
A Proofs

A.1 Proof of Lemma 1 (special case of total variation distance)

We assume P(Z) and P(X) are continuous probability distributions, but this proof can be easily
altered for other kinds of probability distributions and the result still holds. Let P(S = Q) = p. By
definition, the total variation information:

ITV (P(Z);P(S)) = dTV (P(Z, S)||P(Z)⊗ P(S)) =
∑

s∈{Q,R} P(S = s)
∫
Y

1
2

∣∣∣ fZ,S(z,s)
fZ(z)P(S=s) − 1

∣∣∣ fZ(z) dz
By breaking up joint probabilities into conditional probabilities and factoring:

ITV (P(Z);P(S)) =
∑

s∈{Q,R}

P(S = s)

∫
Y

1

2

∣∣∣∣fZ|S=s(z)P(S = s)

fZ(z)P(S = s)
− 1

∣∣∣∣ fZ(z) dz
=

∑
s∈{Q,R}

P(S = s)

∫
Y

1

2

∣∣fZ|S=s(z)− fZ(z)
∣∣dz

=
p

2

∫
Y

∣∣fZ|S=Q(z)− fZ(z)
∣∣dz + ∫

Y

1− p

2

∣∣fZ|S=R(z)− fZ(z)
∣∣ dz

=
1

2

[
p

∫
Y

∣∣fZ|S=Q(z)− (pfZ|S=Q(z) + (1− p)fZ|S=R(z))
∣∣dz

+ (1− p)

∫
Y

∣∣fZ|S=R(z)− (pfZ|S=Q(z) + (1− p)fZ|S=R(z))
∣∣ dz]

=
1

2

[
p

∫
Y

∣∣(1− p)fZ|S=Q(z)− (1− p)fZ|S=R(z)
∣∣dz

+ (1− p)

∫
Y

∣∣pfZ|S=R(z)− pfZ|S=Q(z)
∣∣dz]

=
p(1− p)

2

[∫
Y

∣∣fZ|S=Q(z)− fZ|S=R(z)
∣∣dz + ∫

Y

∣∣fZ|S=R(z)− fZ|S=Q(z)
∣∣ dz]

= p(1− p)

∫
Y

∣∣fZ|S=Q(z)− fZ|S=R(z)
∣∣dz

= 2p(1− p)dTV (P(Z|S = Q),P(Z|S = R))

It can be similarly shown that ITV (P(X);P(S)) = 2p(1− p)dTV (P(X|S = Q),P(X|S = R)).

Now, because Z is conditionally independent of S given X , by the Data Processing Inequality,
ITV (P(Z);P(S)) ≤ ITV (P(X);P(S)). Hence:

dTV (P(Z|S = Q),P(Z|S = R)) =
1

2p(1− p)
ITV (P(Z);P(S))

≤ 1

2p(1− p)
ITV (P(X);P(S)) = dTV (P(X|S = Q),P(X|S = R))

Similarly:
dTV (P(Z ′|S = Q),P(Z ′|S = R)) ≤ dTV (P(X ′|S = Q),P(X ′|S = R))

Note: Differences in the supports of P(Z) and P(X) should not influence one’s interpretation of
the inequality. dTV (·, ·) only requires that its two arguments have the same support. Because dTV

outputs the largest possible difference between the probabilities that the two distributions can assign
to the same event, the inequality can be viewed as a comparison of the differences in assigned
probabilities.

A.2 Proof of Theorem 1

Leveraging the Bretagnolle–Huber (BH) bound4, we can upper bound dTV in terms of the KL-
divergence dKL:

4We use the BH bound rather than Pinsker’s inequality because Pinkser’s inequality becomes vacuous for
KL-divergence > 2 [91].
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dTV (P(X|S = Q),P(X|S = R)) ≤
√
1− e−dKL(P(X|S=Q)||P(X|S=R))

By Section 9 from [92], dKL(P(X|S = Q)||P(X|S = R)) admits a closed-form solution:

dKL(P(X|S = Q)||P(X|S = R)) =
1

2

(
log

detΣR

detΣQ
− d+ tr(Σ−1

R ΣQ) + ∥µQ − µR∥2Σ−1
R

)
≤ 1

2

(
log

detΣR

detΣQ
− d+ tr(Σ−1

R ΣQ) + λmax(Σ
−1
R )∥µQ − µR∥22

)
,

where λmax(Σ
−1
R ) is the maximum eigenvalue of Σ−1

R . We note that λmax(Σ
−1
R ) = 1

λmin(ΣR) > 0

(where λmin(ΣR) is the minimum eigenvalue of ΣR) because ΣR is positive semidefinite.

It is clear that ∥µQ − µR∥2∞ = maxi∈[d] |(µQ)i − (µR)i|2 ≤
∑

i∈[d] |(µQ)i − (µR)i|2 = ∥µQ −
µR∥22. Moreover, ∥µQ−µR∥22 =

∑
i∈[d] |(µQ)i − (µR)i|2 ≤

∑
i∈[d] maxj∈[d] |(µQ)j − (µR)j |2 =

d · ∥µQ − µR∥2∞. Therefore, ∥µQ − µR∥22 = C · ∥µQ − µR∥2∞, for 1 ≤ C ≤ d.

Combining the previous observations and recognizing that ∥µQ − µR∥2∞ = R2
D:

dTV (P(X|S = Q),P(X|S = R)) ≤

√√√√
1−

√
detΣQ

detΣR
· e−

C·R2
D

λmin(ΣR)
−tr(Σ−1

R ΣQ)+d

Now, by Lemma 2.7 from [93]:

∥µQ − µR∥22 ≤ 4 ·max{λmax(ΣQ), λmax(ΣR)}
(

dTV (P(X|S = Q),P(X|S = R))

1− dTV (P(X|S = Q),P(X|S = R))

)
≤ 4 ·max{λmax(ΣQ), λmax(ΣR)}

1
dTV (P(X|S=Q),P(X|S=R)) − 1

Using ∥µQ − µR∥22 = C · ∥µQ − µR∥2∞ = C · R2
D, we can derive:

1
4·max{λmax(ΣQ),λmax(ΣR)}

C·R2
D

+ 1
≤ dTV (P(X|S = Q),P(X|S = R))

Similarly:

dTV (P(X ′|S = Q),P(X ′|S = R)) ∈

 1
4·max{λmax(Σ′

Q
),λmax(Σ′

R
)}

C′·R2
D′

+1
,

√
1−

√
detΣ′

Q

detΣ′
R
· e−

C′·R2
D′

λmin(Σ′
R)

−tr(Σ′−1
R Σ′

Q)+d


Then, the theorem is proved by application of Lemma 1.

A.3 Example mean aggregation imputation algorithms

Global Mean This method sets the unknown features to the uniform mean of all the known features.

To achieve this, we can choose M := IN , T :=

[
I|K| 0

1
|K|1|U |×|K| 0

]
(where 1 is the all-ones matrix),

β := 0, X(0)
K := XK , and X

(0)
U := 0. We only need to complete one iteration.

Neighbor Mean This method sets the unknown features to the degree-weighted mean of
the known features for neighboring nodes. We can choose M := IN , T := D−1A, β := 0,
X

(0)
K := XK , and X

(0)
U := 0. We only need to complete one iteration.

Feature Propagation This method proposed by [16] predicts the unknown features to min-
imize the Dirichlet energy of the graph while preserving the known feature values. [16] shows that
this is equivalent to iteratively computing until convergence:

X
(t+1)
K := X

(t)
K
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X
(t+1)
U := (D

− 1
2

U AUKD
− 1

2

K )X
(t)
K + (D

− 1
2

U AUUD
− 1

2

U )X
(t)
U

Multiplying both sides by D
− 1

2

U , we can re-express the second update rule as:

D
− 1

2

U X
(t+1)
U = (D−1

U AUK)(D
− 1

2

K X
(t)
K ) + (D−1

U AUU )(D
− 1

2

U X
(t)
U )

Therefore, to achieve Feature Propagation, we can choose M := D− 1
2 , T := D−1A, β := 0, and

X
(0)
K := XK . Per [16], we can choose X

(0)
U arbitrarily, and we need to iterate till convergence.

Graph Regularization This method inspired by [94] predicts the unknown features via a smoothness
constraint and a fitting constraint for the known features. [94] shows that this is equivalent to
iteratively computing until convergence:

X
(t+1)
K := β(D− 1

2AD− 1
2X(t))K + (1− β)XK

X
(t+1)
U := (D− 1

2AD− 1
2X(t))U ,

where the hyperparameter β ∈ (0, 1]. Therefore, similar to Feature Propagation, to achieve Graph
Regularization, we can choose M := D− 1

2 , T := D−1A, and X
(0)
K := XK . Per [94], we can choose

X
(0)
U arbitrarily, and we need to iterate till convergence.

A.4 Proof of Theorem 2

The following proof is partially inspired by the proof of Theorem 4.1 in [7]. Fix t to be an arbitrary
iteration of feature imputation. Recall we use the following iterative update rule to impute features:

X̃(t+1) :=

[
βI|K| 0
0 I|U |

]
TX̃(t) +

[
(1− β)I|K| 0

0 0

]
X̃

For a node q ∈ Q ∩ U , after one iteration of feature imputation:

X̃(t+1)
q :=

∑
s∈Q

TqsX̃
(t)
s +

∑
s∈R

TqsX̃
(t)
s

Similarly, for a node r ∈ R ∩ U , after one iteration of feature imputation:

X̃(t+1)
r :=

∑
s∈Q

TrsX̃
(t)
s +

∑
s∈R

TrsX̃
(t)
s

In contrast, for a node q ∈ Q ∩K, after one iteration of feature imputation:

X̃(t+1)
q := β

∑
s∈Q

TqsX̃
(t)
s +

∑
s∈R

TqsX̃
(t)
s

+ (1− β)X̃(t)
q

Similarly, for a node r ∈ R ∩K, after one iteration of feature imputation:

X̃(t+1)
r := β

∑
s∈Q

TrsX̃
(t)
s +

∑
s∈R

TrsX̃
(t)
s

+ (1− β)X̃(t)
r

We say v ∈ [µ± σ] ⇐⇒ µ− σ ⪯ v ⪯ µ+ σ. Then, for a node q ∈ Q ∩ U , by the right-stochastic
nature of T :

X̃(t+1)
q ∈

∑
s∈Q

Tqsµ̃
(t)
Q +

∑
s∈R

Tqsµ̃
(t)
R

± σ̃(t)


∈

[(
µ̃
(t)
Q +

∑
s∈R

Tqs

(
µ̃
(t)
R − µ̃

(t)
Q

))
± σ̃(t)

]
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Similarly, for a node r ∈ R ∩ U :

X̃(t+1)
r ∈

∑
s∈Q

Trsµ̃
(t)
Q +

∑
s∈R

Trsµ̃
(t)
R

± σ̃(t)


∈

µ̃
(t)
R +

∑
s∈Q

Trs

(
µ̃
(t)
Q − µ̃

(t)
R

)± σ̃(t)


In contrast, for a node q ∈ Q ∩K:

X̃(t+1)
q ∈

β

∑
s∈Q

Tqsµ̃
(t)
Q +

∑
s∈R

Tqsµ̃
(t)
R

+ (1− β)µ̃
(t)
Q

± σ̃(t)


∈

[(
µ̃
(t)
Q + β

∑
s∈R

Tqs

(
µ̃
(t)
R − µ̃

(t)
Q

))
± σ̃(t)

]
Similarly, for a node r ∈ R ∩K:

X̃(t+1)
r ∈

β

∑
s∈Q

Trsµ̃
(t)
Q +

∑
s∈R

Trsµ̃
(t)
R

+ (1− β)µ̃
(t)
R

± σ̃(t)


∈

µ̃
(t)
R + β

∑
s∈Q

Trs

(
µ̃
(t)
Q − µ̃

(t)
R

)± σ̃(t)


By the Law of Total Expectation:

Eq∼Q[X̃
(t+1)
q ] = P(q ∈ U |q ∈ Q)Eq∼Q∩U [X̃

(t+1)
q ] + P(q ∈ K|q ∈ Q)Eq∼Q∩K [X̃(t+1)

q ]

∈
[ 1

|Q|

( ∑
q∈Q∩U

µ̃
(t)
Q +

∑
s∈R

Tqs

(
µ̃
(t)
R − µ̃

(t)
Q

)
+

1

|Q|

 ∑
q∈Q∩K

µ̃
(t)
Q + β

∑
s∈R

Tqs

(
µ̃
(t)
R − µ̃

(t)
Q

))± σ̃(t)
]

∈
[(

µ̃
(t)
Q +

1

|Q|
∑

q∈Q∩U

∑
s∈R

Tqs

(
µ̃
(t)
R − µ̃

(t)
Q

)
+

β

|Q|
∑

q∈Q∩K

∑
s∈R

Tqs

(
µ̃
(t)
R − µ̃

(t)
Q

))
± σ̃(t)

]
Similarly, Er∼R[X̃

(t+1)
r ]:

∈

µ̃
(t)
R +

1

|R|
∑

r∈R∩U

∑
s∈Q

Trs

(
µ̃
(t)
Q − µ̃

(t)
R

)
+

β

|R|
∑

r∈R∩K

∑
s∈Q

Trs

(
µ̃
(t)
Q − µ̃

(t)
R

)± σ̃(t)


Thus, the gap in expectation of the features of the nodes in Q and R after one iteration of feature
imputation is:

Eq∼Q[X̃
(t+1)
q ]− Er∼R[X̃

(t+1)
r ] ∈

1−

 1

|Q|
∑

q∈Q∩U

∑
s∈R

Tqs +
1

|R|
∑

r∈R∩U

∑
s∈Q

Tqs


− β

 1

|Q|
∑

q∈Q∩K

∑
s∈R

Tqs +
1

|R|
∑

r∈R∩K

∑
s∈Q

Tqs

 ·
(
µ̃
(t)
Q − µ̃

(t)
R

)± 2σ̃(t)


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Define the contraction coefficient:

α :=

∣∣∣∣1− TR→Q∩U + βTR→Q∩K

|Q|
− TQ→R∩U + βTQ→R∩K

|R|

∣∣∣∣
Because 0 ≤ TR→Q∩U+βTR→Q∩K

|Q| ≤ TR→Q∩U+TR→Q∩K

|Q| =
TR→Q

|Q| <
TV →Q

|Q| = 1, and similarly,

0 ≤ TQ→R∩U+βTQ→R∩K

|R| < 1, it must be that 0 ≤ α ≤ 1.

Then:
max{α|Eq∼Q[X̃

(t)
q ]− Er∼R[X̃

(t)
r ]| − 2σ̃(t), 0} ≤ |Eq∼Q[X̃

(t+1)
q ]− Er∼R[X̃

(t+1)
r ]|

|Eq∼Q[X̃
(t+1)
q ]− Er∼R[X̃

(t+1)
r ]| ≤ α|Eq∼Q[X̃

(t)
q ]− Er∼R[X̃

(t)
r ]|+ 2σ̃(t)

max{αR̃(t) − 2σ̃(t), 0} ≤ R̃(t+1) ≤ αR̃(t) + 2σ̃(t)

Inductively, the discrimination risk R̃(t) after t iterations of feature imputation is bounded by:

max

αtR̃(0) − 2

t−1∑
j=0

αj σ̃(j)

 , 0

 ≤ R̃(t) ≤ αtR̃(0) + 2

t−1∑
j=0

αj σ̃(j)


∀v ∈ V , X̃

(t+1)
v is a convex combination of

⋃
u∈V {X̃

(t)
u }. This is because each row of T

and βT + (1− β)I|K| contains nonnegative entries that sum to 1. Therefore, X̃(t+1)
v must be in the

(closed) convex hull of
⋃

u∈V {X̃
(t)
u }. Thus,

⋃
u∈V {X̃

(t)
u } inductively must be contained within the

(closed) convex hull of
⋃

u∈V {X̃
(0)
u }, which has extreme points ⊆

⋃
u∈V {X̃

(0)
u }. Consequently,

∀t ∈ [0,∞), σ̃(t) ≤ σ̃(0).

Hence:

max

αtR̃(0) − 2

t−1∑
j=0

αj

 σ̃(0), 0

 ≤ R̃(t) ≤ αtR̃(0) + 2

t−1∑
j=0

αj

 σ̃(0)

If α < 1:

max

{
αtR̃(0) − 2

(
1− αt

1− α

)
σ̃(0), 0

}
≤ R̃(t) ≤ αtR̃(0) + 2

(
1− αt

1− α

)
σ̃(0)

Moreover, upon convergence:

0 ≤ lim
t→∞

R̃(t) ≤ 2σ̃(0)

1− α

Note: While it appears that a large initial maximal deviation in feature values within a group may
harm fairness, a large initial deviation does not necessarily entail diversity. For example, suppose
a few nodes in a group have a low initial feature value but many more nodes have a much higher
initial feature value (i.e., large initial difference without diversity). Then, after mean aggregation, the
feature values for all the nodes in the group may be higher on average than they were initially, and
more distinct on average from the node feature values in the other group. This would contribute to a
higher discrimination risk.

A.5 Extending Theorem 2

We can extend Theorem 2 to the case the number of features d > 1. By Theorem 1, the modified
discrimination risk at iteration t (including all features) is:

max

min
i∈[d]

αt
iR̃

(0)
i − 2

t−1∑
j=0

αj
i

 σ̃
(0)
i , 0

 ≤ max
i∈[d]

R̃(t)
i ≤ max

i∈[d]
αt
iR̃

(0)
i + 2

t−1∑
j=0

αj
i

 σ̃
(0)
i

Moreover, assuming ∀i ∈ [d], αi < 1, upon convergence, the discrimination risk is:

maxi∈[d] limt→∞ R̃(t)
i ≤ maxi∈[d]

2σ̃
(0)
i

1−αi
.
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A.6 Proof of Theorem 3

We want to constrain the discrimination risk of mean aggregation feature imputation to be at most ϵ.
To this end, we can modify mean aggregation feature imputation to update X(t+1)

U := PWZ
(t)
U + PB

such that X(t+1) has a discrimination risk of at most ϵ for all t. |Eq∼Q[X
(t+1)
q ]− Er∼R[X

(t+1)
r ]| =

| 1
|Q|
∑

q∈Q∩K Xq +
1

|Q|
∑

q∈Q∩U Z
(t)
q − ( 1

|R|
∑

r∈R∩K Xr +
1
|R|
∑

r∈R∩U Z
(t)
r )|. Hence, we have

a closed convex polytope wherein unknown feature values yield discrimination risk of at most ϵ:

RK − ϵ ≤ 1

|Q|
∑

q∈Q∩U

Z(t)
q − 1

|R|
∑

r∈R∩U

Z(t)
r = cTZ

(t)
U ≤ RK + ϵ

If RK − ϵ ≤ cTZ
(t)
U ≤ RK + ϵ, then PW = I|U | and PB = 0. Otherwise, we must project

onto the closer of the two boundaries of the polytope. In this case, PW = I|U | − ccT

cT c
and PB =

ccT

cT c

{
RK − ϵ, cTZ

(t)
U < RK − ϵ

RK + ϵ, cTZ
(t)
U > RK + ϵ

.

The affine projection we perform at each step is closed and convex. Furthermore, ℓ is λmax(∆UU )-
smooth for the Euclidean norm (where λmax is the maximum eigenvalue) because for x1, x2 ∈ R|U |:

∥∇ℓ(x1)−∇ℓ(x2)∥2 = ∥(∆UUx1 +∆UKXK)− (∆UUx2 +∆UKXK)∥2

=
√
(x1 − x2)T∆2

UU (x1 − x2)

≤
√
λ2
max(∆UU )∥x1 − x2∥22

= λmax(∆UU )∥x1 − x2∥2
In the case of Feature Propagation, λmax(∆UU ) < 1 due to properties of the symmetric normalized
Laplacian [16].

Additionally, for m ≥ 0, when m ≤ λmin(∆UU ), ℓ(x)− m
2 x

Tx is convex because:

ℓ(x)− m

2
xTx =

1

2
xT∆UUx+XT

K∆KUx+
1

2
XT

K∆KKXK − m

2
xTx

=
1

2
xT (∆UU −mI)x+XT

K∆KUx+
1

2
XT

K∆KKXK

This expression is convex if and only if its Hessian ∆UU−mI has nonnegative eigenvalues. Therefore,
m can be at most λmin(∆UU ).

Then, by [95] and [96]:

1. a unique optimal (with respect to ℓ) feasible solution X∗
U exists

2. for fixed step size γ = 1
λmax(∆UU ) , ϵ-fair imputation converges as ∥X(t)

U − X∗
U∥22 ≤(

1− λmin(∆UU )
λmax(∆UU )

)t
∥X(0)

U −X∗
U∥22

3. for fixed step size γ ≤ 1
λmax(∆UU ) , ϵ-fair imputation converges to X∗

U

A.7 Theorem 4

We have a solution when β > 0 (i.e., when the known node feature values do not remain fixed).

We can view the update of X(t+1) :=

[
βI|K| 0
0 I|U |

]
M−1TMX(t) +

[
(1− β)I|K| 0

0 0

]
X as an

iteration of gradient descent (with step size γ = 1) for the objective function ℓ(x) = 1
2x

T∆x +
1
2 (

1−β
β )∥xK −XK∥22 [94].

Theorem 4 (ϵ-Fair Imputation, β > 0) Vanilla mean aggregation feature imputation updates

X(t+1) :=

[
βI|K| 0
0 I|U |

]
(IN−∆)X(t)+

[
(1− β)I|K| 0

0 0

]
X = Z(t). Let ϵ-fair mean aggregation
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feature imputation instead update X(t+1) := PWZ(t) + PB , where:

PW =

{
IN , −ϵ ≤ cTZ(t) ≤ ϵ

IN − ccT

cT c
, otherwise

, PB =
ccT

cT c


−ϵ, cTZ(t) < −ϵ

ϵ, cTZ(t) > ϵ

0, otherwise

c ∈ RN , cTZ(t) =
1

|Q|
∑
q∈Q

Z(t)
q − 1

|R|
∑
r∈R

Z(t)
r

Then, assuming 0 ≤ λmin(∆) + 1−β
β ≤ λmax(∆) + 1−β

β < 1: 1) a unique optimal (with respect to
ℓ) feasible solution X∗ exists; 2) for fixed step size γ = 1

λmax(∆)+ 1−β
β

, ϵ-fair imputation converges

as ∥X(t) −X∗∥22 ≤
(
1− λmin(∆)+ 1−β

β

λmax(∆)+ 1−β
β

)t

∥X(0) −X∗∥22; 3) for fixed step size γ ≤ 1
λmax(∆)+ 1−β

β

,

ϵ-fair imputation converges to X∗.

Proof of Theorem 4 We want to constrain the discrimination risk of mean aggregation feature
imputation to be at most ϵ. To this end, we can modify mean aggregation feature imputation to update
X(t+1) := PWZ(t) + PB such that X(t+1) has a discrimination risk of at most ϵ for all t.

|Eq∼Q[X
(t+1)
q ] − Er∼R[X

(t+1)
r ]| = 1

|Q|
∑

q∈Q Z
(t)
q − 1

|R|
∑

r∈R Z
(t)
r . Hence, we have a closed

convex polytope wherein feature values have discrimination risk of at most ϵ:

−ϵ ≤ 1

|Q|
∑
q∈Q

Z(t)
q − 1

|R|
∑
r∈R

Z(t)
r = cTZ(t) ≤ ϵ

If −ϵ ≤ cTZ(t) ≤ ϵ, then PW = IN and PB = 0. Otherwise, we must project onto the closer of the

two boundaries of the polytope. In this case, PW = IN − ccT

cT c
and PB = ccT

cT c

{
−ϵ, cTZ(t) < −ϵ

ϵ, cTZ(t) > ϵ
.

The affine projection we perform at each step is closed and convex. Furthermore, ℓ is(
λmax(∆) + 1−β

β

)
-smooth for the Euclidean norm because for x1, x2 ∈ RN :

∥∇ℓ(x1)−∇ℓ(x2)∥2 =

∥∥∥∥(∆x1 +
1− β

β
((x1)K −XK)

)
−
(
∆x2 +

1− β

β
((x2)K −XK)

)∥∥∥∥
2

≤
√
(x1 − x2)T∆2(x1 − x2) +

1− β

β

√
(x1 − x2)T

([
I|K| 0
0 0

])2

(x1 − x2)

≤
(
λmax(∆) +

1− β

β

)
∥x1 − x2∥2

Additionally, for m ≥ 0, when m ≤ λmin(∆) + 1−β
β , ℓ(x)− m

2 x
Tx is convex because:

ℓ(x)− m

2
xTx =

1

2
xT∆x+

1

2

(
1− β

β

)
∥xK −XK∥22 −

m

2
xTx

=
1

2
xT (∆−mI)x+

1

2

(
1− β

β

)
∥xK −XK∥22

This expression is convex if and only if its Hessian ∆ − mI + 1−β
β

[
I|K| 0
0 0

]
has nonnegative

eigenvalues. Therefore, m can be at most λmin(∆) + 1−β
β .

Then, by [95] and [96]:

1. a unique optimal (with respect to ℓ) feasible solution X∗ exists

2. for fixed step size γ = 1
λmax(∆)+ 1−β

β

, ϵ-fair imputation converges as ∥X(t) − X∗∥22 ≤(
1− λmin(∆)+ 1−β

β

λmax(∆)+ 1−β
β

)t

∥X(0) −X∗∥22

3. for fixed step size γ ≤ 1
λmax(∆)+ 1−β

β

, ϵ-fair imputation converges to X∗
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B Additional experimental results

B.1 Datasets

SBM synthetic datasets Each network has 500 train nodes, 250 validation nodes, and 250 test nodes,
split uniformly at random. Each node has a 10-dimensional feature vector sampled as described in
the documentation5. All edges have a weight of 1. PyTorch Geometric is used in accordance with its
MIT license.

Real-world datasets In the Credit defaulter dataset, each node has 13 features (e.g., education,
credit history, etc.), with an average degree of 95.79± 85.88 [29]. In the German credit dataset,
each node has 27 features (e.g., loan amount, account-related features, etc.), with an average degree
of 44.48 ± 26.51. For both datasets, we use a 50/25/25 train/validation/test split, with each split
comprising an equal portion of each label, and we do not include group membership as a feature. To
the best of our knowledge (via manual sampling and inspection), neither dataset contains personally
identifiable information or offensive content. We use [29]’s data and data loading code6 in accordance
with the MIT license.

B.2 Imputation algorithms

We run GM and NM for 1 iteration each, and FP and GR for 40 iterations. We adapted the code for
data utilities, Feature Propagation, and model training from [16]7 in accordance with its Apache-2.0
license. We state all changes in this paper. We implement all algorithms using PyTorch, in accordance
with its license [97].

B.3 Models and training

For mlp and gcn, we use a hidden dimension of 64. We train all models full-batch using the Adam
optimizer with a learning rate of 0.005 and Dropout rate of 0.5 [98, 99]. We also use early stopping
with a patience of 200 epochs, i.e., we stop training when the best validation accuracy has not changed
for 200 epochs, and train for a maximum of 10000 epochs. We do not do any hyperparameter tuning.
We implement and train all models using PyTorch and PyTorch Geometric [97, 83]. We train all
models on a single tesla v100-sxm2-16gb GPU on an internal cluster.

B.4 Performance Evaluation

To evaluate imputed features for SBM, since we don’t have labels, we employ relative reconstruction
error RE (calculated as ∥Xtrue −Xpred∥2/∥Xtrue∥2, where Xtrue and Xpred are the ground-truth
and imputed features, respectively [16]. A lower reconstruction error is better, and we would like
regular mean aggregation imputation and its ϵ-fair counterparts to have comparable reconstruction
errors. To measure performance on the real-world datasets, we consider the test accuracy (Acc) of
models applied to the imputed data. A higher test accuracy is preferable, and we again would like
comparable accuracies for regular and ϵ-fair imputation.

To evaluate group fairness, we compute the discrimination risk (DR) of the imputed data. A
lower discrimination risk is preferable. For the SBM synthetic datasets, we also measure how much
information the imputed features contain about group membership. We do this by training the models
on the imputed data to predict group membership and calculate the test accuracy of the models
on identifying group membership (which we refer to as MI) [86, 21]. (We note that this setting
may violate our theoretical assumptions in 3 that the association of group membership with model
predictions can be fully explained by the node features.) The models may be conceptualized as
adversaries attempting to recover group membership from the imputed features. Thus, we would like
MI to be closer to 0.5 (i.e., the imputed features contain no information about group membership). We
do not compute MI for the real-world datasets, as inferring group membership or identity from real-
world data is invasive, invalid, and can be weaponized against marginalized communities (e.g., to find

5https://pytorch-geometric.readthedocs.io/en/latest/modules/datasets.html#torch_
geometric.datasets.StochasticBlockModelDataset

6https://github.com/chirag126/nifty
7https://github.com/twitter-research/feature-propagation
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Table 3: Reconstruction error (RE), discrimination risk (DR), and test group membership identifica-
tion accuracy (MI) of all models averaged over relative sizes of group Q of {0.1, 0.3, 0.5, 0.7, 0.9}
in SBM. We use 0.5 unknown feature rates for both groups and 0.5 inter- and intra-link rates.

Method RE ↓ DR ↓ MIlinear ↓ MImlp ↓ MIgcn ↓
0-Fair GM 1.054± 0.004 0± 0 0.758± 0.025 0.78± 0.014 0.742± 0.018

0.025-Fair GM 1.051± 0.004 0.022± 0.004 0.79± 0.012 0.787± 0.012 0.74± 0.014
0.05-Fair GM 1.048± 0.003 0.032± 0.003 0.791± 0.018 0.794± 0.013 0.747± 0.019
Regular GM 1± 0 0.041± 0.008 0.835± 0.01 0.845± 0.011 0.771± 0.027

0-Fair NM 1.015± 0.003 0± 0 0.757± 0.023 0.792± 0.015 0.738± 0.016
0.025-Fair NM 1.012± 0.003 0.019± 0.003 0.791± 0.022 0.8± 0.014 0.744± 0.011
0.05-Fair NM 1.009± 0.003 0.029± 0.006 0.787± 0.017 0.807± 0.011 0.746± 0.017
Regular NM 0.959± 0.003 0.038± 0.013 0.835± 0.011 0.843± 0.015 0.763± 0.024

0-Fair FP 1.003± 0.005 0± 0 0.757± 0.019 0.799± 0.014 0.736± 0.013
0.025-Fair FP 1± 0.005 0.021± 0.002 0.785± 0.021 0.801± 0.014 0.754± 0.017
0.05-Fair FP 0.997± 0.005 0.033± 0.005 0.789± 0.016 0.806± 0.012 0.738± 0.016
Regular FP 0.947± 0.005 0.051± 0.017 0.829± 0.006 0.841± 0.02 0.760± 0.022

0-Fair GR 0.962± 0.005 0± 0 0.752± 0.024 0.788± 0.019 0.742± 0.013
0.025-Fair GR 0.961± 0.005 0.023± 0.003 0.797± 0.015 0.797± 0.02 0.752± 0.016
0.05-Fair GR 0.96± 0.005 0.036± 0.005 0.799± 0.009 0.805± 0.014 0.739± 0.017
Regular GR 0.945± 0.006 0.036± 0.012 0.821± 0.015 0.82± 0.014 0.759± 0.021

Table 4: Reconstruction error (RE), discrimination risk (DR), and test group membership identifi-
cation accuracy (MI) of all models averaged over all 25 combinations of inter- and intra-link rates
of {0.1, 0.3, 0.5, 0.7, 0.9} in SBM. We use 0.5 relative group sizes and 0.5 unknown feature rates for
both groups.

Method RE ↓ DR ↓ MIlinear ↓ MImlp ↓ MIgcn ↓
0-Fair NM 1.028± 0.009 0± 0 0.609± 0.102 0.729± 0.046 0.905± 0.003

0.025-Fair NM 1.023± 0.008 0.014± 0.011 0.724± 0.09 0.749± 0.035 0.911± 0.008
0.05-Fair NM 1.019± 0.008 0.02± 0.02 0.74± 0.046 0.768± 0.036 0.911± 0.01
Regular NM 0.931± 0.003 0.022± 0.024 0.845± 0.026 0.866± 0.027 0.924± 0.008

0-Fair FP 1.022± 0.012 0± 0 0.64± 0.064 0.742± 0.038 0.905± 0.003
0.025-Fair FP 1.017± 0.012 0.014± 0.012 0.697± 0.095 0.753± 0.039 0.912± 0.007
0.05-Fair FP 1.013± 0.012 0.023± 0.022 0.740± 0.040 0.762± 0.04 0.909± 0.008
Regular FP 0.918± 0.004 0.034± 0.043 0.844± 0.025 0.853± 0.035 0.922± 0.009

0-Fair GR 0.948± 0.043 0± 0 0.578± 0.105 0.773± 0.038 0.905± 0.004
0.025-Fair GR 0.946± 0.004 0.016± 0.013 0.779± 0.036 0.793± 0.038 0.915± 0.005
0.05-Fair GR 0.945± 0.004 0.02± 0.02 0.769± 0.018 0.797± 0.0366 0.912± 0.009
Regular GR 0.916± 0.005 0.023± 0.032 0.846± 0.023 0.864± 0.023 0.921± 0.009

and incarcerate LGBTQIA+ individuals) [100]. To evaluate group fairness for the real-world datasets,
we use the test statistical parity (SP) of the models, defined as |P(Z = 1|S = Q)−P(Z = 1|S = R)|
(disparity in positive outcome rate for the groups) [78], and test equalized odds (EO), defined as
|P(Z = 1|S = Q,Y = 1)− P(Z = 1|S = R, Y = 1)| (disparity in accuracy of predicting positive
outcome for the groups) [87].

B.5 Contraction coefficient

As we analyzed, Figures 2 to 12 show that, for SBM: 1) a low unknown feature rate for both groups or
disparate unknown feature rates across the groups increases α and the discrimination risk (Figures 2,
5, 8, 11); 2) group size alone does not affect α or the discrimination risk (Figures 3, 6, 9, 12); 3) a
lower inter-link to intra-link ratio increases α and the discrimination risk (Figures 4, 7, 10).

26



0.0 0.1 0.3 0.5 0.7 0.9
Q Missing Feature Rate

0.
0

0.
1

0.
3

0.
5

0.
7

0.
9

R 
M

iss
in

g 
Fe

at
ur

e 
Ra

te

0.062
± 0.037

0.049
± 0.025

0.040
± 0.021

0.038
± 0.025

0.027
± 0.022

0.019
± 0.011

0.047
± 0.037

0.038
± 0.027

0.031
± 0.024

0.042
± 0.034

0.022
± 0.015

0.019
± 0.011

0.051
± 0.035

0.043
± 0.039

0.046
± 0.035

0.035
± 0.030

0.024
± 0.012

0.014
± 0.005

0.048
± 0.023

0.041
± 0.018

0.038
± 0.028

0.029
± 0.043

0.031
± 0.031

0.022
± 0.013

0.012
± 0.007

0.023
± 0.013

0.025
± 0.017

0.016
± 0.007

0.028
± 0.015

0.027
± 0.017

0.028
± 0.024

0.031
± 0.023

0.021
± 0.024

0.026
± 0.030

0.024
± 0.018

0.018
± 0.014

Regular Feature Propagation

0.0 0.1 0.3 0.5 0.7 0.9
Q Missing Feature Rate

0.
0

0.
1

0.
3

0.
5

0.
7

0.
9

R 
M

iss
in

g 
Fe

at
ur

e 
Ra

te

1.000
± 0.000

0.971
± 0.005

0.877
± 0.008

0.779
± 0.011

0.678
± 0.011

0.571
± 0.015

0.964
± 0.006

0.929
± 0.013

0.834
± 0.006

0.734
± 0.011

0.635
± 0.012

0.529
± 0.016

0.869
± 0.010

0.833
± 0.013

0.736
± 0.010

0.635
± 0.010

0.538
± 0.011

0.430
± 0.015

0.775
± 0.018

0.736
± 0.018

0.641
± 0.022

0.542
± 0.014

0.438
± 0.016

0.339
± 0.012

0.669
± 0.019

0.630
± 0.024

0.537
± 0.025

0.434
± 0.019

0.336
± 0.017

0.233
± 0.013

0.559
± 0.015

0.521
± 0.014

0.426
± 0.014

0.329
± 0.011

0.230
± 0.010

0.121
± 0.008

Max Alpha of Feature Propagation

0.02

0.03

0.04

0.05

0.06

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 2: Heatmap of discrimination risks and maximum α (over all channels) of Feature Propagation
for 36 combinations of unknown feature rates for each group in SBM. We use 0.5 relative group sizes
and 0.5 inter- and intra-link rates.
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Figure 3: Plots of discrimination risk and maximum α (over all channels) of Feature Propagation vs.
relative size of group Q in SBM. We use 0.5 unknown feature rates for both groups and 0.5 inter- and
intra-link rates.

Table 5: equalized odds (EO) averaged over all 25 combinations of unknown feature rates of
{0.1, 0.3, 0.5, 0.7, 0.9} for each group in German credit.

Method EOlinear ↓ EOmlp ↓ EOgcn ↓
0.0-Fair GM 0.037± 0.01 0.029± 0.004 0.009± 0.008
0.025-Fair GM 0.031± 0.007 0.029± 0.008 0.018± 0.021
0.05-Fair GM 0.026± 0.003 0.03± 0.003 0.013± 0.005
Regular GM 0.033± 0.008 0.023± 0.003 0.006± 0.005

0.0-Fair NM 0.038± 0.009 0.037± 0.006 0.007± 0.006
0.025-Fair NM 0.035± 0.008 0.038± 0.007 0.013± 0.012
0.05-Fair NM 0.04± 0.006 0.035± 0.006 0.009± 0.003
Regular NM 0.038± 0.012 0.032± 0.006 0.012± 0.006

0.0-Fair FP 0.01± 0.011 0.034± 0.018 0.024± 0.041
0.025-Fair FP 0.028± 0.031 0.031± 0.018 0.023± 0.051
0.05-Fair FP 0.043± 0.07 0.029± 0.028 0± 0
Regular FP 0.042± 0.046 0.038± 0.02 0.004± 0.006

0.0-Fair GR 0.029± 0.012 0.022± 0.003 0.005± 0.006
0.025-Fair GR 0.031± 0.011 0.024± 0.005 0.007± 0.007
0.05-Fair GR 0.027± 0.007 0.024± 0.006 0.004± 0.004
Regular GR 0.032± 0.01 0.025± 0.007 0.009± 0.01
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Figure 4: Plots of discrimination risk and maximum α (over all channels) of Feature Propagation
vs. ratio of inter-link rate to intra-link rate in SBM. We use 0.5 relative group sizes and 0.5 unknown
feature rates for both groups.

Table 6: Test accuracy (Acc) and statistical parity (SP) of all models averaged over all 25 combina-
tions of unknown feature rates of {0.1, 0.3, 0.5, 0.7, 0.9} for each group in Credit defaulter.

Method Acclinear ↑ Accmlp ↑ Accgcn ↑ SPlinear ↓ SPmlp ↓ SPgcn ↓
0.0-Fair GM 0.781± 0.002 0.764± 0.012 0.771± 0.007 0.063± 0.015 0.08± 0.024 0.016± 0.009
0.025-Fair GM 0.78± 0.006 0.757± 0.008 0.774± 0.002 0.059± 0.021 0.083± 0.012 0.015± 0.004
0.05-Fair GM 0.78± 0.003 0.759± 0.013 0.775± 0.002 0.076± 0.015 0.08± 0.017 0.015± 0.003
Regular GM 0.782± 0.006 0.76± 0.018 0.775± 0.006 0.055± 0.031 0.056± 0.012 0.005± 0.006

0.0-Fair NM 0.781± 0.002 0.765± 0.006 0.771± 0.007 0.063± 0.017 0.085± 0.013 0.015± 0.013
0.025-Fair NM 0.78± 0.005 0.766± 0.005 0.774± 0.002 0.057± 0.025 0.088± 0.008 0.015± 0.005
0.05-Fair GM 0.781± 0.003 0.769± 0.01 0.775± 0.002 0.082± 0.011 0.082± 0.018 0.016± 0.003
Regular GM 0.781± 0.007 0.762± 0.014 0.773± 0.008 0.054± 0.031 0.061± 0.011 0.005± 0.007

0.0-Fair FP 0.779± 0.005 0.757± 0.022 0.77± 0.008 0.06± 0.022 0.085± 0.014 0.016± 0.014
0.025-Fair FP 0.78± 0.002 0.764± 0.004 0.774± 0.002 0.056± 0.027 0.092± 0.008 0.016± 0.005
0.05-Fair FP 0.78± 0.001 0.768± 0.008 0.774± 0.002 0.076± 0.005 0.084± 0.014 0.017± 0.004
Regular FP 0.781± 0.005 0.764± 0.01 0.775± 0.006 0.051± 0.029 0.075± 0.011 0.005± 0.006

0.0-Fair GR 0.773± 0.009 0.796± 0.006 0.771± 0.011 0.072± 0.044 0.098± 0.032 0.011± 0.012
0.025-Fair GR 0.779± 0.005 0.792± 0.007 0.772± 0.003 0.052± 0.032 0.091± 0.02 0.017± 0.012
0.05-Fair GR 0.78± 0.003 0.792± 0.007 0.773± 0.004 0.078± 0.0314 0.094± 0.028 0.023± 0.01
Regular GR 0.781± 0.005 0.785± 0.004 0.773± 0.008 0.049± 0.043 0.073± 0.038 0.008± 0.01
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Figure 5: Heatmap of discrimination risks and maximum α (over all channels) of Graph Regulariza-
tion for 36 combinations of unknown feature rates for each group in SBM. We use 0.5 relative group
sizes and 0.5 inter- and intra-link rates.
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Figure 6: Plots of discrimination risk and maximum α (over all channels) of Graph Regularization vs.
relative size of group Q in SBM. We use 0.5 unknown feature rates for both groups and 0.5 inter- and
intra-link rates.

Table 7: equalized odds (EO) of all models averaged over all 25 combinations of unknown feature
rates of {0.1, 0.3, 0.5, 0.7, 0.9} for each group in Credit defaulter.

Method EOlinear ↓ EOmlp ↓ EOgcn ↓
0.0-Fair GM 0.039± 0.008 0.056± 0.019 0.013± 0.007
0.025-Fair GM 0.035± 0.014 0.058± 0.009 0.012± 0.003
0.05-Fair GM 0.048± 0.010 0.057± 0.016 0.012± 0.002
Regular GM 0.031± 0.017 0.038± 0.011 0.004± 0.005

0.0-Fair NM 0.039± 0.01 0.06± 0.009 0.013± 0.007
0.025-Fair NM 0.033± 0.015 0.06± 0.007 0.011± 0.004
0.05-Fair NM 0.05± 0.007 0.057± 0.014 0.012± 0.002
Regular NM 0.031± 0.018 0.041± 0.007 0.005± 0.006

0.0-Fair FP 0.035± 0.013 0.059± 0.013 0.013± 0.008
0.025-Fair FP 0.031± 0.016 0.062± 0.007 0.013± 0.004
0.05-Fair FP 0.043± 0.005 0.057± 0.011 0.014± 0.002
Regular FP 0.028± 0.016 0.05± 0.01 0.004± 0.005

0.0-Fair GR 0.051± 0.036 0.07± 0.029 0.008± 0.011
0.025-Fair GR 0.03± 0.02 0.06± 0.025 0.012± 0.011
0.05-Fair GR 0.048± 0.03 0.067± 0.025 0.015± 0.009
Regular GR 0.03± 0.038 0.051± 0.038 0.007± 0.007
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Figure 7: Plots of discrimination risk and maximum α (over all channels) of Graph Regularization
vs. ratio of inter-link rate to intra-link rate in SBM. We use 0.5 relative group sizes and 0.5 unknown
feature rates for both groups.
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Figure 8: Heatmap of discrimination risks and maximum α (over all channels) of Neighbor Mean for
36 combinations of unknown feature rates for each group in SBM. We use 0.5 relative group sizes and
0.5 inter- and intra-link rates.
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Figure 9: Plots of discrimination risk and maximum α (over all channels) of Neighbor Mean vs.
relative size of group Q in SBM. We use 0.5 unknown feature rates for both groups and 0.5 inter- and
intra-link rates.
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Figure 10: Plots of discrimination risk and maximum α (over all channels) of Neighbor Mean vs.
ratio of inter-link rate to intra-link rate in SBM. We use 0.5 relative group sizes and 0.5 unknown
feature rates for both groups.
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Figure 11: Heatmap of discrimination risks and maximum α (over all channels) of Global Mean for
36 combinations of unknown feature rates for each group in SBM. We use 0.5 relative group sizes.
Note: Global Mean is not affected by graph structure.
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Figure 12: Plots of discrimination risk and maximum α (over all channels) of Global Mean vs.
relative size of group Q in SBM. We use 0.5 unknown feature rates for both groups. Note: Global
Mean is not affected by graph structure.
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