Under review as a conference paper at ICLR 2024

APPENDIX

Anonymous authors
Paper under double-blind review

1 MORE ANALYSIS

Error Comparison of Scaling Laws. Based on Table 8 of the Cerebras-GPT and the scaling
law’s power function L = ax? + ¢, we conducted an error comparison analysis of the predicted
losses for Cerebras-GPT, Pythia, and nanoLM. As shown in table E], Cerebras-GPT fitted the 13B
model’s loss using 111M — 6.78 models, Pythia for 12B with 7M — 6.9B, and nanoLLM for 525
from 77M — 3.4 B, with their respective errors being 0.025, 0.019, and 0.022. When fitting losses for
models down to 10B, the errors are 0.034, 0.049, and 0.018, respectively. Additionally, we calculated
the covariances of the fitted coefficients {a, b, ¢}, finding that nanoLM’s covariances are significantly
lower than those of Cerebras-GPT and Pythia. These experimental results demonstrate the (a) uP
infinite neural network is theoretically correct and (b) scaling laws are empirically reliable on any
scale. (c) The loss prediction of nanoLM is more stable and reliable. Loss prediction validation
is costly, and we have conducted as many experiments as possible within our computational power
limits (nanoLLM has reached 52B for this purpose, while Pythia and Cerebras-GPT have only reached
13B). Further experimentation would be prohibitively expensive in terms of computational costs.

Table 1: Comparison of Fitted Results: The “Coeffs & Cov” denote the coefficients {a, b, c} and
the covariance of the power-law function yy = aC® + C.

Model | Size & Loss | Coeffs & Cov
Cerebras-GPT | 0.111 0.256 0.59 1.30 2.700 6.700 13.00 6.76el -8.45e-2 7.25el
2.608 2349 2.181 1.997 1.834 1.704(0.034) 1.572(0.025) 4.84el 2.10e-2 3.44e-1
Pythia 0.070 0.160 0.410 1.000 1.400 2.800 6.900 12.00 - 9.67¢6 -0.34 142
2.549 2204 1989 1.858 1.889 1.724 1.644(0.049) 1.601(0.019) 3.89¢7 8.89e-2 1.50e-1
nanoLM 0.077 0.153 0254 0.381 0.532 0.709 0911 3.432 5.24el 0.25 -0.47 2.82
3.656 3.389 3298 3.215 3.198 3.087 3.080 2.958(0.018) 2.883(0.022) | 7.33e-2 8.50e-2 7.66e-2

Embedding counts as model size. We demonstrate that our scaling law fits worse if embedding
weights are not counted in the model sizes, in contrast to ?.This is potentially because P concluded
that the learning rate of embedding layers should not be scaled down with widths while ? searched
for a unified learning rate for all layers on each model size, making embeddings learned too slow,
and matrix-like parameters dominate the training dynamics.

Scaling law fail outside the loss basins. Theoretically, P suggests similar train ing dynamics
across different widths for arbitrary HP, but we observe that the scaling laws fit well only in loss
basins. According to our follow-up experiments, this observation is regardless of data or training
steps and still exists when models are more sufficiently trained. Thus, we suggest searching for the
best HPs first anyway.

Smaller models are more vulnerable. We grid-search for the best HPs for 6-layer models with
batch size 32 and found (5e — 4, 0.02, 3.5) being inside the loss basin. As shown in Figure [la|(red
line), nanoLM works perfectly for this single point. We then explored other points around it and
found that the scaling laws have larger deviations than 12-layer models. This is potentially because
small models are more vulnerable to slight misalignment of loss landscapes across p-Transfer. How-
ever, we easily balance-off this deviation by fitting scaling laws with the average results across all
these HPs near the loss basin. This works perfectly as shown in Figure[Ib} and can be very practical
in applying nanoLM because we observe in Figure[Ta]that larger widths (e.g., 2048, 3072) have low
variance in training loss w.r.t different HPs.

General conditions for scaling laws. Previous scaling laws directly search for HPs on each scale,
and the optimal HPs do not satisfy uP function. This indicates that xP is a sufficient but not neces-
sary condition for scaling laws, and scaling law itself may represent a higher level of universality.

Under review as a conference paper at ICLR 2024

(4.5e-4, 0.02, 3.25) \ —=- loss basin average
. 3 42 g
421 8% (4.5e-4,0.02,3.75) \
LN (5.5e-4, 0.02, 3.25))
128 '\ -—- (5e-4,0.02, 3.5) 128 Y
4.0 \ 4.0 N
\\\ \\\
®38 \‘ ® 38 AN
m 256 Y e 256
o 33 8
2 W 2‘ N,
c N -
® 3.6 384 Mgy £ 6 384
- 512 %, s o
T 512\
64076&:\&‘ 640 \‘n
3.4 96 ¥ 76 ~
S 3.4 896 v
1024 SEu 1024 Sl
¥ ~
- ~
2048 =4 T
2048 il
32 T v 3072 3.2 3072
10t 10? 10° 10! 102 103
model size / M model size / M

(a) Scaling law for training loss with different HPs (b) Scaling law for average training loss in the loss
for 6-layer models. basin of 6-layer models.

Figure 1: Results with 6-layer Models.

Table 2: Pre-training data ratio.

Dataset Sampling prop(%) Total tokens(B)
Arkiv 6.04 28.31
Books 5.22 24.46
Falcon RefinedWeb 20.81 97.49
Falcon RefinedWeb(wiki-like) 49.78 233.21
OpenWebText2 3.11 14.59
StackExchange 3.81 17.84
Github 10.18 47.70
Wikipedia 1.03 4.82

2 PRE-TRAINING DATA RATIO

3 THE HYPERPARAMETER SETTINGS FOR ALL EXPERIMENTS

The specific parameters of the experiment are as follows. (1) The parameters of the model are:
vocab_size = 50304; block_size = 1204; n_layer = [12, 32, 64]; num_heads = 12; dropout = 0.0;
output_mult = 1.0; zero_query = True; zero_emb = True. hp_tune_actual_width = [128, 256, 384,
512, 640, 768, 896, 1024, 2048, 4096, 8192]; (2) The parameters of the data are: input_length =
512; mlm_probability = 0.15; mean_noise_span_length = 3.0; num_workers = 2; (3) The parameters
of the optimizer are: name = adamwscale; batch_size = [16, 512]; total_steps = [7000, 10000];
warmup_steps = 5000; Ir_scheduler = cosine; weight_decay = 0.0; grad_clip = 1.0; grad_acc = 1;
final_cosine = le-5; base_Ir = [Se-4, 1e-3, 5e-3, 1le-2, 3e-2, S5e-2, 7e-2, le-1].

4 BASED ON THE BASIC WIDTH OF 256, THE GRID SEARCH RESULTS

Table 3: grid search on base width = 256. The specific parameters of the experiment are: n_layer
= 12, batch_size = 16, hp_tune_actual_width = 256, total _steps = 7000, base_Ir = [Se-4, le-3, Se-3,
le-2, 3e-2, 5e-2, 7e-2, le-1].

Ir S5e-4 1le-3 5e-3 le-2 3e-2 5e-2 Te2 le-1

12-layer BERT loss 7.37 7.27 5.01 439 39 417 524 697
12-layer GPTloss 7.3 7.03 597 557 374 586 722 725
12-layer TS5 loss 6.85 633 537 513 471 514 528 645

Under review as a conference paper at ICLR 2024

Table 4: grid search on base width = 256. The specific parameters of the experiment are: n_layer =
64, batch_size = 512, hp_tune_actual_width = 256, total_steps = 10000, base_Ir = [1e-4, Se-4, Te-4,
le-3, 3e-3, S5e-3, 7e-3, le-2].

Ir le-4 5S5e-4 Te-4 1e-3 3e-3 5e3 7Te-3 le-2
64-layer GPT loss 4.35 3.73 3.69 3.64 837 133 9.66 8.12

5 SPECIFIC LOSS VALUE
5.1 NANOLM oON C4

Table 5: training loss on 12-layer@7k steps. The specific parameters of the experiment are: n_layer
= 12, batch_size = [16, 512], hp_tune_actual_width = [128, 256, 384, 512, 640, 768, 896, 1024],
base_Ir = [1e-3, 3e-2].

width 128 256 384 512 640 768 896 1024

BERT w/o uP 4.25 371 359 352 347 342 337 340
BERT with uP 445 3774 3.63 356 349 347 344 343
GPTw/ouP 473 448 450 442 436 433 429 431
GPT with P 452 425 4.16 4.10 4.04 401 400 398
T5 w/o puP 5.14 5.06 482 481 466 650 571 6.03
T5 with uP 5.18 471 457 461 460 460 452 449

5.2 NANOLM oON MC4

Table 6: training loss on 12-layer @20k steps. The specific parameters of the experiment are: n_layer
= 12, batch_size = [16, 512], hp_tune_actual_width = [128, 256, 384, 512, 640, 768, 896, 1024],
base_Ir = [1e-3, 5e-2].

width 128 256 384 512 640 768 896 1024

Bert 279 136 124 1.17 1.14 1.10 1.08 1.06
T5 215 205 176 1.62 154 151 145 141
GPT 1.50 138 1.34 132 132 131 130 1.29
LLAMA 158 148 146 144 140 140 139 138

5.3 NANOLM ON PRETRAIN DATA BENCHMARK WITH FSDP

Table 7: training loss on 32-layer@7k steps. The specific parameters of the experiment are: n_layer
= 32, batch_size = 512, hp_tune_actual_width = [256, 384, 512, 640, 768, 896, 1024, 2048, 4096,
8192], total_steps = 7000, base_Ir = Se-2.

width 256 384 512 640 768 896 1024 2048 8192
GPT with uP 392 376 3.65 359 354 349 347 345 341

5.4 MEGATRON ON PRETRAIN DATA BENCHAMARK

Under review as a conference paper at ICLR 2024

Table 8: training loss on 64-layer@ 10k steps. The specific parameters of the experiment are: n_layer
= 64, batch_size = 512, hp_tune_actual_width = [384, 512, 640, 768, 896, 1024, 2048, 8192],
total_steps = 10000, base_Ir = 1e-3.

width 256 384 512 640 768 896 1024 2048 8192
GPT with P 3.656 3.389 3.298 3.215 3.198 3.087 3.080 2.958 2.883

	More analysis
	Pre-training data ratio
	The hyperparameter settings for all experiments
	Based on the basic width of 256, the grid search results
	Specific loss value
	nanoLM on C4
	nanoLM on MC4
	nanoLM on pretrain data benchmark With fsdp
	Megatron on pretrain data benchamark

