variants of attention where multiple
heads of query attend to the same head of key and value, in order to reduce the size of KV cache during
inference. Instead of having to duplicate the key and value heads for the computation, we implicitly
manipulate the indices into the head to perform the same computation. In the backward pass, we need
to sum the gradients dK and dV across different heads that were implicitly duplicated.

3.2 PARALLELISM

The first version of FLASHATTENTION parallelizes over batch size and number of heads. We use
1 thread block to process one attention head, and there are overall batch size·number of heads thread
blocks. Each thread block is scheduled to run on a streaming multiprocessor (SM), and there are 108
of these SMs on an A100 GPU for example. This scheduling is efficient when this number is large
(say ≥80), since we can effectively use almost all of the compute resources on the GPU.

In the case of long sequences (which usually means small batch sizes or small number of heads), to
make better use of the multiprocessors on the GPU, we now additionally parallelize over the sequence
length dimension. This results in significant speedup for this regime.

Forward pass. We see that the outer loop (over sequence length) is embarrassingly parallel, and we
schedule them on different thread blocks that do not need to communicate with each other. We also
parallelize over the batch dimension and number of heads dimension, as done in FLASHATTENTION.
The increased parallelism over sequence length helps improve occupancy (fraction of GPU resources
being used) when the batch size and number of heads are small, leading to speedup in this case.

Backward pass. Notice that the only shared computation between different column blocks is in
update dQ in Algorithm 2, where we need to load dQ𝑖 from HBM to SRAM, then on chip, update
dQ𝑖←dQ𝑖+dS

( 𝑗)
𝑖

K 𝑗 , and write back to HBM. We thus parallelize over the sequence length dimension
as well, and schedule 1 thread block for each column block of the backward pass. We use atomic adds
to communicate between different thread blocks to update dQ.

We describe the parallelization scheme in Fig. 2.

Figure 2: In the forward pass (left), we parallelize the workers (thread blocks) where each worker takes
care of a block of rows of the attention matrix. In the backward pass (right), each worker takes care of a
block of columns of the attention matrix.

Decoding. During LLM inference, most of the time is spent on iterative decoding, where one token
is predicted at a time. The bottleneck for the attention operation during decoding is different from that
during training or prefill (prompt processing), because the query length is very short (often query length
is 1 since only the new extra token is attending to all the previous tokens, stored in the KV cache). As a
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result, the bottleneck is no longer the read/write of intermediate matrices (the scoresQK> and attention
probabilities softmax(QK>)). Instead, the bottleneck is to load the KV cache as quickly as possible.

To accommodate this setting, we split the KV cache loading among different thread blocks, to
increase occupancy and saturate the HBM bandwidth. However, since the thread blocks cannot easily
communicate with each other, we write intermediate results to HBM, then call a separate kernel to
reduce the results and produce final output.

3.3 WORK PARTITIONING BETWEEN WARPS

As Section 3.2 describe how we schedule thread blocks, even within each thread block, we also have
to decide how to partition the work between different warps. We typically use 4 or 8 warps per thread
block, and the partitioning is described in Fig. 3.

Forward pass. For each block, FLASHATTENTION splits K and V across 4 warps while keeping
Q accessible by all warps. Each warp multiplies to get a slice of QK>, then they need to multiply
with a slice of V and communicate to add up the result. This is referred to as the “split-K” scheme.
However, this is inefficient since all warps need to write their intermediate results out to shared memory,
synchronize, then add up the intermediate results. These shared memory reads/writes slow down the
forward pass in FLASHATTENTION.

In FLASHATTENTION-2, we instead split Q across 4 warps while keeping K and V accessible by all
warps. After each warp performs matrix multiply to get a slice of QK>, they just need to multiply with
their shared slice ofV to get their corresponding slice of the output. There is no need for communication
between warps. The reduction in shared memory reads/writes yields speedup (Section 4).

(a) FLASHATTENTION (b) FLASHATTENTION-2

Figure 3: Work partitioning between different warps in the forward pass
Backward pass. Similarly for the backward pass, we choose to partition the warps to avoid the
“split-K” scheme. However, it still requires some synchronization due to the more complicated
dependency between all the different inputs and gradients Q,K,V,O,dO,dQ,dK,dV. Nevertheless,
avoiding “split-K” reduces shared memory reads/writes and again yields speedup (Section 4).

Tuning block sizes Increasing block sizes generally reduces shared memory loads/stores, but increases
the number of registers required and the total amount of shared memory. Past a certain block size,
register spilling causes significant slowdown, or the amount of shared memory required is larger
than what the GPU has available, and the kernel cannot run at all. Typically we choose blocks of size
{64,128}×{64,128}, depending on the head dimension 𝑑 and the device shared memory size.

We manually tune for each head dimensions since there are essentially only 4 choices for block sizes,
but this could benefit from auto-tuning to avoid this manual labor. We leave this to future work.

4 EMPIRICAL VALIDATION

We evaluate the impact of using FLASHATTENTION-2 to train Transformer models.

• Benchmarking attention. We measure the runtime of FLASHATTENTION-2 across different
sequence lengths and compare it to a standard implementation in PyTorch, FLASHATTENTION,
and FLASHATTENTION in Triton. We confirm that FLASHATTENTION-2 is 1.7-3.0× faster than
FLASHATTENTION, 1.3-2.5× faster than FLASHATTENTION in Triton, and 3-10× faster than a
standard attention implementation. FLASHATTENTION-2 reaches up to 230 TFLOPs/s, 73% of
the theoretical maximum TFLOPs/s on A100 GPUs.

• End-to-end training speed When used end-to-end to train GPT-style models of size 1.3B and 2.7B
on sequence lengths either 2k or 8k, FLASHATTENTION-2 yields up to 1.3× speedup compared
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to FLASHATTENTION and 2.8× speedup compared to a baseline without FLASHATTENTION.
FLASHATTENTION-2 reaches up to 225 TFLOPs/s (72% model FLOPs utilization) per A100 GPU.

4.1 BENCHMARKING ATTENTION FOR TRAINING

We measure the runtime of different attention methods on an A100 80GB SXM4 GPU for different
settings (without / with causal mask, head dimension 64 or 128). We report the results in Fig. 4, Fig. 6
and Fig. 7, showing that FLASHATTENTION-2 is around 2× faster than FLASHATTENTION and
FLASHATTENTION in xformers (the “cutlass” implementation). FLASHATTENTION-2 is around
1.3-1.5× faster than FLASHATTENTION in Triton in the forward pass and around 2× faster in the
backward pass. Compared to a standard attention implementation in PyTorch, FLASHATTENTION-2
can be up to 10× faster.

Benchmark setting: we vary the sequence length from 512, 1k, ..., 16k, and set batch size so that the
total number of tokens is 16k. We set hidden dimension to 2048, and head dimension to be either 64
or 128 (i.e., 32 heads or 16 heads). To calculate the FLOPs of the forward pass, we use:

4·seqlen2 ·head dimension·number of heads.
With causal mask, we divide this number by 2 to account for the fact that approximately only half
of the entries are calculated. To get the FLOPs of the backward pass, we multiply the forward pass
FLOPs by 2.5 (since there are 2 matmuls in the forward pass and 5 matmuls in the backward pass,
due to recomputation).
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(a) Without causal mask, head dimension 64

512 1k 2k 4k 8k 16k
Sequence length

50

100

150

200

Sp
ee

d 
(T

FL
OP

s/
s)

53
67

76 79 86

OOM

76 72 76 80 82 8383
91 95 96 97 98

78 85 90 93 95 95

151

173
187

196 201 203

Attention forward + backward speed (A100 80GB SXM4)
Pytorch
FlashAttention
xformers
FlashAttention Triton
FlashAttention-2

(b) Without causal mask, head dimension 128
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(c) With causal mask, head dimension 64
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(d) With causal mask, head dimension 128

Figure 4: Attention forward + backward speed on A100 GPU

Just running the same implementation on H100 GPUs (using no special instructions to make use of
new features such as TMA and 4th-gen Tensor Cores), we obtain up to 335 TFLOPs/s (Fig. 8). We
expect that by using new instructions, we can obtain another 1.5x-2x speedup on H100 GPUs. We
leave that to future work.

4.2 BENCHMARKING ATTENTION FOR INFERENCE

We benchmark the attention kernel during decoding for the case of multi-query attention, where the bot-
tleneck is loading the KV cache. In Fig. 5, we see that the attention kernel from FLASHATTENTION-2
is up to 28× faster than a naive implementation in PyTorch, and up to 7× faster than an implementation
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from FasterTransformer. This is thanks to better work partitioning where multiple thread blocks are
loading the KV cache at the same time to saturate HBM bandwidth.
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Figure 5: Attention decoding time on A100 80GB, with hidden dimension 2048 and multi-query atten-
tion. The attention kernel from FLASHATTENTION-2 is up to 7× faster than that of FasterTransformer
and 28× faster than a naive implementation in PyTorch.

4.3 END-TO-END PERFORMANCE

We measure the training throughput of GPT-style models with either 1.3B or 2.7B parameters, on
8×A100 80GB SXM4. As shown in Table 1, FLASHATTENTION-2 yields 2.8× speedup compared
to a baseline without FLASHATTENTION and 1.3× speedup compared to FLASHATTENTION, reaching
up to 225 TFLOPs/s per A100 GPU.

Note that we calculate the FLOPs by the formula, following Megatron-LM (Shoeybi et al., 2019) (and
many other papers and libraries):

6·seqlen·number of params+12·number of layers·hidden dim·seqlen2.

The first term accounts for the FLOPs due to weight–input multiplication, and the second term accounts
for the FLOPs due to attention. However, one can argue that the second term should be halved, as
with causal mask we only need to compute approximately half the number of elements in attention.
We choose to follow the formula from the literature (without dividing the attention FLOPs by 2) for
consistency.

Table 1: Training speed (TFLOPs/s/GPU) of GPT-style models on 8×A100 GPUs. FLASHATTENTION-
2 reaches up to 225 TFLOPs/s (72% model FLOPs utilization). We compare against a baseline running
without FLASHATTENTION.

Model Without FLASHATTENTION FLASHATTENTION FLASHATTENTION-2
GPT3-1.3B 2k context 142 TFLOPs/s 189 TFLOPs/s 196 TFLOPs/s
GPT3-1.3B 8k context 72 TFLOPS/s 170 TFLOPs/s 220 TFLOPs/s
GPT3-2.7B 2k context 149 TFLOPs/s 189 TFLOPs/s 205 TFLOPs/s
GPT3-2.7B 8k context 80 TFLOPs/s 175 TFLOPs/s 225 TFLOPs/s

5 DISCUSSION AND FUTURE DIRECTIONS

FLASHATTENTION-2 is 2× faster than FLASHATTENTION, which means that we can train models
with 16k longer context for the same price as previously training a 8k context model, for the same
number of tokens. We are excited about how this can be used to understand long books and reports,
high resolution images, audio and video. FLASHATTENTION-2 will also speed up training, finetuning,
and inference of existing models.

In the near future, we plan to collaborate with researchers and engineers to make FlashAttention widely
applicable in different kinds of devices (e.g., H100 GPUs, AMD GPUs), as well as new data types
such as FP8. As an immediate next step, we plan to optimize FlashAttention-2 for H100 GPUs to
use new hardware features (TMA, 4th-gen Tensor Cores, fp8). Combining the low-level optimizations
in FlashAttention-2 with high-level algorithmic changes (e.g., local, dilated, block-sparse attention)
could allow us to train AI models with much longer context. We are also excited to work with compiler
researchers to make these optimization techniques easily programmable.
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A FLASHATTENTION-2 BACKWARD PASS

Algorithm 2 FLASHATTENTION-2 Backward Pass

Require: Matrices Q,K,V,O,dO∈R𝑁×𝑑 in HBM, vector 𝐿 ∈R𝑁 in HBM, block sizes 𝐵𝑐 , 𝐵𝑟 .
1: Divide Q into 𝑇𝑟 =

⌈
𝑁
𝐵𝑟

⌉
blocks Q1, ...,Q𝑇𝑟 of size 𝐵𝑟 × 𝑑 each, and divide K,V in to 𝑇𝑐 =

⌈
𝑁
𝐵𝑐

⌉
blocks K1,...,K𝑇𝑐 and V1,...,V𝑇𝑐 , of size 𝐵𝑐×𝑑 each.

2: Divide O into 𝑇𝑟 blocks O𝑖 ,...,O𝑇𝑟 of size 𝐵𝑟 ×𝑑 each, divide dO into 𝑇𝑟 blocks dO𝑖 ,...,dO𝑇𝑟 of
size 𝐵𝑟×𝑑 each, and divide 𝐿 into𝑇𝑟 blocks 𝐿𝑖 ,...,𝐿𝑇𝑟 of size 𝐵𝑟 each.

3: Initialize dQ = (0)𝑁×𝑑 in HBM and divide it into 𝑇𝑟 blocks dQ1, ... ,dQ𝑇𝑟
of size 𝐵𝑟 × 𝑑 each.

Divide dK,dV∈R𝑁×𝑑 in to𝑇𝑐 blocks dK1,...,dK𝑇𝑐 and dV1,...,dV𝑇𝑐 , of size 𝐵𝑐×𝑑 each.
4: Compute 𝐷=rowsum(dO◦O) ∈R𝑑 (pointwise multiply), write 𝐷 to HBM and divide it into𝑇𝑟

blocks 𝐷1,...,𝐷𝑇𝑟 of size 𝐵𝑟 each.
5: for 1≤ 𝑗 ≤𝑇𝑐 do
6: Load K 𝑗 ,V 𝑗 from HBM to on-chip SRAM.
7: Initialize dK 𝑗 = (0)𝐵𝑐×𝑑 ,dV 𝑗 = (0)𝐵𝑐×𝑑 on SRAM.
8: for 1≤ 𝑖≤𝑇𝑟 do
9: Load Q𝑖 ,O𝑖 ,dO𝑖 ,dQ𝑖 ,𝐿𝑖 ,𝐷𝑖 from HBM to on-chip SRAM.

10: On chip, compute S( 𝑗)
𝑖

=Q𝑖K
𝑇
𝑗
∈R𝐵𝑟×𝐵𝑐 .

11: On chip, compute P( 𝑗)
𝑖

=exp(S𝑖 𝑗−𝐿𝑖) ∈R𝐵𝑟×𝐵𝑐 .
12: On chip, compute dV 𝑗←dV 𝑗+(P( 𝑗)𝑖

)>dO𝑖 ∈R𝐵𝑐×𝑑 .
13: On chip, compute dP( 𝑗)

𝑖
=dO𝑖V

>
𝑗
∈R𝐵𝑟×𝐵𝑐 .

14: On chip, compute dS( 𝑗)
𝑖

=P
( 𝑗)
𝑖
◦(dP( 𝑗)

𝑖
−𝐷𝑖) ∈R𝐵𝑟×𝐵𝑐 .

15: Load dQ𝑖 from HBM to SRAM, then on chip, update dQ𝑖← dQ𝑖 +dS
( 𝑗)
𝑖

K 𝑗 ∈R𝐵𝑟×𝑑 , and
write back to HBM.

16: On chip, compute dK 𝑗←dK 𝑗+dS( 𝑗)𝑖

>
Q𝑖 ∈R𝐵𝑐×𝑑 .

17: end for
18: Write dK 𝑗 ,dV 𝑗 to HBM.
19: end for
20: Return dQ,dK,dV.

B BENCHMARKING ATTENTION ON A100 AND H100
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(a) Without causal mask, head dimension 64
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(b) Without causal mask, head dimension 128
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(c) With causal mask, head dimension 64
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(d) With causal mask, head dimension 128

Figure 6: Attention forward speed on A100 GPU
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(a) Without causal mask, head dimension 64
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(b) Without causal mask, head dimension 128
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(c) With causal mask, head dimension 64
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(d) With causal mask, head dimension 128

Figure 7: Attention backward speed on A100 GPU
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(a) Without causal mask, head dimension 64
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(b) Without causal mask, head dimension 128
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(c) With causal mask, head dimension 64
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Figure 8: Attention forward + backward speed on H100 GPU
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