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This appendix elaborates on the algorithm design details and additional experimental results of the1

Generative Evolutionary Strategy for Black-box Optimization, not covered in the main text.2

A Model implementation details3

A.1 Neural Network4

In our research, the selection and design of the neural network type plays a fundamental role as our5

model is grounded on a surrogate neural network. For this particular study, we used a modification of6

the Transformer [49] (the multi-head self-attention network) model. This structure is suitable because7

it can adjust to experiments of different sizes without needing any changes. Another advantage is that8

it can avoid a spatial correlation problem among variables.9

While it is true that Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs)10

are beneficial when it comes to dimension expansion, they do come with their share of challenges,11

notably the spatial correlation problems. In contrast, a problem of attention-based neural network is12

computational complexity, which escalates to O(d2) when the variable size hits d. This often results13

in Graphics Processing Unit (GPU) memory shortages. Therefore, we had to look for other options.14

We could either choose a network like CNN, which has complexity O(d), or find a completely new15

solution.16

To address this, we introduced a strategy we have termed the trunk-branch trick. While this method17

continues to employ the attention mechanism, it subtly modifies the structure to reduce complexity.18

First, we create a trunk network. Then, from the trunk, we attach M branch networks. Each of these19

branches predicts a segment of the total dimension d of the target variable, specifically d/M . The20

structures of the generator and critic are mirror images of each other, meaning they are symmetrical.21

For the generator, it starts processing in the trunk and then spreads out to the branches to create the22

target variable x. The critic works the other way around: its branches take parts of x and bring them23

back together in the trunk.24

Implementing this method effectively brings down the complexity to O(d2/M), offering a solution25

to GPU memory shortages. However, the trunk-branch affects the optimization performance of GEO.26

The related experiment is described in the Additional experiments chapter.27

A.2 Non-dominated sorting28

When dealing with scenarios that involve multiple target functions, there is often a competitive29

interaction between each function’s optimal points. Imagine a variable x that increases the value of30

one function, f1(x), while it simultaneously reduces the value of another function, f2(x), and vice31

versa. In such situations, we use a method known as non-dominated sorting to identify the optimal32

point.33

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.



Attention sub block (ASB)

Attention sub block

Attention sub block

ASB

ASB

ASB

Linear

ASB

ASB

ASB

Linear

…

Generator Network
Trunk

Branches

Linear

ASB

ASB

ASB

ASB

Linear,

Activation

ASB

Critic Network
Branches

Linear

ASB

ASB

ASB

ASB

Linear,

Activation

…

Concat.

Linear, Dropout, Act.

Linear, Dropout, Act.

Linear

Trunk

Figure 1: Generator and critic network structure.

Let’s look at minimization problems to understand this better. We label a specific point, x0, as34

non-dominated when we cannot find another point x that fulfills the condition fi(x) < fi(x0) for35

all the target objective functions fi. These non-dominated points form a group known as the first36

Pareto-front. Consequently, we can arrange these Pareto-fronts in an order, creating a sequence like37

the 1st Pareto-front, 2nd Pareto-front, and so on. This ordered arrangement is what we refer to as38

non-dominated sorting.39

There are many different methods in non-dominated sorting, each with its own computational40

complexity. However, we did not place too much emphasis on this aspect, as our pool size was small41

enough that the time required for non-dominated sorting was considerably less than that required for42

neural network computations.43

A.3 Training details44

In the Methods section of the main text, we noted the potential tendency of GEO towards the45

exploitation with regard to the exploit-explore strategy. This trait primarily emerges from its design,46

a combination of ES and GSN. Furthermore, this tendency could limit the algorithm’s potential for47

exploration. Therefore, we added several strategies to boost its exploration abilities.48

One approach we used was to try various learning rates. We prepared a wide range of learning49

rates, from small to large values, and applied them either randomly or all at once for each mutation50

event. This approach can provide an escape path if the algorithm gets stuck in a local optimum. We51

also considered implementing random mutations, changing the parameters of the sampled generator52

network or specific layers to create mutants. At the very least, these additional techniques do not53

compromise performance, although we could not definitively establish that they enhanced it.54

We also tested various hyperparameters which directly impact experimental results. For example, the55

pool size is important because it plays a key role in shaping the Pareto-front.56

For certain functions, such as the ZDT functions, it is necessary to set boundaries. The boundary57

construction method can affect performance. We can find the results of these experiments in the58

Additional experiments section.59

For the training of the generator (mutation), we chose to train in the n separate directions using n60

independent critic networks. There can be another approach where we sum up n fitness scores and61

then increase the average score. However, this method could possibly lead to a bias towards points62

in the middle of the Pareto front. Moreover, this approach introduces new hyperparameters related63
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to the normalization of each fitness score, which significantly influences the algorithm’s behavior.64

Therefore, to circumvent the introduction of new hyperparameters, we chose to conduct the training65

n times independently.66

B Experiment details67

B.1 Non-convex test functions68

In our experiment, we analyzed multiple dimensions, each requiring comparative investigation. To69

make the analysis process consistent, we normalized all test functions in line with their dimension70

sizes. Most of test functions have the ground state as 0; however, the Styblinski-Tang function does71

not. Therefore, we recalibrated its value to set 0 as the ground state. Although all these functions72

fall under the non-convex category, the Rosenbrock function has distinct properties, as its optimal73

solution resides within a flat valley region74

B.2 Computational details75

We aimed to run the algorithm with minimal hardware acceleration. Therefore, we designed the76

algorithm to be compatible with a single GPU. When we faced memory shortages, we employed77

the trunk-branch trick, a method we previously discussed in the neural networks chapter. By using78

the NVIDIA Tesla v100 32GB GPU, it took about three days to execute 100,000 function calls and79

trainings. The majority of this computational time was dedicated to training the neural networks.80

We could enhance the efficiency of neural networks by incorporating a CNN or optimizing the81

attention model. However, given the scope of our task, which involved 100,000 function calls across82

8192 dimensions, the model we currently have is sufficient. Thus, we did not devote substantial83

time to network optimization. Moreover, we have to avoid excessively refining the algorithm for a84

specific test function. Such over-tuning could lead to overfitting and consequently limit the model’s85

performance on different problems especially for real-world problems.86

In our study, we made 100,000 function calls for each task. Although this might seem like a87

considerable number, it is not particularly large when viewed within the context of machine learning88

and neural networks. Therefore, we found a smaller model that could run on a single GPU to be the89

most suitable choice; note that if we increase the model size, we can potentially see a decrease in90

performance. However, if the number of function calls were to increase significantly, we might require91

a larger model. This could occur in scenarios where the target black-box is readily parallelizable.92

B.3 Further investigations93

As we previously noted in the main text, Bayesian optimization forms a vital branch of optimization94

research. This is particularly the case for the Gaussian process-based Bayesian optimization, a95

practical method employed in machine learning and hyperparameters optimization. Despite its utility,96

it is important to note that it comes with an O(N3) complexity, which stands as a significant hurdle. A97

proposed potential solution to this issue is a neural-process. [61] This approach is receiving increasing98

interest because it offers Gaussian process-like uncertainty estimation while simultaneously reducing99

time complexity. However, it still demands the accumulation of search point data for uncertainty100

prediction. This requirement results in a continuous escalation in computation time, preventing it101

from meeting the O(N) complexity when employed in optimization tasks.102

In the ES domain, numerous modifications have been developed based on well-known and commonly103

used algorithms such as GA and CMA-ES [54–56]. In reality, though, optimization experiments104

typically deal with around 100 dimensions. Sometimes, these experiments may handle larger105

dimensions; in that case however, they usually focus on simpler convex shapes such as the spherical106

function and Rosenbrock function; note that Rosenbrock has long flat region around the global107

minimum.108

When it comes to experiments in the 100-1000 dimension range, GSN-based optimization studies109

have given promising results. [29]. However, the test functions used in these studies are often special110

types of test function rather than common test functions that have been widely used in ES studies,111

making it difficult to compare performance. In some cases, Generative Neural Network (GNN) is112

used, but not the surrogate model. A GNN-based study [28] has shown optimization results around 10113
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Figure 2: Pool size experiments. Optimization results in 8192 dimension after 100,000 function
calls.

Figure 3: Trunk-branch trick experiments. Optimization results in 8192 dimension after 100,000
function calls. For M branches, 8192 = (8192/M)×M .

dimensions; however, this is considerably distanced from our target level of dimensions. Therefore,114

we did not take this algorithm into account.115

Research based on surrogate models is also ongoing. For instance, Pysamoo [57] offers packaged116

optimization algorithms based on surrogate models. Nonetheless, we found that these offered models117

cannot be effectively applied in high dimensions due to time complexity problems. However, as the118

package is regularly updated, it could overcome this problem in the future.119

Finally, Particle Swarm Optimization (PSO) [5] is a different type of algorithm from ES, but it has120

some similar features. Here, a certain number of elements swarm towards the global optimum while121

preserving their group. Therefore, we can consider how to combine PSO and GSN. However, within122

the scope of this study, we were unable to devise a way to integrate PSO. While ES provides a simple123

means to link GSN’s backpropagation and non-dominated sorting, establishing a similar connection124

in PSO poses a challenge.125

C Additional experiments126

C.1 Pool size127

The pool size has a direct impact on performance, especially if it is too small. In the experiment, a128

small pool GEO encounters problems when identifying the overall shape of the Pareto-front. This129

problem may arise when the algorithm loses some lines of the Pareto-front in non-dominated sorting,130

making them difficult to recover.131

C.2 Trunk-branch structure132

In the neural network section, we mentioned that the trunk-branch trick is a temporary solution to133

address the problem of GPU memory shortage. Hence, we also explored the performance related to134

the trunk-branch strategy.135
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Figure 4: Boundary function experiments. Optimization results in 8192 dimension after 100,000
function calls.

0 : [s = 0.999] 1 : [s = 0.959] 2 : [s = 0.999] 3 : [s = 0.999] 4 : [s = 0.999] 

Figure 5: An experiment to black-box optimization of LeNet-5 trained with MNIST. Maximum score
s = 1.0. Although optimization is successful, it do not produce the intended smooth handwriting
image.

The experimental result clearly shows that as the number of branches increases, the performance136

decreases. The trunk-branch structure enhances the time and space efficiency of the attention network137

but at the expense of optimization performance. Therefore, these results suggest that there are limits138

to increasing the number of branches in extremely high dimensions. It might imply the necessity for139

fundamental changes, such as adopting CNNs.140

C.3 Boundary conditions141

ZDT test functions require boundary conditions in the search space X . To implement these boundary142

conditions, we attached an additional function at the end of the generator to enforce boundaries.143

x = (boundmax − boundmin)
B (G(z)) + 1

2
+ boundmin

Boundaries could be implemented with functions such as B = tanh and B = sin, with the periodic144

boundary condition of the sin function showing slightly better results. This might occur due to the145

use of the tanh function, which could create a bias at the edges, leading to a concentration of points146

that exceed the boundary at the edge. This, in turn, generates redundant data during the training of147

the critic network. Hence, if a boundary is necessary, it is recommended to use a periodic boundary148

condition.149

C.4 Manifold issue150

In the L-GSO research, it was suggested that the surrogate could effectively discern manifold151

structures, and that optimization performance would likely improve within manifold structures than152

without a manifold structure. As GEO employs a similar surrogate neural network-based algorithm,153

the same circumstances may arise.154
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To visually verify this, we conducted an image generation experiment. We considered a simple155

LeNet-5 [44], trained on the MNIST dataset, as a black-box and optimized it. If GEO prefers manifold156

structures, images created through black-box optimization should exhibit a smooth shape (likely157

resembling actual human hand-drawn images).158

However, the results are contrary. Even though the optimization is successful, a smooth shape does159

not emerge; instead, it produces a noise image resembling an adversarial attack. This casts doubt160

on previous research findings suggesting that GSN-based optimization is better suited for learning161

manifold structures.162
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Table 1: Optimization results of Ackley function in low dimensions. 20,000 function calls. 10 repeats.

Ackley

Dimension 2 4 8 16

GEO 0.0000 ± 0.0000 0.0071 ± 0.0076 0.1009 ± 0.0432 0.3014 ± 0.2451
GEO 1-layer 0.0000 ± 0.0000 0.0030 ± 0.0023 0.8575 ± 0.7513 1.9020 ± 0.2054
GA 0.0001 ± 0.0002 0.0016 ± 0.0008 0.0073 ± 0.0033 0.0411 ± 0.0066
CMAES 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000
LSM ϵ1.0 0.0053 ± 0.0081 0.0261 ± 0.0118 0.1056 ± 0.0292 0.2036 ± 0.1139
LSM ϵ0.2 0.0006 ± 0.0003 0.6754 ± 1.3312 0.0354 ± 0.0076 0.8967 ± 0.9222

32 64 128

GEO 0.0694 ± 0.0576 0.0361 ± 0.0185 0.0296 ± 0.0136
GEO 1-layer 2.7931 ± 0.1655 3.4449 ± 0.1133 3.8488 ± 0.1002
GA 0.1132 ± 0.0163 0.2795 ± 0.0304 0.5510 ± 0.0369
CMAES 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0001 ± 0.0000
LSM ϵ1.0 0.2430 ± 0.1160 0.3432 ± 0.1225 0.8251 ± 0.2573
LSM ϵ0.2 2.5080 ± 1.2227 3.4657 ± 0.3694 3.3817 ± 0.3004

Table 2: Optimization results of Rosenbrock function in low dimensions. 20,000 function calls. 10
repeats.

Rosenbrock

Dimension 2 4 8 16

GEO 0.0000 ± 0.0000 0.0543 ± 0.1507 0.5090 ± 0.4545 0.5378 ± 0.5966
GEO 1-layer 0.0000 ± 0.0000 0.3062 ± 0.2330 0.8592 ± 0.2276 3.2036 ± 1.7442
GA 0.0001 ± 0.0001 0.0888 ± 0.0488 0.5197 ± 0.1102 0.8267 ± 0.0755
CMAES 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000
LSM ϵ1.0 0.3805 ± 0.3780 0.8514 ± 0.3439 1.3913 ± 0.1683 1.7246 ± 0.1924
LSM ϵ0.2 0.5814 ± 0.3466 0.5992 ± 0.3083 0.6444 ± 0.3757 0.7882 ± 0.2399

32 64 128

GEO 0.1705 ± 0.2817 0.0564 ± 0.0975 0.0164 ± 0.0170
GEO 1-layer 11.3029 ± 1.3108 32.3401 ± 3.7944 61.4009 ± 4.9140
GA 1.7519 ± 0.5589 4.0404 ± 0.4313 5.9195 ± 0.2543
CMAES 0.6532 ± 0.0278 0.9068 ± 0.0150 0.9734 ± 0.0102
LSM ϵ1.0 1.8820 ± 0.5490 2.1025 ± 0.7888 2.0884 ± 0.7405
LSM ϵ0.2 1.5623 ± 0.7663 17.4755 ± 25.1455 38.9798 ± 23.4691
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Table 3: Optimization results of Rastrigin function in low dimensions. 20,000 function calls. 10
repeats.

Rastrigin

Dimension 2 4 8 16

GEO 0.0000 ± 0.0000 0.1027 ± 0.1635 0.1434 ± 0.2483 0.8459 ± 0.6891
GEO 1-layer 0.0000 ± 0.0000 0.3483 ± 0.1219 0.4758 ± 0.2170 1.2868 ± 0.3246
GA 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0010 ± 0.0009 0.0127 ± 0.0048
CMAES 0.2985 ± 0.3300 0.4477 ± 0.2168 0.5721 ± 0.2021 0.4166 ± 0.1446
LSM ϵ1.0 0.5375 ± 0.4406 3.6183 ± 1.9796 5.6259 ± 1.2943 5.5754 ± 1.3568
LSM ϵ0.2 0.0000 ± 0.0000 0.5076 ± 0.4908 0.3248 ± 0.3222 0.4995 ± 0.2248

32 64 128

GEO 1.8010 ± 1.2062 1.9690 ± 1.3727 0.8947 ± 1.1321
GEO 1-layer 2.8961 ± 0.3151 4.9785 ± 0.2506 6.4839 ± 0.2165
GA 0.1580 ± 0.0452 0.5013 ± 0.0478 0.9218 ± 0.0550
CMAES 0.5006 ± 0.1526 0.5208 ± 0.0961 0.6630 ± 0.0978
LSM ϵ1.0 5.1430 ± 1.5115 7.8261 ± 0.8673 8.8664 ± 0.6537
LSM ϵ0.2 0.6955 ± 0.3504 4.9844 ± 2.2791 7.5184 ± 1.6464

Table 4: Optimization results of Styblinski function in low dimensions. 20,000 function calls. 10
repeats.

Styblinski-Tang

Dimension 2 4 8 16

GEO 0.0000 ± 0.0000 0.0009 ± 0.0014 0.0023 ± 0.0017 0.0161 ± 0.0176
GEO 1-layer 2.1695 ± 3.2087 8.5127 ± 2.2338 15.9916 ± 1.1828 22.4661 ± 0.5406
GA 0.7068 ± 2.1205 0.7069 ± 1.4137 3.5346 ± 2.3707 5.2253 ± 0.9198
CMAES 7.0684 ± 5.4751 12.7231 ± 3.2391 10.9560 ± 2.5971 9.7190 ± 2.3708
LSM ϵ1.0 26.2230 ± 1.9996 7.6978 ± 1.2559 6.4853 ± 3.9141 9.5768 ± 4.0347
LSM ϵ0.2 27.6515 ± 2.8802 16.1667 ± 1.6806 12.1698 ± 2.0510 19.3622 ± 3.1020

32 64 128

GEO 0.0064 ± 0.0092 1.4138 ± 4.2410 0.0000 ± 0.0000
GEO 1-layer 25.3427 ± 0.5938 27.5193 ± 0.6898 29.3574 ± 0.3288
GA 7.9346 ± 1.0712 11.2910 ± 0.5126 18.3960 ± 0.3724
CMAES 8.4820 ± 2.2159 9.9841 ± 0.6612 9.2883 ± 0.5663
LSM ϵ1.0 9.7605 ± 4.3111 8.7600 ± 2.9911 17.5349 ± 4.3426
LSM ϵ0.2 18.9152 ± 2.6356 32.2802 ± 2.4185 33.5116 ± 2.6515
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Table 5: Optimization results of test functions in high dimensions. 50,000 function calls. 10 repeats

Ackley

Dimension 256 512 1024

GEO 0.0091 ± 0.0036 0.0117 ± 0.0037 0.0084 ± 0.0029
GA 0.3294 ± 0.0219 0.7342 ± 0.0273 1.4256 ± 0.0477
CMAES 0.0000 ± 0.0000 0.0003 ± 0.0000 0.0291 ± 0.0035

Rosenbrock

Dimension 256 512 1024

GEO 0.0006 ± 0.0006 0.0004 ± 0.0003 0.0005 ± 0.0004
GA 5.0726 ± 0.2486 5.9915 ± 0.2358 6.9435 ± 0.1485
CMAES 0.9742 ± 0.0062 1.0011 ± 0.0337 1.0292 ± 0.0301

Rastrigin

Dimension 256 512 1024

GEO 0.2034 ± 0.4046 0.0018 ± 0.0020 0.0034 ± 0.0057
GA 0.5636 ± 0.0317 0.9810 ± 0.3457 1.7443 ± 0.0638
CMAES 0.9573 ± 0.1040 1.3981 ± 0.1383 3.7305 ± 0.6978

Styblinski-Tang

Dimension 256 512 1024

GEO 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000
GA 14.4536 ± 0.3616 22.3592 ± 0.2035 28.8298 ± 0.1541
CMAES 9.6913 ± 0.4508 9.3711 ± 0.1878 9.2048 ± 0.2450
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