
Supplementary material for
“Regret Bounds for Multilabel Classification in Sparse

Label Regimes”
This appendix contains all proofs of the results mentioned in the main body of the paper, plus further
results which have been omitted there due to space limits.

A Technical lemmas for k-NN

We recall the following lemma which upper bounds the probability measure of the ball around a point
x ∈ X that contains its kth nearest neighbors. The proof immediately follows from the multiplicative
Chernoff bound (see, e.g., Lemma 3.2 in [28]).
Lemma A.1. Given x ∈ X , k ∈ [n] with k ≥ 4 log(1/δ), with probability at least 1 − δ over
D = {Xi}i∈[n] we have µ

(
B
ρ(x,Xτn,k(x))(x)

)
≤ 2k

n .

When combined with Assumption 5.1 we obtain the following corollary.
Corollary A.2. Suppose that the measure-smoothness assumption (Assumption 5.1) holds with
parameters λ, Cλ, ‖ · ‖. Then for all x ∈ X , k ∈ [n] with k ≥ 4 log(1/δ), with probability at least
1− δ over D, the following holds for all q ∈ [k]:∥∥η(Xτn,q(x))− η(x)

∥∥ ≤ Cλ · (2k/n)
λ
.

Although Corollary A.2 holds for any semi-norm, in this paper we use it with ‖.‖∞. With Corollary
A.2 handy, we can continue by considering in turn the two specific losses of our interest: Hamming
loss (Theorem 5.2, Appendix B), and Precision@κ (Theorem 5.7, Appendix C).

B Proof of Theorem 5.2

The proof of Theorem 5.2 is split into a series of technical lemmas. The proof idea can be summarized
in four steps:

• As a first step, we show that the k-NN regression estimator η̂jn,k(x) has an error of
O(log(s/δ)) for the top-s labels T s(η(x)) for a given x ∈ X with probability at least
1− δ. This result is in Lemma B.1.
• Next, we will make use of the sparsity assumption defined in Assumption 4.1 by showing

that if k is big enough, i.e. k = Ω(logm), the k-NN regression function η̂n,kj (x) is smaller
than 1/2 with high probability for labels j whose conditional probability ηj(x) is smaller
than t. These labels can be handled easily in a regret analysis, since their estimates will be
smaller than 1/2. This implies that φn,k`H (x) = φ∗`H (x), so that the k-NN classifier does not
suffer any regret in this case. By virtue of the sparsity assumption, there are at least m− s
such labels. We will present this claim in Lemma B.2.

• As a next step, we upper bound the probability of observing an instance such that the
regression function has high error on labels from T s(η(x)), that is, when the error bound
of Lemma B.1 fails, and the regression function estimates η̂n,kj (x) for j /∈ T s(η(x)) are
higher than 1/2, that is when Lemma B.2 fails. We cannot upper bound the regret for these
instances by other than a trivial upper bound such as 1. So a small upper bound for the
probability of these instances, which will be δ, implies that the learner suffers only at most δ
regret overall on such instances. This will show up as an additive term in the regret bound.
We present this result in Lemma B.4.
• As a last step, we carry out a standard regret analysis focusing on T s(η(x)), since we know

that labels j /∈ T s(η(x)) add at most δ to the regret. Using the margin condition given in
Assumption 4.2, we can have fast rate 1/n like in the analysis of plug-in classifiers of [2].
In addition, the regret bound scales with s/m, since we eliminated the rest of the labels, and
it is enough to focus only on those from T s(η(x)).
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We start by bounding the error of the k-NN regression function on labels from T s(x).
Lemma B.1. Suppose that Assumption 5.1 holds. Given x ∈ X , k ∈ [n] with k ≥ 4 log(2/δ), with
probability at least 1− δ over D, we have

max
j∈T s(η(x))

{∣∣∣η̂n,kj (x)− ηj(x)
∣∣∣} ≤ Cλ · (2k

n

)λ
+

√
log(4s/δ)

2k
.

Proof. Let us introduce the notation P′( . ) = P
(
. | {Xi}i∈[n]

)
. First we condition on

{Xi}i∈[n] and apply Hoeffding’s lemma to obtain

P′
(

max
j∈T s(η(x))


∣∣∣∣η̂n,kj (x)− 1

k

∑
q∈[k]

ηj(Xτn,q(x))

∣∣∣∣
 > ξ


≤

∑
j∈T s(η(x))

P′

∣∣∣∣1k ∑
q∈[k]

(
Y
τn,q(x)
j − ηj(Xτn,q(x))

) ∣∣∣∣ > ξ


≤ 2s · e−2kξ

2

.

By taking ξ =
√

log(4s/δ)/2k and marginalising over {Xi}i∈[n] we see that the following bound
holds with probability at least 1− δ/2,

max
j∈T s(η(x))


∣∣∣∣η̂n,kj (x)− 1

k

∑
q∈[k]

ηj
(
Xτn,q(x)

)∣∣∣∣
 ≤

√
log(4s/δ)

2k
.

To conclude the proof of the lemma we apply Corollary A.2 to infer that with probability at least
1− δ/2 we have

max
j∈T s(η(x))


∣∣∣∣ηj(x)− 1

k

∑
q∈[k]

ηj(X
τn,q(x))

∣∣∣∣
 ≤ Cλ ·

(
2k

n

)λ
.

The lemma follows by applying a union bound and the triangle inequality.

As a next step, we bound the maximum of the k-NN regression function for labels j /∈ T s(η(x).
Lemma B.2. Suppose that Assumption 5.1 and 4.1 hold. Given x ∈ X , and k ∈ N such that

8 log(2m/δ) ≤ k ≤ n/2 ,
with probability at least 1− δ over D we have

max
j /∈T s(η(x))

{
η̂n,kj (x)

}
≤ max
j /∈T s(η(x))

{ηj(x)}+ Cλ ·
(

2k

n

)λ
+

√
8 log(2m/δ)

k
.

Moreover, under Assumption 4.1, with probability at least 1− δ over D, we have

max
j /∈T s(η(x))

{
η̂n,kj (x)

}
≤ t+ Cλ ·

(
2k

n

)λ
+

√
8 log(2m/δ)

k
.

Proof. Applying Corollary A.2, with probability at least 1− δ/2, the following holds for all q ∈ [k],

max
j /∈T s(η(x))

1

k

∑
q∈[k]

ηj(Xτn,q(x))

 ≤ max
j /∈T s(η(x))

ηj(x) +

∣∣∣∣∣∣1k
∑
q∈[k]

ηj(Xτn,q(x))− ηj(x)

∣∣∣∣∣∣


≤ max
j /∈T s(η(x))

{ηj(x)}+ max
j∈[m]


∣∣∣∣∣∣1k
∑
q∈[k]

ηj(Xτn,q(x))− ηj(x)

∣∣∣∣∣∣


≤ max
j /∈T s(η(x))

{ηj(x)}+
1

k

∑
q∈[k]

max
j∈[m]

{∣∣ηj(Xτn,q(x))− ηj(x)
∣∣}

≤ max
j /∈T s(η(x))

{ηj(x)}+ Cλ ·
(

2k

n

)λ
.
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Let us recall the notation P′( . ) given in the proof of Lemma B.1. By conditioning on {Xi}i∈[n]
we have

P′
(

max
j /∈T s(η(x))

η̂j(x)− max
j /∈T s(η(x))

1

k

∑
q∈[k]

ηj(X
τn,q(x)) > ξ

 (9)

≤ P′

 max
j /∈T s(η(x))

∣∣∣∣η̂j(x)− 1

k

∑
q∈[k]

ηj(X
τn,q(x))

∣∣∣∣ > ξ

 (10)

= P′

 max
j /∈T s(η(x))

∣∣∣∣1k ∑
q∈[k]

(
Y
τn,q(x)
j − ηj(Xτn,q(x))

)∣∣∣∣ > ξ


=

∑
j /∈T s(η(x))

P′

∣∣∣∣1k ∑
q∈[k]

(
Y
τn,q(x)
j − ηj(Xτn,q(x))

)∣∣∣∣ > ξ


≤ 2(m− s)e−

kξ2

2(1+ξ/3) (11)

≤ 2me−
kξ2

8 ,

where (10) follows from the fact that ‖y‖∞ − ‖y′‖∞ ≤ ‖y − y′‖∞ for any vectors y,y′ from a
normed space, and (11) follows from the Union bound and the Bernstein inequality.

By Assumption 4.1 we have maxj /∈T s(η(x)) ηj(x) ≤ t which implies the second claim of lemma.

Lemma B.2 implies that if we set k to be large enough, then all estimates for labels in T s(η(x))
will be smaller than 1/2, thus the k-NN learner does not suffer any regret on these labels, and we
can handle this case easily in the regret analysis. We summarize this observation in the following
corollary.
Corollary B.3. Suppose that Assumption 5.1 and 4.1 hold. Given x ∈ X and k ∈ N such that

16(1− 2t)−2 log(2m/δ) ≤ k ≤ ((1− 2t)/(8Cλ))
1/λ

(n/2) ,

with probability at least 1− δ over D, we have maxj /∈T s(η(x)){η̂n,kj (x)} < 1/2.

As a next step, for a given sample D and δ ∈ (0, 1) define

Gδ(D) :=

{
x ∈ X : ∀j ∈ T s(η(x)),

∣∣∣η̂n,kj (x)− ηj(x)
∣∣∣ ≤ Cλ · (2k

n

)λ
+

√
log(8s/δ2)

2k

}

∩
{
x ∈ X : ∀j /∈ T s(η(x)), η̂n,kj (x) <

1

2

}
.

The set Gδ(D) ⊆ X contains those instances in the feature space for which we can compute an
upper bound on the regret with a non-trivial term, since the error of the k-NN regression estimate
is small for the top-s T s(η(x)). In addition, the k-NN regression estimates are smaller than 1/2
for j /∈ T s(η(x)). So we would like to upper bound the probability of observing an instances from
X \Gδ(D), because for these instance, we can have only trivial upper bound on the regret of the k-NN
learner. Notice that µ (X\Gδ(D)) is a random variable which depends on the selection of random
sample D. The next lemma provides a high-probability upper bound on the marginal probability
measure µ of X\Gδ(D).
Lemma B.4. Suppose that Assumption 5.1 and 4.1 hold. Moreover suppose that

32(1− 2t)−2 log(2/δ) ≤ k ≤ ((1− 2t)/(8Cλ))
1/λ

(n/2) .

Then with probability at least 1− δ over D we have µ (X\Gδ(D)) ≤ δ.

Proof. By Lemma B.1 combined with Corollary B.3 and a union bound, we see that for each x ∈ X ,
P (X /∈ Gδ(D)) ≤ δ2. Hence, by Fubini’s theorem we have

E (µ (X\Gδ(D))) = E

(∫
I{x /∈ Gδ(D)}dµ(x)

)
=

∫
E (I{x /∈ Gδ(D)}) dµ(x) ≤ δ2.

The conclusion follows by Markov’s inequality.
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Now we present the proof of Theorem 5.2.

Proof of Theorem 5.2. By Lemma B.4 it suffices to take

∆(n, k, s, δ) = Cλ · (2k/n)
λ

+
√

log(8s/δ)/k

and show that µ (X\Gδ(D)) ≤ δ implies

Reg`H (φn,k`H ) ≤ 2s

m
· Cα ·∆(n, k, s, δ)1+α + δ .

Take x ∈ Gδ(D) and recall that (φ∗`H (x))j = I{ηj(x) ≥ 1/2} and (φn,k`H (x))j = I{η̂n,kj (x) ≥ 1/2}.
We consider the two cases j ∈ T s(η(x)) and j /∈ T s(η(x)).

Suppose j ∈ T s(η(x)). By construction, since x ∈ Gδ(D) and (φn,k`H (x))j 6= (φ∗`H (x))j , we must
have

|ηj(x)− 1/2| ≤ Cλ · (2k/n)
λ

+
√

log(8s/δ)/k .

Hence, we have

I{(φn,k`H (x))j 6= (φ∗`H (x))j} · |2ηj(x)− 1| ≤ 2 · I{(φn,k`H (x))j 6= (φ∗`H (x))j} ·
∣∣∣∣ηj(x)− 1

2

∣∣∣∣
≤ 2 · I{|ηj(x)− 1/2| ≤ ∆(n, k, s, δ)} ·∆(n, k, s, δ) .

On the other hand, when j /∈ T s(η(x)) we have ηj(x) ≤ t < 1/2 so that (φ∗`H (x))j = 0. Since
x ∈ Gδ(D) we have η̂n,kj (x) < 1/2 so (φn,k`H (x))j = (φ∗`H (x))j . Thus, for j /∈ T s(η(x)) we have
I{(φn,k`H (x))j 6= (φ∗`H (x))j} · |2ηj(x)− 1| = 0. As a consequence, for x ∈ Gδ(D) we can write

1

m

∑
j∈[m]

I{(φn,k`H (x))j 6= (φ∗`H (x))j} · |2ηj(x)− 1|

≤ 2

m

∑
j∈T s(η(x))

I{|ηj(x)− 1/2| ≤ ∆(n, k, s, δ)} ×∆(n, k, s, δ)

≤ 2s

m
· I
{
x ∈ X : min

j∈[m]
{|ηj(x)− 1/2|} ≤ ∆(n, k, s, δ)

}
×∆(n, k, s, δ) .

Further, by Assumption 4.2 we have

Reg`H (φn,k`H ) ≤ 2s

m
·
∫
X
I
{

min
j∈[m]

{|ηj(x)− 1/2|} ≤ ∆(n, k, s, δ)

}
×∆(n, k, s, δ)dµ(x)

≤ 2s

m
· Cα ·∆(n, k, s, δ)1+α + µ(X\Gδ(D))

≤ 2s

m
· Cα ·∆(n, k, s, δ)1+α + δ .

This completes the proof of the theorem.

C Proof of Theorem 5.7

The proof of Theorem 5.7 has three main steps:

• First, similar to Lemma B.1, we upper bound the error of the k-NN regression function for
all labels. This result is presented in Corollary C.1.

• Similar to the proof of Theorem 5.2, we upper bound by δ the probability of observing an
instance for which the error of the k-NN regression function is large, as for those instances
we can only have trivial upper bounds.
• Finally, we note that if the error of the k-NN regression function for η̂(κ)(x) and η̂(κ+1)(x)

is upper bounded by a term ∆, then the classifier suffers at most 2∆ `@κ-regret on x.
Using the margin condition, we can upper bound the probability of instances for which
ηκ(x)− ηκ+1(x) ≤ ∆ by Kβ∆1+β , which results in the regret bound of Theorem 5.7.
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Corollary C.1 below is a consequence of Lemma B.1 which gives an error of the k-NN regression
function for every label.

Corollary C.1. Suppose that Assumption 5.1 holds. Given x ∈ X , n/2 ≥ k ∈ [n] with k ≥
4 log(2/δ), the following holds with probability at least 1− δ over D:

max
j∈[m]

{∣∣∣η̂n,kj (x)− ηj(x)
∣∣∣} ≤ Cλ · (2k

n

)λ
+

√
log(4m/δ)

2k
.

Proof. The proof is straightforward based on the proof of Lemma B.1.

With this upper bound on the pointwise error, we can prove Theorem 5.7.

Proof of Theorem 5.7. Let us define

Gδ = Gδ(D) :=

{
x ∈ X : max

i∈[m]
|ηi(x)− η̂n,ki (x)| ≤ ∆(n, k, δ)

}
,

where ∆(n, k, δ) =
√

log(2m/δ)
k + ω

(
2k
n

)k
. Note that Gδ depends on D through the estimator

η̂n,k(x) which clearly depends on D. Based on Corollary C.1, we have

max
j∈[m]

|η̂n,kj (x)− ηj(x)| ≤ ∆(n, k, δ) (12)

with probability 1 − δ2/3 for any x ∈ X . Thus E[µ(X \ Gδ)] ≤ δ/3, and based on Markov’s
inequality, it holds that µ(X \ Gδ) ≤ δ with probability at least 1− δ/3. Next let us rewrite the regret
as

Reg`@κ(φn,k`@κ) =
1

κ

∫
x∈X

 ∑
i∈Tκ(η(x))

ηi(x)−
∑

j∈Tκ(η̂n,k(x))

ηj(x)

 dµ(x)

=
1

κ

∫
Gδ

 ∑
i∈Tκ(η(x))

ηi(x)−
∑

j∈Tκ(η̂n,k(x))

ηj(x)

 dµ(x)

+
1

κ

∫
X\Gδ

 ∑
i∈Tκ(η(x))

ηi(x)−
∑

j∈Tκ(η̂n,k(x))

ηj(x)

 dµ(x)

≤ 1

κ

∫
Gδ

 ∑
i∈Tκ(η(x))

ηi(x)−
∑

j∈Tκ(η̂n,k(x))

ηj(x)

 dµ(x) + 2µ(X \ Gδ)

≤ 1

κ

∫
Gδ

 ∑
i∈Tκ(η(x))

ηi(x)−
∑

j∈Tκ(η̂n,k(x))

ηj(x)

 dµ(x) + 2δ

≤
∫
Gδ

2∆(n, k, δ)dµ(x) + 2δ (13)

≤
∫
X
I{η(κ)(x)− η(κ+1)(x) < 2∆(n, k, δ)} × 2∆(n, k, δ)dµ(x) + 2δ

≤ Kβ · (2∆(n, k, δ))1+β + 2δ , (14)

where (13) follows from the fact that if η(κ)(x) − η(κ+1)(x) ≥ 2∆(n, k, δ) for any x ∈ Gδ
then this implies that the conditional regret Reg`@κ(φn,k`@κ |x) is zero because of (12), while if
η(κ)(x) − η(κ+1)(x) < 2∆(n, k, δ), then Reg`@κ(φn,k`@κ |x) ≤ 2∆(n, k, δ). All these claims hold
with probability at least 1− δ/2. In the last step (14) we used Assumption 5.6. An application of the
union bound concludes the proof.
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D Proofs of Theorem 5.10 and Theorem 5.11

Proof of Theorem 5.10. For Hamming loss, given a binary problem P , let gp(P ) := P̃ denote the
multi-label problem with

ηj(x) =

{
η(x), for j = 1, . . . , s

0, for j = s+ 1, . . . ,m,

and, given sampleD = {(Xi, Y i)}i∈[n] fromP , let gd(D) = {(Xi, Ỹ
i
)}i∈[n], where Ỹ

i ∈ {0, 1}m
is the vector whose first s components are set to Y i, and the remaining m− s set to 0. An (unbiased)
sample from P are mapped to (unbiased) sample from gp(P ), and label independence can be enforced
at some cost. In addition, for a classifier φ̃ ∈M(X ,Y) we define f(φ̃) ∈M(X , {0, 1}) as

f(φ̃)(x) = I{
∣∣∣[s] ∩ φ̃(x)

∣∣∣ ≥ s/2}
for x ∈ X . This immediately implies

RegP̃`H
(
φ̃
∣∣∣ x) ≥ (s/2)RegP`0−1

(
f(φ̃)

∣∣∣ x) ,

as claimed. As a last step, it is easy to check that if we consider binary problem having binary margin
condition

P (|η(X)− 1/2| < ξ) ≤ Cαξα

then this implies multi-label margin condition as defined in Assumption 4.2 with the same parameters.
Any lower bound on expected regret applies to high probability lower bounds. In particular, the lower
bound result contained in [2] (Theorem 3.5 therein) for expected regret can be stated in our setup as
Cn−

λ(1+α)
2λ+1 , for some constant C > 0. This concludes the proof.

Proof of Theorem 5.11. For Precision@κ, the lower bound reduction is very similar to the one we
just presented for Hamming loss. In particular, given a binary problem P , let gp(P ) := P̃ denote the
multi-label problem with

ηj(x) =


η(x), for j = 1, . . . , κ

1− η(x), for j = κ+ 1, . . . , 2κ

0, for j = 2κ+ 1, . . . ,m .

Correspondingly, given sample D = {(Xi, Y i)}i∈[n] from P , let gd(D) = {(Xi, Ỹ
i
)}i∈[n], where

Ỹ
i ∈ {0, 1}m is the vector whose first κ components are set to Y i, the next κ components (indices

from κ + 1 to 2κ) set to (1 − Y i), and the remaining m − 2κ components are set to 0. Note that
this maps (unbiased) samples from P to (unbiased) samples from gp(P ). (In case we want, we
can enforce label independence at the cost of ending up with 1/(2κ) of the sample size for gp(P ).)
Finally, for a classifier φ̃ ∈M(X ,Y) define

f(φ̃) ∈M(X , {0, 1})

as
f(φ̃)(x) = I{

∣∣∣[κ] ∩ φ̃(x)
∣∣∣ ≥ κ/2}

for x ∈ X .

Now, the optimal classifier for P is φ(x) = I{η(x) > 1/2}. Also note that the (conditional) regrets
are related as follows:

RegP̃`@κ
(
φ̃
∣∣∣ x) ≥


2
κ

(
η(x)− 1

2

) ∣∣∣φ̃(x) \ [κ]
∣∣∣ if η(x) > 1/2

2
κ

(
1
2 − η(x)

) ∣∣∣[κ] ∩ φ̃(x)
∣∣∣ if η(x) ≤ 1/2

≥ 1

2
RegP`0−1

(
f(φ̃)

∣∣∣ x) .
Finally note that f is a surjective mapping, and that φ̃ is optimal for gp(P ) iff f(φ̃) is optimal for P
and φ̃(x) ∈ {[κ], [2κ] \ [κ]} for all x ∈ X .
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Consequently, any multi-label learner A can be used as a binary learner with worst case regret upper
bounded by half the worst case regret of A. Therefore, regret lower bounds for the binary problem
automatically infer (1/2) times the same lower bound for the multi-label learning problem. As a last
step, it is easy to check that if we consider binary problem having binary margin condition

P (|η(X)− 1/2| < ξ) ≤ Cαξα

then this implies Precision@κ margin condition

P
(
η(κ)(X)− η(κ+1)(X) < 2ξ

)
≤ Kβ(2ξ)β

with Cα = Kβ and β = α. Using the same argument as for Hamming loss, any lower bound on
expected regret implies high probability lower bounds. In particular, the lower bound result contained
in [2] (Theorem 3.5 therein) for expected regret can be stated in our setup as Cn−

λ(1+α)
2λ+1 , for some

constant C > 0, thereby concluding the proof.

E Multi-label extension of [3]

As a preliminary step, we start by presenting a MLC extension of Theorem 1 in [3], along with an
improvement under low noise conditions.

Recall that in [3], it is shown that for each classification-calibrated loss, there exists a nondecreasing
function ψ : [0, 1] 7→ [0,∞) that provides an upper bound on the regret of the 0-1 loss in terms of the
regret of the surrogate loss, i.e., ψ(Reg0-1(f)) ≤ Reg`(f) for all measurable function f : X 7→ R.
Here, we extend their 0-1 loss result to Hamming loss in MLC setting.

First, we provide relevant definitions from [3]. Let Cη(z) be a generic conditional `-risk, which is
defined as

Cη(z) = η`(z) + (1− η)`(−z) .
The optimal conditional `-risk is

H(η) = inf
z∈R
Cη(z) .

The optimal conditional `-risk under the condition that the sign of z disagrees with the sign of 2η − 1
is,

H−(η) = inf
z∈R : z(2η−1)<0

Cη(z) .

Then, given loss ` : R 7→ [0,∞), the function ψ : [−1, 1] 7→ [0,∞) is defined by ψ = ψ̃∗∗, where

ψ̃(θ) = H−
(

1 + θ

2

)
−H

(
1 + θ

2

)
,

and g∗∗ : [−1, 1] 7→ R is the Fenchel–Legendre biconjugate of g : [−1, 1] 7→ R.

Next, we introduce new per label j ∈ [m] notations for scoring functions f : X 7→ Rm.

Risk R(φf ) =
1

m

m∑
j=1

Rj(φf ) =
1

m

m∑
j=1

E I{sgn(fj(X)) 6= Y j}

Bayes risk R∗ =
1

m

m∑
j=1

Rj
∗ =

1

m

m∑
j=1

inf
f
Rj(f)

`-risk R`(f) =
1

m

m∑
j=1

R`,j(fj) =
1

m

m∑
j=1

E`(Y jfj(X))

Bayes `-risk R∗` =
1

m

m∑
j=1

R∗`,j =
1

m

m∑
j=1

inf
f
R`,j(f)

Theorem E.1 (Hamming loss extension of Theorem 1 in [3]).
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1. For any nonnegative loss function `, any measurable function f : X 7→ Rm, and probability
distribution P j , j ∈ [m], on X × {±1},

ψ(Reg`H (φf )) ≤ Reg`(f).

2. Suppose that |X | ≥ 2. For any nonnegative loss function `, any ε > 0, and any θ ∈ [0, 1],
there is a probability distribution on X × {±1} and a function f : X 7→ Rm such that

Reg`H (φf ) = θ

and

ψ(θ) ≤ Reg`(f) ≤ ψ(θ) + ε

3. The following conditions are equivalent:

(a) ` is classification-calibrated.
(b) For every sequence of measurable functions {f i}, such that f i : X 7→ Rm and every

probability distribution on X × {±1}m with respect to which risk is computed,

R`(f
i)→ R`

∗ implies that R(φfi)→ R∗

Proof. 1. ψ is a convex function from the definition. Thus,

ψ(Reg`H (φf )) = ψ

 1

m

∑
j

Rj(φfj )−
1

m

∑
j

Rj
∗


=ψ

 1

m

∑
j

(
Rj(φfj )−R∗j

)
≤ 1

m

∑
j

ψ
(
Rj(φfj )−R∗j

)
(15)

≤ 1

m

∑
j

(
R`,j(fj)−R∗`,j

)
(16)

= Reg`(f) ,

where (15) is from Jensen’s inequality and (16) is from Theorem 1.1 in [3].

2. This follows from Theorem 1 part 2 in [3]; ψ(θ) ≤ Reg`(f) follows from part 1 of the same
theorem. To show

Reg`(f) ≤ ψ(θ) + ε , (17)

we use the same construction as in the proof in Theorem 1.2 in [3] for each label j ∈ [m]
individually. Then we have

R`,j(fj)−R∗`,j ≤ ψ(θ) + ε . (18)

Adding (18) for all j ∈ [m] and dividing by m gives us (17).

3. We first show that (a)→ (b), and then that (b)→ (a).

(a)→ (b): Consider the case where ` is classification-calibrated. Then from Theorem 1.3.c in [3],
for each j ∈ [m], every sequence of measurable functions f ij : X 7→ R indexed by i,
and every probability distribution Pj on X × {±1},

R`,j(f
i
j)→ R∗`,j implies that Rj(φfij )→ R∗j . (19)

Assume that

R`(f
i)→ R`

∗ (20)

Since R∗` is the sum of the infima of R`,j , (20) implies that

j ∈ [m], R`,j(f
i
j)→ R∗`,j .

Summing this up for all j and using (19) gives us R(φfi)→ R∗.

21



(b)→ (a): We follow the same construct as the proof of Theorem 1.3 in [3]. Consider the case
where the statement of Theorem 1.3.b holds, and R`(f i) → R∗` . Assume ` is not

classification calibrated. Then, for a fixed η 6= 1

2
, there exists a sequence {αi} that

both of the following conditions hold.

αi · sgn

(
η − 1

2

)
= −1 ∀i (21)

Cη(αi)→ H(η)

For a fixed x ∈ X , let all the probability distributions Pj for labels j ∈ [m] be
such that P (X = x) = 1 and P (Yj = 1 |X = x) = η. Let f i(x) = αi. Then
limi→∞Rj(f

i) > Rj
∗ from (21). This contradicts Theorem 1.3.b in that paper, in

that R(φfi)→ R∗ should hold for any distributions and function f i.

This concludes the proof.

F Proof of Theorem 6.2

Given the results in Appendix E, we are ready to prove Theorem 6.2.

Consider fixed F : X 7→ Rm. Let Ej(x) = I{fj(x)(ηj(x)− 1
2 ) < 0]}|2ηj(x)− 1| be the excessive

risk for label j and instance x. Note that R(f) − R∗ = 1
m

∑
j E[Ej(X)]. Let ji(x) be the

label j such that Ej(x) is the ith largest, e.g., Ej1(x)(x) ≥ Ej2(x)(x) ≥ · · · ≥ Ejm(x)(x). Let
R̃i(f) = E[Eji(X)(X)] be the excessive risk if the i-th the largest error label is chosen per instance.

Let Si =
{
x|fji(x)(x)

(
ηji(x) − 1

2

)
< 0
}

, and notice that

1. S1 =
⋃
j

{
x | fj(x)

(
ηj(x)− 1

2

)
< 0
}

.

2. Si ⊇ Sj if i ≤ j.
Lemma F.1. If Assumption (4.2) holds, then for Γ = (Cα)1/(α+1)(1 + α)/(α)α/(1+α), for all
i ∈ [m], and all measurable f : X 7→ {±1}m,

Pr (Si) ≤ Γ(R̃i(f))
α

1+α .

Proof.

R̃i(F ) =

∫
Si

Eji(X)(X)dP (X)

≥
∫
Si

I{|2ηji(X)(X)− 1| > ε} · ε dP (X)

= ε

(
Pr(Si)−

∫
Si

I{0 < |2ηji(X)(X)− 1| ≤ ε}dP (X)

)
≥ ε

(
Pr(Si)−

∫
I{∃j, 0 < |2ηj(X)− 1| ≤ ε}dP (X)

)

≥ ε

Pr(Si)− Pr

⋃
j

{
X

∣∣∣∣ 0 < |2ηj(X)− 1| ≤ ε
}

≥ ε (Pr(Si)− Cαεα) . (22)

By setting ε = (Pr(Si)/(Cα(1 + α)))1/α, we get

(22) =

(
Pr(Si)

Cα(1 + α)

)1/α(
Pr(Si)−

Pr(Si)
1 + α

)
=

(
1

(Cα(1 + α))1/α

)
α

1 + α
Pr(Si)(1+α)/α .

Rearranging terms yields

Pr(Si) ≤ (Cα)1/(α+1)(1 + α)/(α)α/(1+α)R̃i(F )α/(1+α) , (23)
as claimed.
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Using this lemma, we can prove Theorem 6.2 as follows.

Proof of Theorem 6.2. For notational brevity, we will use γ = α
α+1 . The regret is

R(f)−R∗ ≤ 1

m
E
∑
j

I{|2ηj(X)− 1| < ε}Ej +
1

m
E
∑
j

I{|2ηj(X)− 1| ≥ ε}Ej .

For the first term in the RHS we can write

1

m
E
∑
j

I{|2ηj(X)− 1| < ε}Ej

=
1

m
E
∑
j

I{|2ηj(X)− 1| < ε}I{fj(X)(ηj(X)− 1/2) < 0}|2ηj(X)− 1|

≤ ε

m
E
∑
j

I{|2ηj(X)− 1| < ε}I{fj(X)(ηj(X)− 1/2) < 0} .

Let ε < 1 − 2t. Then, per X , there are at most only s number of classes j that satisfies
|2ηj(X)− 1| < ε, and we can upper bound this term by using the largest s number of j’s, which are
j1(X), j2(X), . . . , js(X). Then

ε

m
E
∑
j

I{|2ηj(X)− 1| < ε}I{fj(X)(ηj(X)− 1/2) < 0}

≤ ε

m
E

s∑
i=1

I{fji(X)(X)(ηji(X) − 1/2) < 0}

=
ε

m

s∑
i=1

Pr(Si)

≤ Γε

m

s∑
i=1

(R̃i(f))γ

= Γεs

s∑
i=1

1

s
(R̃i(f))γ

≤ Γεs

(
1

s

s∑
i=1

R̃i(f)

)γ

≤ Γεs

(
1

s
·m(Reg`H (φf ))

)γ
.

As in proof of the Theorem 3 in [3], we upper bound the second term by

ε

ψ(ε)
(R`(f)−R`∗) ,

and choose

ε =
1

2Γ
(1/s)1−γ (R(f)−R∗)1−γ .

Rearranging terms and observing that by (23) Γ = C
1/(α+1)
α (α+ 1)/αα/(α+1) concludes the proof.
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G Proof of Theorem 6.7

Proof. Let gk(x) be the value of centered classifier f for the label with the kth largest conditional
probability, i.e., corresponding to η[k](x). For notational convenience, we drop the dependence on x
when clear from the context. We prove the second inequality, but the same argument applies to the
first one. We can write

Reg`@κ@(Tκ(f)) =
1

κ
E

∑
k∈[κ]

η[k]I{gk ≤ f[κ+1]}+
∑

k∈[m]/[κ]

−η[k]I{gk > f[κ+1]}


≤ 1

κ
E

∑
k∈[κ]

η[k]I{gk < 0} −
∑

k∈[m]/[κ]

η[k]I{gk > 0}

 . (24)

We now introduce pairing of labels. We pair each k ∈ [κ], a label whose conditional probability is
the kth largest, i.e., η[k], with a different label k′′ ∈ [m]/[κ] such that gk′′ > 0 if and only if gk < 0.
Such pairs exist because |{k ∈ [κ] | gk < 0}| = |{k ∈ [m]/[κ] | gk > 0}|. Then

(24) =
1

κ
E

∑
k∈[κ]

(
η[k]I{gk < 0} − ηk′′I{gk′′ > 0}

) . (25)

Now, for each k, if η[k] > 1
2 , then

1

2

(
2η[k]I{gk < 0} − 2ηk′′I{gk′′ > 0}

)
=

1

2

(
(2η[k] − 1)I{gk < 0}+ I{gk < 0}+ (1− 2ηk′′)I{gk′′ > 0})− I{gk′′ > 0}

)
=

1

2

(
(2η[k] − 1)I{gk < 0}+ (1− 2ηk′′) I{gk′′ > 0}

)
Otherwise,

1

2

(
2η[k]I{gk < 0} − 2ηk′′I{gk′′ > 0}

)
=

1

2

(
(2η[k] − 2η[k])I{gk < 0}+ 2η[k]I{gk′′ > 0} − 2ηk′′I{gk′′ > 0}

)
=

1

2

(
2η[k] − 2ηk′′)I{gk′′ > 0}

)
≤ 1

2
(1− 2ηk′′)I{gk′′ > 0}) .

Consequently,

(25) ≤ 1

2κ
E

∑
k∈[κ]

(
|2η[k] − 1|I{gk(x)

(
η[k] − 1/2

)
< 0}+ |2ηk′′ − 1|I{g′′k (x) (ηk′′ − 1/2) < 0}

)
≤ m

2κ

(
Reg`H (φf )

)
,

thereby concluding the proof.

H Lower bound on surrogate losses

The following theorem shows that the upper bound of Theorem 6.2 cannot be improved by more than
a factor of 2.
Theorem H.1. For any convex classification-calibrated loss function `, and corresponding ψ, any ε >
0, 0 < θ ≤ 1−2t, and s ∈ N, Γ′(1/(1−2t))α+1θ ≤ s = s

m ≤ min{1,Γ′θ−α} where α = − logθ 2,
and Γ′ = 2−(α+2)αα (1/(α+ 1))

α+1, there exists a probability distribution such that Assumption
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4.2 holds with parameters α and Cα = 2, and Assumption 4.1 holds with parameters s, t ∈ [0, 1/4),
and a function f : X 7→ Rm such that Reg`H (φf ) = θ, Reg`H (φf ) < s (2Γ(1− 2t))

1+α, and

Reg`(f) ≤ 2Γs

(
Reg`H (φf )

s

) α
α+1

ψ

(
1

2Γ

(
Reg`H (φf )

s

) 1
α+1

)
+ ε (26)

where 1 ≤ Γ = 21/(α+1)(α+ 1)/αα/(α+1) ≤ 3.

Proof. We consider a distribution whose noisiness is controlled by 0 < δ ≤ 1. Specifically, let Dδ
be a distribution such that, ∀x ∈ X , ηj(x) = 1

2 (1 + δ) if j ∈ [s] otherwise 1
2 (1 − δ). With this

distribution,

Pr

⋃
j

{
X

∣∣∣∣0 < |2ηj(X)− 1| ≤ ε
} =

{
1 if ε ≥ δ
0 o.w

.

In this case, t ≤ 1
2 (1− δ).

This corresponds to constants α = − logδ 2 = logδ
1
2 , Cα = 2 in Assumption 4.2. Notice that such

α matches δ, in that when δ = 0 we have α = 0, and when δ = 1 we have α =∞. Also, constant
Cα turns out to be fixed.

Additionally from Lemma F.1, let

Γ = 21/(α+1)(α+ 1)/αα/(α+1) (27)

One can easily see that 1 ≤ Γ′ ≤ 3 by separating the two cases 0 < α ≤ 1 and 1 < α, and taking
derivatives.

For the proof of the theorem, we will use the distribution Dδ with δ = θ.

We will also choose f such that fj(x) < 0 if j ∈ [s], and fj(x) > 0, otherwise. Also, observe that
Cηj(x)(fj(x)) ≤ H−(fj(x)) + ε (see Section E for the definitions of Cη and H−).

Then,

R(f)−R∗ = δ = θ

(28)

and

R`,j(fj)−R∗`,j
= Cηj(x)(fj(x))−H(ηj(x))

≤ H−(fj(x))−H(ηj(x)) + ε

= ψ(θ) + ε ,

where R`,j and R∗`,j are the `-risk and the Bayes `-risk for label j, respectively. Since this holds for
all j ∈ [m], we have

R`(f)−R∗` ≤ ψ(θ) + ε . (29)

Now, there are conditions that the parameters must satisfy. First, the distribution must satisfy
Assumption 4.2 with ε = θ and Cα. We have

1 ≤ Cαθα

⇔
(

1

2

)− log2 δ

≤ θ

⇔ δ ≤ θ .
Since θ = δ in our case, this is always satisfied.

Also, we have to show that the following condition is met
1

2Γ
s−

1
1+α θ

1
1+α ≤ 1− 2t .
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By plugging in (27),

2−(α+2)/(α+1)αα/(α+1)(1/(α+ 1))s−1/(α+1)θ1/(α+1) ≤ 1− 2t

⇔ 2−(α+2)ααθ

(
1

(α+ 1)(1− 2t)

)α+1

≤ s (30)

which is the given condition from Γ′(1/(1− 2t))α+1θ ≤ s in the statement of the theorem, where
Γ′ = 2−(α+2)αα (1/(α+ 1))

α+1, and we can see that the LHS is less than 1 when t < 1/4.

Further, the following condition is needed at the end:

2Γs
1

α+1 θ
α
α+1 ≤ 1 . (31)

By plugging in (27), we can write

2(α+2)/(α+1)(1/α)α/(α+1)(α+ 1)s1/(α+1)θα/(α+1) ≤ 1

⇔ s ≤ 2−(α+2)ααθ−α (1/(α+ 1))
α+1

, (32)

which is satisfied from the given condition via s ≤ min{1,Γ′θ−α}. One can check that there exists s
that satisfies both (30) and (32) since θ < 1− 2t.

We are now in a position to complete the proof. We have

R`(f)−R∗`
≤ ψ(R(f)−R∗) + ε (∵ (29))

≤ ψ

(
(R(f)−R∗)

1
α+1

2Γs
1

α+1

· 2Γs
1

α+1 (R(f)−R∗)
α
α+1

)
+ ε

≤ 2Γs
1

α+1 (R(f)−R∗)
α
α+1ψ

(
(R(f)−R∗)

1
α+1

2Γs
1

α+1

)
+ ε (∵ (31), Lemma 1 part 1 in [3]) ,

as claimed.
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