
Appendix

Contents1

A1 Robot System Setup 162

A1.1 Robot hardware . 163

A1.2 Robot software . 164

A2 Details of Robot Learning 175

A2.1 drawer opening . 176

A2.2 door opening . 177

A2.3 single arm picking . 188

A2.4 dual arm picking . 189

A3 Details of Whole-body Optimization 1810

A4 Motion Library 1911

A5 Motion Morphology Selection 2112

A5.1 Manipulation Scenarios . 2113

A5.2 Locomotion Scenarios . 2114

A5.3 VLM Prompts . 2415

A6 User Input 2516

A6.1 Basic Prompts . 2517

A6.2 Function Options . 2518

A6.3 User Interface . 2619

A7 Task Planning with LLM 2620

A8 Long-horizon Task 2721

15

A1 Robot System Setup22

A1.1 Robot hardware23

Our robot is a centaur-like robot platform. The upper body of the robot is humanoid in design and24

is similar in size to the average human to adapt to both dual-arm and single-arm manipulation. The25

robot’s mobility relies on its quadrupedal lower body and maintains whole-body balance to cope26

with a variety of terrain conditions and perform loco-manipulation tasks. Moreover, to improve the27

robot’s mobility on flat ground, wheel modules are integrated underneath each leg and can control28

the direction and steering of the wheels.29

The robot’s whole body consists of 38 actuatable joints. The robot’s torso is mounted on the pelvis30

of the lower body via yaw joints, allowing the upper body to rotate in the transverse plane. Each arm31

of the robot includes 6 DoF, where the right hand gripper contains one extra DoF that controls its32

opening and closing. The robot’s legs are designed to provide an omni-directional wheeled motion33

and articulated legged locomotion, with each leg containing six degrees of freedom, allowing for34

positioning, orientation, and rotation of the wheeled-leg module.35

The perception system of the robot consists of two on-board RealSense Depth Camera D435i, one36

located in the robot’s head and the other in the robot’s pelvis, which are used to provide 2D images37

and depth information of the surrounding environment and objects. The complete computing system38

consists of two on-board computing units (ZOTAC-EN1070K PC, COM Express conga-TS170) for39

system communication and real-time robot control and an external pilot PC (Inter Core i9-13900HX40

CPU @3.90GHz, NVIDIA GeForce RTX 4090) for task planning and sensory data processing as41

well as a user interface.42

Figure A1: Robot hardware setup

A1.2 Robot software43

We use XBotCore, a cross-platform, real-time, open-source software designed for interfacing with44

low-level hardware components of robots [1]. This innovative tool enables effortless programming45

and management of various robotic systems by offering a standardized interface that conceals the46

intricacies of the hardware. Additionally, a proprietary CartesI/O motion controller [2] handles47

higher-order motion instructions. It is capable of managing multiple responsibilities and restrictions,48

prioritized according to the demands of specific situations. Through solving a series of quadratic49

programming (QP) challenges, each linked to a unique priority tier, the controller ensures optimal50

performance across all preceding priority stages.51

16

A2 Details of Robot Learning52

We utilize Proximal Policy Optimization (PPO) [3] for training our tasks, employing a multi-layer53

perceptron within an actor-critic framework. The network architecture for the drawer opening, door54

opening, and dual-arm picking tasks consists of layers with [256, 128, 64] units while the picking55

task uses layers with [256, 128, 64] units. The activation function applied across all tasks is ELU.56

Below, we detail the observations, task-specific rewards (rtask), and reward parameters for each57

task.58

A2.1 drawer opening59

First, we define the frame of the drawer handle. The x-axis of the handle points towards the robot,60

while the z-axis points upwards. The handle’s inward direction is aligned negatively along the x-61

axis, and the upward direction is consistent with the z-axis. The task reward is defined as62

rtask = α7raround + ldrawer ∗ raround + ldrawer (A1)

where raround = 0.5 when the gripper’s top link is above the handle’s position and the bottom link63

is below the handle’s position, otherwise raround = 0. ldrawer represents the length by which the64

drawer has been pulled.65

The observations and reward parameters for this task are listed in Tab. 1 and 2.66

normalized upper body joints position
upper body joints velocity * 0.1

drawer pulled length
vector from gripper to drawer handle

Table 1: observations of drawer opening task

α1 2.0
α2 0.0
α3 0.5
α4 7.5
α5 7.5
α6 0.01
α7 0.7
β 0.04

Table 2: reward parameters of drawer open-
ing task

A2.2 door opening67

The door handle has the same frame as the drawer handle. The task reward is defined as68

rtask = α7raround + anglehandle ∗ raround + anglehandle + angledoor (A2)

where raround is the same setting as the drawer opening task and anglehandle represents the angle69

by which the door handle has been pushed. angledoor is the angle of the opened door.70

The observations and reward parameters for this task are listed in Tab. 3 and 4.71

base pose
right arm joints position

door handle pose
gripper pose

door handle angle
door opened angle

Table 3: observations

α1 2.0
α2 0.0
α3 1.5
α4 7.5
α5 2.0
α6 0.01
α7 0.125
β 0.02

Table 4: parameters

17

A2.3 single arm picking72

We define the object’s upward direction as aligning negatively along the x-axis, and the inward73

direction as aligning negatively along the z-axis. This orientation encourages the gripper to adopt a74

top-to-bottom pose, facilitating a proper grasp of the object. The task reward is defined as75

rtask = α7raround + h (A3)

where raround is the same setting as the previous tasks with the corresponding object frame and76

h = 1 if the object is been picked up, otherwise h = 0.77

The observations and reward parameters for this task are listed in Tab. 5 and 6.78

base pose
right arm joints position

object pose
gripper pose

Table 5: observations

α1 7.5
α2 0.0
α3 5.0
α4 2.5
α5 7.5
α6 0.01
α7 0.7
β 0.1

Table 6: parameters

A2.4 dual arm picking79

In the dual arm picking task, the distance dl and dr represents the left end-effector and right end-80

effector to the left and right side of the object, respectively. The task reward is defined as81

rtask = h (A4)

where h = 1 if the object is been picked up, otherwise h = 0.82

The observations and reward parameters for this task are listed in Tab. 7 and 8.83

base pose
two arms joints position

object pose
left end-effector pose

right end-effector pose
vector from object left side to left end-effector

vector from object right side to right end-effector

Table 7: observations

α1 2.0
α2 2.0
α3 0.0
α4 0.0
α5 7.5
α6 0.01
α7 0.0
β 0.0

Table 8: parameters

A3 Details of Whole-body Optimization84

The trajectory optimization problem essentially constitutes a Nonlinear Programming (NLP) chal-85

lenge characterized by a predetermined quantity of nodes and intervals. Its canonical formulation86

typically adheres to Eq.(A5)87 
minx(.),u(.)

∫ T

0
L(x(t),u(t), t)dt

s.t. ẋ(t) = f(x(t),u(t), t)
g1(x(t),u(t), t) = 0
g2(x(t),u(t), t) ≤ 0

(A5)

18

the standard formulation necessitates conversion into a discrete programming format . Subsequently,88

we discrete the state and input variable as the follow sets, N is the node number89

X =

 x1

...
xN

 ;U =

 u1

...
uN

 (A6)

then the general optimization form Eq.(A5) becomes Eq.(A7)90

J =

N∑
i=0

Li(xi,ui)

ẋi = f(xi,ui) , i = 0, · · ·N
Cmin ≤ C(xi,ui) ≤ Cmax, i = 0, · · ·N

(A7)

where , C(xi,ui) is the discrete form of equality and inequality constrain, Cmin is the lower limit,91

Cmax is the upper limit. Specifically, in order to keep the trajectory feasible, we should shape the92

constrains as:93

q0 = qinit initial position
v0=0 initial velocity

qk
min ≤ qk ≤ qk

max position bounds ∀k ∈ [1, N − 1]

vk ≤ vk ≤ vk
max velocity bounds ∀k ∈ [1, N − 1]

v̇k
min ≤ v̇k ≤ v̇k

max acceleration bounds ∀k ∈ [0, N − 1]

fz,kc,i · ni > 0,
∥∥∥(fx,kc,i , f

y,k
c,i)

∥∥∥
2
≤ µi

(
fz,kc,i · ni

)
leg contact force bounds ∀k ∈ [0, N − 1]

(A8)

where fc,i = [fxc,i, f
y
c,i, f

z
c,i] is the i-th leg contact force. At the end of programming, its function of94

the whole body trajectory is to realize the motion learned from RL framework, we implement the95

cost as :96

Li(xi,ui) = ∥qu
i − q∗

i ∥
2
+ ∥u∥2 (A9)

the term ∥qu
i − q∗

i ∥
2 is for merging the gap between RL trajectory and actually feasible trajectroy,97

qu
i is the upper body trajectory from RL, q∗

i is the upper body trajectory from whole body optimiza-98

tion, ∥u∥2 for reduce the energy of the whole motion.99

A4 Motion Library100

We constructed a motion library to house the learned whole-body skills as well as the action and101

condition nodes used to construct the task graph. The motion library includes information about the102

skills fed to the LLM, as well as the control code corresponding to each skill. The following Fig.103

A2, A3 shows the action skills and nodes inside the motion library that LLM can choose to invoke104

to construct the task graph.105

19

Figure A2: Action nodes in the motion library, where the blue nodes are based on learned whole-
body motion skills.

Figure A3: Condition nodes with different functions in the motion library.

20

A5 Motion Morphology Selection106

In this section, we show the task scenarios used for the motion morphology selection experiments.107

A5.1 Manipulation Scenarios108

For the robot manipulation morphology selection experiments included six simulated and four real-109

world scenarios. We conducted ten morphology selections for each scenario, and before each trial,110

the positions and poses of the objects in the scenarios were reset. We applied the same prompts for111

all manipulation morphology selections, with the instructions for each scenario shown in Fig. A4.112

A5.2 Locomotion Scenarios113

The robot locomotion morphology selection experiments included six simulated and four real-world114

scenarios, as shown in Fig.A5. We conducted ten morphology selections for each scenario, and115

before each trial, the positions of the robot and obstacles in the scenarios were reset. We applied the116

same prompts for all locomotion morphology selections.117

21

Figure A4: Task scenarios for manipulation morphology selection experiments.

22

Figure A5: Task scenarios for locomotion morphology selection experiments.

23

A5.3 VLM Prompts118

The prompt words used for the motion morphology selector are shown in the figures, where the119

prompt words for manipulation morphology selector will be fed into the VLM along with the re-120

ceived textual task instructions from the Behavior Tree.121

The motion morphology selector are packaged as one of the functions in ’User Input’ module and it122

turned ’off’ by default. When it needs to be invoked in task planning, it must be enable in ’Function123

Options’ or specified to be set to ’on’ when inputting the task instructions.124

Figure A6: Prompts used for Manipulation Morphology Selection.

Figure A7: Prompts used for Locomotion Morphology Selection.

24

A6 User Input125

The ’User Input’ is the module that links the instructor to the language model and contains prede-126

fined prompts for initializing the language system environment and limiting the model output, as127

well as an interface for accepting task commands sent from the user side.128

A6.1 Basic Prompts129

Basic prompts provide a description of the task context and robot characteristics, as well as an130

explanation of user commands and output formatting requirements. As shown below:131

132
Basic Prompts ###133

"You are now a robot controller , please output a XML file for134

constructing a behavior tree to control the robot under the135

requirements and given task."136

"The robot you control is a centaur like robot , with a humanoid137

upper body and four legs , each leg has a wheel at the bottom."138

"The robot has two arms , with a claw gripper on the right arm.139

It can manipulate objects with two ways: single -arm manipulation140

and dual -arm manipulation."141

"The robot has two modes of movement: wheel motion and leg motion.142

The robot default manipulation and locomotion modes are143

’single arm’ and ’wheel ’."144

"The robot has two depth cameras: one located on the head to view145

objects , and one on the waist to view the road and terrain ahead."146147

A6.2 Function Options148

We designed a number of functions for the robot and packaged them into condition nodes for selec-149

tive invocation by the LLM during the planning of the task. These functions include: ’Manipulation150

Morphology Selector’, ’Locomotion Morphology Selector’, ’Failure Detection and Recovery’. We151

add the descriptions of these functions acting as ’Function Options’ inside the ’User Input’, and set152

all functions to ’off’ state by default. When the instructor expects a function to be added during153

a task planning, it can be manually set to ’on’ or include a declaration to use the function in the154

instruction.155

156
Function Options ###157

"The robot has the following functions , all of which are ’off’ by158

default."159

"When a function is ’on’, it need to be involved in planning for the160

given task , and when it is ’off ’, it should not be used."161

"Functions: "162

163

"1. ’manipulation_mode_selector ’: this function allows the robot to164

add the condition node <WhetherSingleArm > to the planning of165

BehaviorTree , which is used to determine whether the current166

manipulation task should use the ’single_arm ’ or ’dual_arm ’ type167

of action."168

169

"2. ’locomotion_mode_selector ’: this function allows the robot to add170

the condition node <WhetherWheelMove > to the planning of the171

behavior tree , which is used to determine whether the current172

locomotion task should use the ’wheel’ or ’leg’ type of action."173

174

"3. ’detection_recovery ’: this allows the robot to add the condition175

node <IsActionSuccess >, which is used to determine whether the176

previous action has been successfully completed and , if not , to177

employ a recovery mechanism that repeat the action."178179

25

A6.3 User Interface180

The user interface is responsible for accepting task commands from the instructor and combining181

them with pre-defined prompt for input to the LLM. The complete user input is as follows.182

User Interface: hy-motion.github.io/prompt/user_input.ini183

Motion Library: hy-motion.github.io/prompt/motion_library.ini184

Basic Prompts: hy-motion.github.io/prompt/basic_prompt.ini185

Function Options: hy-motion.github.io/prompt/Function_options.ini186

A7 Task Planning with LLM187

After receiving the prompts from ’User Input’, the LLM output a hierarchical task graph that con-188

tains a series of nodes and actions for accomplishing the task. The task graph is saved in an .xml file189

and serves as a framework for constructing the Behavior Tree that guides the robot’s actions. Below190

we show the detail of experiments in ’Tasks with human instructions’ part of Sec. 4.3. For each191

task, we present the task graph generated by LLM, and the Behavior Tree constructed from it.192

193
Input: Open the drawer and pick up the drill.194195

Figure A8: Task planning of ’Open drawer and pick object’.

196
Input: Find the door and open it.197198

Figure A9: Task planning of ’Approach and open door’.

26

hy-motion.github.io/prompt/user_input.ini
hy-motion.github.io/prompt/motion_library.ini
hy-motion.github.io/prompt/basic_prompt.ini
hy-motion.github.io/prompt/Function_options.ini

199
Input: Pick up the cracker and put it into the box.200201

Figure A10: Task planning of ’Pick and place’.

202
Input: Pick up the box and put it on the table.203

(’manipulation_mode_selector ’=on)204205

Figure A11: Task planning of ’Dual-arm pick place’.

A8 Long-horizon Task206

Environment Setup207

The AprilTag system [4], which incorporates a vision-driven algorithm, was used during the long-208

horizon task to identify the relative objects’ location and direction of recognized tags. Within the ac-209

tual environment, we employ AprilTags to gather task-specific observations. A single visual marker210

on the door allows for the determination of the door handle’s relative position. The robot searches211

for the tag if it doesn’t exit the camera’s field of view (FOV). Additionally, AprilTags enable the212

identification of the drawer’s relative positions.213

We performed the long-horizon shown in Fig. 1. And the task graph for the long-horizon taks214

generated by LLM can be found in Fig. 7. For the full video, please refer to https://hy-motion.215

github.io/216

27

https://hy-motion.github.io/
https://hy-motion.github.io/
https://hy-motion.github.io/

References217

[1] A. Laurenzi, D. Antonucci, N. G. Tsagarakis, and L. Muratore. The xbot2 real-time middleware218

for robotics. Robotics and Autonomous Systems, 163:104379, 2023.219

[2] A. Laurenzi, E. M. Hoffman, L. Muratore, and N. G. Tsagarakis. Cartesi/o: A ros based real-220

time capable cartesian control framework. In 2019 International Conference on Robotics and221

Automation (ICRA), pages 591–596. IEEE, 2019.222

[3] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization223

algorithms, 2017.224

[4] E. Olson. Apriltag: A robust and flexible visual fiducial system. In 2011 IEEE international225

conference on robotics and automation, pages 3400–3407. IEEE, 2011.226

28

	Robot System Setup
	Robot hardware
	Robot software

	Details of Robot Learning
	drawer opening
	door opening
	single arm picking
	dual arm picking

	Details of Whole-body Optimization
	Motion Library
	Motion Morphology Selection
	Manipulation Scenarios
	Locomotion Scenarios
	VLM Prompts

	User Input
	Basic Prompts
	Function Options
	User Interface

	Task Planning with LLM
	Long-horizon Task

