Bridging Discrete and Backpropagation:
Straight-Through and Beyond

Liyuan Liu Chengyu Dong Xiaodong Liu Bin Yu Jianfeng Gao
Microsoft Research
{lucliu, v-chedong, xiaodl, v-ybi, jfgao}@microsoft .com

Abstract

Backpropagation, the cornerstone of deep learning, is limited to computing gra-
dients for continuous variables. This limitation poses challenges for problems
involving discrete latent variables. To address this issue, we propose a novel ap-
proach to approximate the gradient of parameters involved in generating discrete
latent variables. First, we examine the widely used Straight-Through (ST) heuris-
tic and demonstrate that it works as a first-order approximation of the gradient.
Guided by our findings, we propose ReinMax, which achieves second-order accu-
racy by integrating Heun’s method, a second-order numerical method for solving
ODEs. ReinMax does not require Hessian or other second-order derivatives, thus
having negligible computation overheads. Extensive experimental results on vari-
ous tasks demonstrate the superiority of ReinMax over the state of the art.

1 Introduction

There has been a persistent pursuit to build neural network models with discrete or sparse vari-
ables (Neal, T997). However, backpropagation (Rumelhari_ef all, [[98f), the cornerstone of deep
learning, is restricted to computing gradients for continuous variables. Correspondingly, many at-
tempts have been made to approximate the gradient of parameters that are used to generate discrete
variables, and most of them are based on the Straight-Through (ST) technique (Bengio et all, Z0173).

The development of ST is based on the simple intuition that non-differentiable functions (e.g.,
sampling of discrete latent variables) can be approximated with the identity function in the back-
propagation (Rosenblaff, T957; Bengio et all, PZ0T3). Due to the lack of theoretical underpinnings,
there is neither guarantee that ST can be viewed as an approximation of the gradient, nor guidance
on hyper-parameter configurations or future algorithm development. Thus, researchers have to de-
velop different ST variants for different applications in a trial-and-error manner, which is laborious
and time-consuming (van_den Oord ef all, POT7; Cin“ef all, POTY; Fedus“ef-all, PO21). To address
these limitations, we aim to explore how ST approximates the gradient and how it can be improved.

20 20 25 30 35 40 : 0 10 20
Epoch Epoch Epoch
Figure 1: Training curves of polynomial programming, i.e., ming Ex[|| X — ¢||}/128], where 6 €

R128%2 X € {0,1}'?%, and X Y Multinomial(softmax(6;)). Details are elaborated in Section B.

0 5 10 15 25 30 35 40 0 5 10 15

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

Algorithm 1: ST. Algorithm 2: ReinMax.

Input: 6: softmax input, 7: temperature. Input: 6: softmax input, 7: temperature.
Output: D: one-hot samples. Output: D: one-hot samples.
1 7o < softmax(6) 1 7o < softmax(0)

D <+ sample_one_hot(7ry)

~

D < sample_one_hot(7g)

71 < softmax, (0) 3 . < Disoftmax.(6)
/* stop_gradient(-) duplicates ! 2 .
its input and detaches it 4 T softmax(itop_gradlent(ln(ﬂ'l) —-0)+0)
from backpropagation. %/ 5 T2 2-m— 5T
4 D + m; — stop_gradient(w;) + D 6 D « my — stop_gradient(mrz) + D
return D 7 return D

First, we adopt a novel perspective to examine ST and show that it works as a special case of the
forward Euler method, approximating the gradient with first-order accuracy. Besides confirming that
ST is indeed an approximation of the gradient, our finding provides guidance on how to optimize
hyper-parameters of ST and its variants, i.e., ST prefers to set the temperature 7 > 1, and Straight-
Through Gumbel-Softmax (STGS; Jang et all, P0T7) prefers to set the temperature 7 < 1.

Our analyses not only shed insights on the underlying mechanism of ST but also lead us to develop a
novel gradient estimation method called ReinMax. ReinMax integrates Heun’s Method and achieves
second-order accuracy, i.e., its approximation matches the Taylor expansion of the gradient to the
second order, without requiring the Hessian matrix or other second-order derivatives.

We conduct extensive experiments on polynomial programming [Tucker_ef all (2(0177); Grafhwohl
ef-all (ZOTR); Pervez ef all (207201); Paulus_ef-all (Z022T)), unsupervised generative modeling (Kingmd
& Welling, P0T3), structured output prediction (Nangia & Bowman, P0TX), and differentiable neural
architecture search (Dong et all, P0203) to demonstrate that ReinMax brings consistent improve-
ments over the state of the art®.

Our contributions are two-fold:
* We formally establish that ST works as a first-order approximation to the gradient in the general
multinomial case, which provides valuable guidance for future research and applications.

* We propose a novel and sound gradient estimation method ReinMax that achieves second-order
accuracy without requiring the Hessian matrix or other second-order derivatives. ReinMax is
shown to outperform the previous state-of-the-art methods in extensive experiments.

2 Related Work and Preliminary

Discrete Latent Variables and Gradient Computation. The idea of incorporating discrete
latent variables and neural networks dates back to sigmoid belief network and Helmholtz ma-
chines (Williamd, T997; Dayan et all, T995). To keep things straightforward, we will focus on a
exp(0; /1)
> exp(8;/7)°
n is the number of possible outcomes, @ € R"™*! is the parameter, and 7 is the temperature®. For
i € [1,---,n], we mark its one-hot representation as I, € R™*1 whose element equals 1 if it is
the i-th element or equals 0 otherwise. Let D be a discrete random variable and D € {I,--- , I},
we assume the distribution of D is parameterized as: p(D = I;) = m; = softmax(0);, and mark
softmax () as (7). Given a differentiable function f:R"™ = R, we aim to minimize (note that
temperature scaling is not used in the generation of D):

simplified scenario. We refer to the tempered softmax as softmax,(0); = where

rrbin L(0), where L(0) = Ep softmax(6) [f(D)].)
Here, we mark the gradient of 8 as V:
. 0L(0) _ dm;
V'_W_;fu”)do' @

1Implementations are available at https://github.com/microsoft/ReinMax.
Without specification, the temperature (i.e., 7) is set to 1.

https://github.com/microsoft/ReinMax

In many applications, it is usually too costly to compute V, since it requires the computation of
{f(I1), -+, f(I,)} and evaluating f(I;) is costly for typical deep learning applications. Corre-
spondingly, many efforts have been made to estimate V efficiently.

The Vremwrorce (Walliamd, T997) is unbiased (i.e., E[Vremrorce] = V) and only requires the
distribution of the discrete variable to be differentiable (i.e., no backpropagation through f):
d logp(D)

Vrewrorce = f(D) 3)

deo
Despite the REINFORCE estimator being unbiased, it tends to have prohibitively high variance,
especially for networks that have other sources of randomness (i.e., dropout or other independent
random variables). Recently, attempts have been made to reduce the variance of REINFORCE (G
ef_all, POT6G; Mucker ef all, POT7; GrathwohI efall, POTY; Shi_ef all, 2027). Still, it has been found
that the REINFORCE-style estimators fail to work well in many real-world applications. Empirical
comparisons between ReinMax and REINFORCE-style methods are elaborated in Section 3.

Efficient Gradient Approximation. In practice, a popular family of estimators is Straight-
Through (ST) estimators. They compute the backpropagation "through" a surrogate that treats the
non-differentiable function (e.g., the sampling of D) as an identity function. The idea of ST origi-
nates from the perceptron algorithm (Rosenblafi, T957; Mnllin & Rosenblafi, T967), which leverages
a modified chain rule and utilizes the identity function as the proxy of the original derivative of a
binary output function. Bengio et al] (2013) improves this method by using non-linear functions
like sigmoid or softmax, and Jang et al] (2017) further incorporates the Gumbel reparameterization.
Here, we briefly describe Straight-Through (ST) and Straight-Through Gumbel-Softmax (STGS).

In the general multinomial distribution case, as in Algorithm [, the ST estimator treats the sampling
process of D as an identity function during the backpropagation®:

= of(D) dm

Ggp o= HD) dm “)
oD de

In practice, §ST is usually implemented with the tempered softmax, under the hope that the temper-

ature hyper-parameter 7 may be able to reduce the bias introduced by Vst (Chung et all, Z0T7).

The STGS estimator is built upon the Gumbel re-parameterization trick (Maddisonefall, P0T4; fang

ef-all, ZOT7). It is observed that the sampling of D can be reparameterized using Gumbel random

variables at the zero-temperature limit of the tempered softmax (Gumbel, 1T954):

D= lir% softmax, (0 + G) where G, are i.i.d. and G; ~ Gumbel(0, 1).
T—

STGS treats the zero-temperature limit as identity function during the backpropagation:

N 9f(D) dsoftmax, (0 + G)

Vstas = 9D 10 (5)

Both @ST and ﬁsms are clearly biased. However, since the mechanism of ST is unclear, it remains
unanswered what the form of their biases are, how to configure their hyper-parameters for optimal
performance, or even whether £/ [@sﬂ or B [@sms] can be viewed as an approximation of V. Thus,
we aim to answer the following questions: How @ST approximates N and how it can be improved?

3 Discrete Variable Gradient Approximation: a Numerical ODE Perspective

In numerical analysis, extensive studies have been conducted to develop numerical methods for
solving ordinary differential equations. In this study, we leverage these methods to approximate V
with the gradient of f. To begin, we demonstrate that ST works as a first-order approximation of V.
Then, we propose ReinMax, which integrates Heun’s method for a better gradient approximation
and achieves second-order accuracy.

3We use the notation V to indicate gradient approximations. Note that the generation of D is not differen-
tiable, and Vgt does not have the term 0D /0.

3.1 Straight-Through as a First-order Approximation

We start by defining a first-order approximation of V as §1st-order

Definition 3.1. One first-order approximation of ¥V is V Ist-order = 2_i 2; T (I —I;)4%

Jal

To understand why ﬁlst—order is a first-order approximation, we rewrite V in Equation @ as™:

V= S U - B T+ S B D) S = S mu —HIITL o)

i

Comparing ﬁlst-order and Equation B, it is easy to notice that V]st-order approximates f(I;) —

f(I;) as BJ;(II?') (I; — I;). In numerical analyses, this approximation is known as the forward Euler
method, which has first-order accuracy (we provide a brief introduction to the forward Euler method
in Appendix H). Correspondingly, we know that V| ¢_order 18 @ first-order approximation of V.

Now, we proceed to show §ST works as a first-order approximation. Note that our analyses only
apply to Vgr as defined in Equation B and may not apply to its other variants.
Theorem 3.1.

E [VST] = V]st-()rder'

The proof of Theorem Bl is provided in Appendix Al

It is worth mentioning that Tokui-& Safd (2Z0T1°7) discussed this connection for the special case of
D being a Bernoulli variable. However, their study is built upon a Bernoulli variable property
(e, V = (f(I2) — f(I1))% dmi — (f(I,) — f(Ig)) d’”) making their analyses not applicable to
multlnomlal variables. Alternatlvely, the analyses in Uregor et all ()(H4) and Pervez ef all (2020)
are applicable to multinomial variables but resort to modify VST as —VST, in order to position it
as a first-order approximation. We suggest that this modification Would lead to unwanted instability
and provide more discussions in Section Bl and Section . Here, our study is the first to formally
established §ST works as a first-order approximation in the general multinomial case.

Besides revealing the mechanism of the Straight-Through estimator, our finding also shows that

the bias of §ST comes from using the first-order approximation (i.e., the forward Euler method).
Accordingly, we propose to integrate a better approximation for f(I,;) — f(I;).

3.2 Towards Second-order Accuracy: ReinMax

The literature on numerical methods for differential equations shows that it is possible to achieve
higher-order accuracy without computing higher-order derivatives. Correspondingly, we propose to
integrate a second-order approximation to reduce the bias of the gradient estimator.

Definition 3.2. One second-order approximation of V is

S _ m Of(L) | OF),, o .dm
Van—order-_zi:zj: 2(an + oI,)(I I)d0

Comparing Vand-order and Equation B, we can observe that, Vopd.order approximates f(I;) — f (I i)

as (%5 84 (I)+ af (I))(I I;). This approximation is known as the Heun’s Method and has second-
J
order accuracy (we provide a brief introduction to Heun’s method in Appendix B). Correspondingly,

we know that Vo, q_order 15 @ second-order approximation of V.

Based on this approximation, we propose the ReinMax operator as (7 p refers to "'gD , | refers to
the identity matrix, and © refers to the element-wise product):
~ntD 1o ~=tp Of(D)
-V —§VST, 2 ZaiD'((ﬂ'D'lT)CN—ﬂ'D'ﬂ'lT)) (N
“Please note that >, Elf(D)] dd’;" = E[f(D)]% = E[f(D)](‘i% =0

Then, we show that §RemMaX approximates V to the second order. Or, formally we have:
Theorem 3.2.

E[VReinMax] = van—order'

The proof of Theorem B2 is provided in Appendix B.

Computation Efficiency of ReinMax. Instead of requiring Hessian or other second-order
derivatives, VReinmax achieves second-order accuracy with two first-order derivatives (i.e., %

Bf(I

and)) As observed in our empirical efficiency comparisons in Section B, the computation

overhead of VRemMax is negligible. At the same time, similar to VST (as in Algorithm), our pro-
posed algorithm can be easily integrated with existing automatic differentiation toolkits like PyTorch
(a simple implementation of ReinMax is provided in Algorithm BI), making it easy to be integrated
with existing algorithms.

Applicability of Higher-order ODE solvers. Although it’s possible to apply higher-order
ODE solvers, they require more gradient evaluations, leading to undesirable computational over-
head. To illustrate this point: The approximation used by ReinMax requires n gradient evaluations,

ie, {Z5r"~ 8f } In contrast, the approximation derived by RK4 needs n? +n gradient evaluations, i.e.,

{%} and {a(;;(#}’ where I;; = I;—IJ Therefore, while higher-order solvers are applicable,
they may not be suitable in our case.

4 ReinMax and Baseline Subtraction

Equation B plays a crucial role in positioning ST as a first-order approximation of the gradient
and deriving our proposed method, ReinMax. This equation is commonly referred to as baseline
subtraction, a common technique for reducing the variance of REINFORCE.

In this section, we first discuss the reason for choosing E[f(D)] as the baseline, and then reveal that
the derivation of ReinMax is independent to baseline subtraction.

4.1 Benefits of Choosing E[f(D)] as the Baseline

The choice of baseline in reinforcement learning has been the subject of numerous discus-
sions (Weaver & Tad, PO0T; Rennie et all, POTH; Shiefall, P0272). Similarly, in our study, different
baselines lead to different gradient approximations.

Here, we discuss the rationale for choosing E[f(D)] as the baseline. Considering > dif(I;) as
the general form of the baseline (¢; is a distribution over {Iy,--- , I, }, i.e., Z ¢; = 1), we have:

Remark 4.1. When). ¢;f(I;) is used as the baseline and f(Iz) — f(I;) is approximated as
%I?)(Ii — I;), we mark the resulting first-order approximation of V as ﬁlst—order—avg—baseline'

Then, we have El%vSTl = v1st—order—avg—baseline'

The derivations of Remark Bl are provided in Appendix 0. Intuitively, since 7 p is the output of
the softmax function, it could have very small values, which makes % to be unreasonably large
and leads to undesired instability. Therefore, we suggest that E[f(D)] is a better choice of baseline
when it comes to gradient approximation, since its corresponding gradient approximation is free of
the 1nstab1hty brought

It is worth mentioning that, when setting ¢ as % the result of Remark Bl echoes some existing
studies. Speciﬁcally, both Gregor et al] (2014 and Pervez efall (Z020) propose to approximate V

as E[—— VST] which matches the result of Remark Bl by setting ¢ =

n-mTp

In Section B, we compared the corresponding second-order approximation when treating E[f(D)]
and 2 7, f(I;) as the baseline, respectively. We observed that gradient estrmators that use E[f(D)]
as the baseline consistently outperform gradient estimators that use = Z f(I;) as the baseline,
which verifies our intuition and demonstrates the importance of the baseline selection.

Method = STGS Method = GST-1.0 Method = GR-MCK Method = ST Method = ReinMax

4x24 8x16 16x12 64x8 4x24 8x16 16x12 64x8 4x24 8x16 16x12 64x8 4x24 8x16 16x12 64x8 4x24 8x16 16x12 64x8
Categorical # x Latent # Categorical # x Latent # Categorical # x Latent # Categorical # x Latent # Categorical # x Latent #

- —

l[I)O 110 120 lE)O 110 120 130 l(I)O 110 120 150 140 160 180 160 120 140
Figure 2: Training —ELBO on MNIST-VAE (lighter color indicates better performance). STGS,
GST-1.0, and GR-MCK prefer to set the temperature 7 < 1. ST and ReinMax prefer to set 7 > 1.

1 07 05 03 01

Temperature

2

4.2 Independence of ReinMax over Baseline Subtraction

To better understand the effectiveness of ReinMax, we further provide an alternative derivation that
does not rely on the selection of the baseline. For simplicity, we only discuss -2 80 and mark it as V.
Similar to Equation [, we have:

oL d;
Vi = 5o E;f(”_wkzm — f(I)). ®)

It is worth mentioning that the derivation of Equation B leverages the derivative of the softmax
function (i.e., for # = softmax (@), we have dm;/00), = m(d;; — 7;)) and does not involve the
baseline subtraction technology.

Remark 4.2. In Equation 8, we approximate f(Iy)— f(I;) as 5 ((i) 4 9F) Y(Ix—1I;), and mark

oIy,
the resulting second-order approximation of Vy, as Van-order-wo-baseline, k= ThD Ty (BJ(;(II) 4

of(I S s
Jc‘;(l:))L, — I;), Then, we have E[V reinpax) = V 2nd-order-wo-baseline

The proof of Remark B is provided in Appendix O.

As in Remark B2, applying the Heun’s method on Equation B and Equation B lead to the same gradi-
ent estimator, which implies another benefit of using E[f(D)] as the baseline: the resulting gradient
estimator does not rely on additional prior (i.e., its derivation can be free of baseline subtraction).

S Temperature Scaling for Gradient Estimators

Here, we discuss how to apply temperature scaling, a technique widely used in gradient estimators,
to our proposed method, ReinMax. While the typical practice is to set the temperature 7 to small
values for STGS, we show that ST and ReinMax need a different strategy.

Temperature Scaling for Vgrgs. As introduced in Section B, Vgpgs conduct a two-step approx-
imation: (1) it approximates ming E[f(D)] as ming E|[f (softmax, (0 + G)))]; (2) it approximates

a’;(ssoof{%&i’(gjg)) as L gg) Since the bias introduced in both steps can be controlled by 7, Vsrgs

prefers to set 7 as a relatively small value.

Temperature Scaling for Vgr and VReinMax- As in Section B, it does not involve temperature
scaling to show Vgt and Vgeinmax WOrk as the first-order and the second-order approximation to the
gradient. Correspondingly, temperature scaling technology cannot help to reduce the bias for Vgr
in the same way it does for Vsrgs. As in Figure B, STGS, GR-MCK, and GST-1.0 work better when
setting the temperature 7 < 1. ST and ReinMax work better when setting the temperature 7 > 1.

Thus, we 1ncorp0rate temperature scaling to smooth the gradient approxnnatlon (7, = softmax,(0))

as VRemMax =2- V R fVST It is worth emphasizing that 7 in VRemMaX is used to stabilize the
gradient approximation (1nstead of reducing bias) at the cost of accuracy. Therefore, the value of 7
should be larger or equal to 1.

Table 1: Performance on ListOps.
STGS GR-MCK GST-1.0 ST ReinMax
Valid Accuracy 66.95+£3.05 66.53+0.58 66.28+0.52 66.51+£0.76 67.65+1.25
Test Accuracy 67.30£2.50 66.53+0.86 66.30+0.62 66.26+£0.48 68.07+1.18

Table 2: Training —ELBO on MNIST (N x M refers to N categorical dim. and M latent dim.).
| AVG | 8x4 | 4x24 8 x 16 16 x 12 64x8 | 10x30

STGS 105.20 | 126.85+£0.85 | 101.32+0.43 99.32+0.33 100.09+0.32 104+0.41 99.631+0.63
GR-MCK | 107.06 | 125.944+0.71 | 99.964+0.25 99.584+0.31 102.54+0.48 112.34+0.48 | 102.02+0.18
GST-1.0 104.25 | 126.35+1.24 | 101.494+0.44 98.29+0.66 98.124+0.57 102.53+0.57 | 98.64+0.33
ST 116.72 | 135.53£0.31 | 112.03+0.03 112.944+0.32 113.31+0.43 113.90+0.28 | 112.63+£0.34
ReinMax | 103.21 | 124.66+0.88 | 99.77+0.45 97.70+0.39 98.06+0.53 100.71-+£0.70 | 98.37+0.44

6 Experiments

Here, we conduct experiments on polynomial programming, unsupervised generative modeling,
and structured output prediction. In all experiments, we consider four major baselines: Straight-
Through (ST), Straight-Through Gumbel-Softmax (STGS), Gumbel-Rao Monte Carlo (GR-MCK),
and Gapped Straight-Through (GST-1.0). For a more comprehensive comparison, we run a complete
grid search on the training hyper-parameters for all methods. Also, we would reference results from
the literature when their setting is comparable with ours. More details are elaborated in Appendix B.

6.1 Polynomial Programming

Following previous studies (Iicker ef all, P017; GrafhwohIef all, DOTR; Pervez ef all, PO20; Panhis
efall, 2071, we start with a simple problem. Consider L i.i.d. latent binary variables X1, --- , X €
{0,1} and a constant vector ¢ € RY*!, we parameterize the distributions of { X1, --- , X} with L

softmax functions, i.e., X; Multinomial (softmax(6;)) and 6; € R2. Following previous studies,

. X—c|? .
we set every dimension of ¢ as 0.45, i.e., Vi, ¢; = 0.45, and use ming Ex [%} as the objective.

Training Curve with Various p. We first set the number of latent variables (i.e., L) as 128 and
batch size as 256. The training curve is visualized in Figure [for p = 1.5, 2, and 3. In all cases,
ReinMax achieved near-optimal performance and the best convergence speed. Meanwhile, we can
observe that ST and GST-1.0 do not perform well in all three cases. Although the final performance
of STGS and GR-MCK is close to ReinMax, ReinMax has a faster convergence speed.

6.2 ListOps

We conducted unsupervised parsing on ListOps (Nangia & Bowman, Z01¥) and summarized the
average accuracy and the standard derivation in Table [l. We also visualized the accuracy and loss on
the valid set in Figure 3. Although the ST algorithm performs poorly on polynomial programming, it
achieves a reasonable performance on this task. Also, while all baseline methods perform similarly,
our proposed method stands out and brings consistent improvements. This further demonstrates the
benefits of achieving second-order accuracy and the effectiveness of our proposed method.

ReinMax

Accuracy on Valid Set
< e <
3
o

TH
00 25 50 75 100 125 150 175 20.0 00 25 50 75 100 125 150 175 20.0
Epoch Epoch

Figure 3: The accuracy (left) and loss (right) on the valid set of ListOps.

7

| 7) ReinMax
- | S |

e
S

COS Similarity
- :

o
N
o

o

'S

0.3
0 20 40 60 80 100 120 140 160 0 20 40 60

80
Epoch Epoch

Figure 4: The training —ELBO (left) and the cos similarity between the gradient and its approxima-
tions (right) on MNIST-VAE (with 4 latent dimensions and 8 categorical dimensions).

100 120 140 160

Table 3: Average time cost (per epoch) / peak memory consumption on quadratic programming (QP)
and MNIST-VAE. QP is configured to have 128 binary latent variables and 512 samples per batch.
MNIST-VAE is configured to have 10 categorical dimensions and 30 latent dimensions.
ReinMax ST STGS GST-1.0 GR-MCKjpp GR-MCKzgp GR-MCKjg00
QP 0.25/6.5Mb 0.25/50Mb 0.2s/55Mb 0.2s/80Mb 0.8s/03Gb 2.2s5/1Gb 6.65/3Gb
MNIST-VAE ~ 5.2s/13Mb 5.2s/13Mb 5.2s/13Mb 5.2s/13Mb 52s/76Mb 5.25/02Gb 5.4s/0.6Gb

Table 4: Performance on NATS-Bench. * Baseline results are referenced from Dong et all (Z020a).
‘ CIFAR-10 ‘ CIFAR-100 ‘ ImageNet-16-120
| validation test | validation test | validation test
GDAS + STGS* | 89.68+0.72 93.23+0.58 | 68.35£2.71 68.17+£2.50 | 39.55+£0.00 39.40+0.00
GDAS + ReinMax \ 90.01+0.12 93.44+0.23 \ 69.29+2.34 69.41+2.24 \ 41.474+0.79 42.03+0.41

6.3 MNIST-VAE

We benchmark the performance by training variational auto-encoders (VAE) with categorical latent
variables on MNIST (CeCun_ef-all, T998). As we aim to compare gradient estimators, we focus
our discussions on training ELBO. We find that training performance largely mirrors test perfor-
mance (Dong et all, Z020R, P021); Fanef all, P027) and briefly discussed test ELBO in Appendix B.

Biases of the Approximated Gradient. =~ With 4 latent dimensions and 8 categorical dimensions,
we iterate through the whole latent space (the size of the latent space is only 4096), compute the
gradient as in Equation O, and measured the cosine similarity between the gradient of latent vari-
ables and various approximations. As visualized in Figure B, ReinMax achieves consistently more
accurate gradient approximation across the training and, accordingly, faster convergence. Also, we
can observe that, besides faster convergence, the performance of ReinMax is more stable.

Experiment with Larger Latent Spaces. Let us proceed to larger latent spaces. First, we
consider 4 settings with the latent space of 28, Then, following Fan_ef all (2122), we also conduct
experiments with 10 latent dimensions and 30 categorical dimensions (the size of the latent space is
10%%). As summarized in Table B, ReinMax achieves the best performance on all configurations.

GST-1.0 Performance on Different Problems. It is worth mentioning that, despite GST-1.0
achieving good performance on most settings of MNIST-VAE, it fails to maintain this performance
on polynomial programming and unsupervised parsing, as discussed before. Upon discussing with
Ean'efall (Z022), we suggest that this phenomenon is caused by the characteristic of GST-1.0, which
behaves similarly to ST on problems with a near one-hot optimal distribution. In other words, GST-
1.0 has an implicit prior and prefers distributions that are not one-hot. At the same time, a different
variant of GST (i.e., GST-p) would behave similarly to STGS on problems with a near one-hot
optimal distribution, which achieves a significant performance boost over GST-1.0 on polynomial
programming. However, on MNIST-VAE and ListOps, GST-p achieves an inferior performance.

This observation verifies our intuition that, without understanding the mechanism of ST, different ap-
plications have different preferences on its configurations. Meanwhile, ReinMax achieves consistent
improvements in all settings, which greatly simplifies future algorithms developments.

Table 5: Training —ELBO on MNIST. * All baseline results are referenced from Fan ef all (D(027)
RLOO* DisARM-Tree* STGS* GR-MCK* GST-1.0* ST* ReinMax
Neg. ELBO 104.03+0.23 103.10£0.25 97.32+0.20 110.74£1.23 96.09+£0.25 1164+0.09 93.44+0.51

120 140 250
§ ReinMax ! ReinMax | ReinMax

= =— = RODEO 135 ‘; = =— = RODEO 248 1 = =—=— RODEO
e 130 | 246
244 ‘\
110 \ 125 (v\ ‘v\
8 \ N 8120 . 7242 '\
g % §120 N\ e g "
105 0 N e s s s e g e -] 240 e
~~~~~~~~~~
e kgt 238 T —— b, SN -
110
100 236
105
234
95 100
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Update 1e6 Update 1e6 Update 1le6
(a) MNIST when K=2. (b) Omniglot when K=2. (c) Fashion-MNIST when K=2.
120 140 250 |
i ReinMax { ReinMax \ ReinMax

——— RODEO 135 | ——— RODEO 248 | ——— RODEO
130 246
244

242 A Y

Loss
I
3

Loss

_______________________________________________ 240

~~~~~~~~~~ - 238

236

234

0.4 06 08 10 0.0 0.2 0.4 06 08 10 0.0 0.2 0.4 06
Update le6 Update le6 Update le6

(d) MNIST when K=3. (e) Omniglot when K=3. (f) Fashion-MNIST when K=3.
Figure 5: 2x200 VAE training curves on MNIST, Omniglot, and Fashion-MNIST when K=2 or 3.

Table 6: Train —ELBO of 2 x 200 VAE on MNIST, Fashion-MNIST, and Omniglot. * Baseline
results are referenced from Shiefall (20272). K refers to the number of evaluations.

| | RELAX* ARMS* DisARM* Double CV* RODEO* ReinMax
MNIST 101.99+0.04 100.84+£0.14 / 100.94+0.09 100.46+0.13 97.83+0.36
K=3 | Fashion-MNIST | 237.744+0.12 237.0540.12 / 237.40+0.11 236.88+0.12 234.531+0.42
Omniglot 115.70+0.08 115.32+0.07 / 115.06+0.12 115.01+0.05 107.51+0.42
MNIST / / 102.75+0.08 102.14+0.06 101.89+0.17 98.17+0.29
K=2 | Fashion-MNIST / / 237.68+0.13 237.55+0.16 237.44+0.09 234.89+0.21
Omniglot / / 116.50+£0.04 116.394+0.10 115.93+0.06 107.79+0.27

6.4 Applying ReinMax to Differentiable Neural Architecture Search

To demonstrate the applicability of ReinMax as a drop-in replacement, we conduct experiments
following the topology search setting in the NATS-Bench benchmark (Dong et all, P020a), and sum-
marize the results in Table B. GDAS is an algorithm that employs STGS to estimate the gradient of
neural architecture parameters (Dong & Yang, P0TY). We replaced STGS with ReinMax as the gra-
dient estimator (configurations elaborated in Appendix H). ReinMax brings consistent performance
improvements across all three datasets, demonstrating the great potential of ReinMax.

6.5 Comparisons with REINFORCE-style Methods

Here, we conduct experiments to discuss the difference between ReinMax and REINFORCE-style
methods. First, following Fan“ef-all (Z027), we conduct experiments on the setting with a larger
batch size (i.e., 200), longer training (i.e., 5 X 105 steps), 32 latent dimensions, and 64 categorical
dimensions (details are elaborated in Appendix B). As in Table B, ReinMax outperforms all baselines,
including two REINFORCE-based methods (Dong et all, 2020k, P02T).

We further conduct experiments to compare with the state of the art. Specifically we apply ReinMax
to Bernoulli VAEs on MNIST, Fashion-MNIST (Xiaoefall, POT7), and Omniglot(Lake efall, ZOTY),
adhering closely to the experimental settings of Shiefall (2027), including pre-processing, model
architecture, batch size, and training epochs. As in Tables B and Figure B, ReinMax consistently out-
performs RODEO across all settings. To better understand the difference between RODEO and Rein-
Max, we conduct more experiments on polynomial programming (as elaborated in Appendix Ef).

Overall, ReinMax achieves better performance in more challenging scenarios, i.e., smaller batch
size, more latent variables, or more complicated problems. Meanwhile, REINFORCE and RODEO
achieve better performance on simpler problem settings, i.e., larger batch size, fewer latent variables,
or simpler problems. This observation matches our intuition:

* REIFORCE-style algorithms excel as they provide unbiased gradient estimation but may fall short
in complex scenarios, since they only utilize the zero-order information (i.e., a scalar f(D)).

* ReinMax, using more information (i.e., a vector ag(DD)), handles challenging scenarios better.

Meanwhile, as a consequence of its estimation bias, ReinMax leads to slower convergence in
some simple scenarios.

6.6 Discussions

Choice of Baseline. As introduced in Section B, the 200
choice of subtraction baseline has a huge impact on the
performance. Here, we demonstrate this empirically.

We use % > f(I;) as the baseline and compare the re- B [|
* = E[f(D)] == 32 AI))
4x24 8 6 e

Negative ELBO

sulting gradient approximation with ReinMax. As visu-

alized in Figure B, ReinMax, which uses E[f(D)] as 0 prra

the baseline, significantly outperforms the one that uses Categorical Dim x Latent Dim

L 5™, f(I;) as the baseline. We suspect that the gradi- Figure 6: Training —E%BO on MNIST-
ent approximation using £ 3>, f(I;) as the baseline is YAE when using 3, f(I;) and

very unstable as it contains the ﬁ term. E|f(D)] as baselines respectively.

16 x 12 64x8

Temperature Scaling. On MNIST-VAE (four settings with the 24® latent space), we utilize
heatmaps to visualize the final performance of all five methods under different temperatures, i.e.,
{0.1,0.3,0.5,0.7,1,2,3,4,5}. As in Figure D, these methods have different preferences for the
temperature configuration. Specifically, STGS, GST-1.0, and GR-MCK prefer to set the temperature
7 < 1. Differently, ST and ReinMax prefer to set the temperature 7 > 1. These observations match
our analyses in Section B that a small 7 can help reduce the bias introduced by STGS-style methods.
Also, it verifies that ST and ReinMax work differently from STGS, GST-1.0, and GR-MCK.

Efficiency. As summarized in Table B, we can observe that, since GR-MCK uses the Monte
Carlo method to reduce the variance, it has larger time and memory consumption, which becomes
less significant with fewer Monte Carlo samples (we use GR-MCKj; to indicate GR-MCK with s
Monte Carlo samples). Meanwhile, all remaining methods have roughly the same time and memory
consumption. This shows that the computation overheads of ReinMax are negligible.

7 Conclusion and Future Work

In this study, we seek the underlying principle of the Straight-Through (ST) gradient estimator. We
formally establish that ST works as a first-order approximation of the gradient and propose a novel
method, ReinMax, which incorporates Heun’s Method and achieves second-order accuracy without
requiring second-order derivatives. We conduct extensive experiments on polynomial programming,
unsupervised generative modeling, and structured output prediction. ReinMax brings consistent
improvements over the state-of-the-art methods.

It is worth mentioning that analyses in this study further guided us to empower Mixture-of-Expert
training (Ci_ef-all, PO73). Specifically, for gradient approximation of sparse expert routing, while
ReinMax requires the network to be fully activated, Cinef-all (Z023) uses f(0) as the baseline and
only requires the network to be partially activated. In the future, we plan to conduct further analyses
on the truncation error to stabilize and improve the gradient estimation.

Acknowledgement

We would like to thank all reviewers for their constructive comments, the engineering team at Mi-
crosoft for providing computation infrastructure support, Alessandro Sordoni, Nicolas Le Roux, and
Greg Yang for their helpful discussions.

10

References

Ascher, U. M. and Petzold, L. R. Computer methods for ordinary differential equations and
differential-algebraic equations. 1998.

Bengio, Y., Léonard, N., and Courville, A. C. Estimating or propagating gradients through stochastic
neurons for conditional computation. ArXiv, abs/1308.3432, 2013.

Choi, J., Yoo, K. M., and goo Lee, S. Learning to compose task-specific tree structures. In AAAI,
2017.

Chung, J., Ahn, S., and Bengio, Y. Hierarchical multiscale recurrent neural networks. In ICLR,
2017.

Dayan, P., Hinton, G. E., Neal, R. M., and Zemel, R. S. The helmholtz machine. Neural Computa-
tion, 7:889-904, 1995.

Dong, X. and Yang, Y. Searching for a robust neural architecture in four gpu hours. CVPR, 2019.

Dong, X., Liu, L., Musial, K., and Gabrys, B. Nats-bench: Benchmarking nas algorithms for
architecture topology and size. TPAMI, 2020a.

Dong, Z., Mnih, A., and Tucker, G. Disarm: An antithetic gradient estimator for binary latent
variables. In NeurIPS, 2020b.

Dong, Z., Mnih, A., and Tucker, G. Coupled gradient estimators for discrete latent variables. In
NeurlPS, 2021.

Fan, T.-H., Chi, T.-C., Rudnicky, A. I., and Ramadge, P. J. Training discrete deep generative models
via gapped straight-through estimator. In ICML, 2022.

Fedus, W., Zoph, B., and Shazeer, N. M. Switch transformers: Scaling to trillion parameter models
with simple and efficient sparsity. ArXiv, abs/2101.03961, 2021.

Grathwohl, W., Choi, D., Wu, Y., Roeder, G., and Duvenaud, D. K. Backpropagation through the
void: Optimizing control variates for black-box gradient estimation. In /CLR, 2018.

Gregor, K., Danihelka, 1., Mnih, A., Blundell, C., and Wierstra, D. Deep autoregressive networks.
In ICML, 2014.

Gu, S. S., Levine, S., Sutskever, 1., and Mnih, A. Muprop: Unbiased backpropagation for stochastic
neural networks. In ICLR, 2016.

Gumbel, E. J. Statistical theory of extreme values and some practical applications : A series of
lectures. 1954.

Jang, E., Gu, S. S., and Poole, B. Categorical reparameterization with gumbel-softmax. In ICLR,
2017.

Kingma, D. P. and Ba, J. Adam: A method for stochastic optimization. In /CLR, 2015.
Kingma, D. P. and Welling, M. Auto-encoding variational bayes. CoRR, abs/1312.6114, 2013.

Lake, B. M., Salakhutdinov, R., and Tenenbaum, J. B. Human-level concept learning through prob-
abilistic program induction. Science, 2015.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-based learning applied to document
recognition. Proc. IEEE, 1998.

Liu, H., Simonyan, K., and Yang, Y. Darts: Differentiable architecture search. In ICLR, 2019.

Liu, L., Jiang, H., He, P., Chen, W., Liu, X., Gao, J., and Han, J. On the variance of the adaptive
learning rate and beyond. In ICLR, 2020.

Liu, L., Gao, J., and Chen, W. Sparse backpropagation for moe training. ArXiv, abs/2310.00811,
2023.

11

Maddison, C. J., Tarlow, D., and Minka, T. P. A* sampling. In NIPS, 2014.
Mullin, A. A. and Rosenblatt, F. Principles of neurodynamics. 1962.

Nangia, N. and Bowman, S. R. Listops: A diagnostic dataset for latent tree learning. ArXiv,
abs/1804.06028, 2018.

Neal, R. M. Connectionist learning of belief networks. Artif. Intell., 56:71-113, 1992.

Paulus, M. B., Maddison, C. J., and Krause, A. Rao-blackwellizing the straight-through gumbel-
softmax gradient estimator. In /CLR, 2021.

Pervez, A., Cohen, T., and Gavves, E. Low bias low variance gradient estimates for boolean stochas-
tic networks. In ICML, 2020.

Rennie, S. J., Marcheret, E., Mroueh, Y., Ross, J., and Goel, V. Self-critical sequence training for
image captioning. In CVPR, 2016.

Rosenblatt, F. The perceptron, a perceiving and recognizing automaton Project Para. Cornell
Aeronautical Laboratory, 1957.

Rumelhari, D. E., Hintont, G. E., Ronald, J., and Williams. Learning representations by backpropa-
gating errors. Nature, 323:533536, 1986.

Shi, J., Zhou, Y., Hwang, J., Titsias, M., and Mackey, L. Gradient estimation with discrete stein
operators. In NeurlIPS, 2022.

Tokui, S. and Sato, I. Evaluating the variance of likelihood-ratio gradient estimators. In ICML, 2017.

Tucker, G., Mnih, A., Maddison, C. J., Lawson, J., and Sohl-Dickstein, J. N. Rebar: Low-variance,
unbiased gradient estimates for discrete latent variable models. In NIPS, 2017.

van den Oord, A., Vinyals, O., and Kavukcuoglu, K. Neural discrete representation learning. In
NIPS, 2017.

Weaver, L. and Tao, N. The optimal reward baseline for gradient-based reinforcement learning. In
UAI, 2001.

Williams, R. J. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine Learning, 8:229-256, 1992.

Xiao, H., Rasul, K., and Vollgraf, R. Fashion-mnist: a novel image dataset for benchmarking
machine learning algorithms. ArXiv, abs/1708.07747, 2017.

12

A Theorem B.1

Let us define the first-order approximation of V as @m order = 2.i 2 T a I, 200 A §)L
which approximates f(I,) — f(I;) in Equation B as ()(I —I).
Theorem 3.1.
EVst] = Vist-order-

Proof. Based on the definition, we have:

N dm;

Vistorder = Z Z I —1;) 10

af(j) d; of(I;) dm;
Zj:’” oI, - I ig Zj:’” Ijzi: a0 ©)

Since }°, m; = 1, we have 3, 4%t = 0. Also, since m = 3, m;I;, we have 4% = S~ I, 4%
Thus, together with Equation B, we have:

Vistorder = Zﬂ'j 8[7 ZIidG

i 7
5f()dm S
O
B Theorem 3.2
Theorem 3.2.
E[vReinMax} = Vond-order-
Proof. Here, we aim to proof, Vk € [1,n], we have FE [@RemMax,k] = §2nd,order,k. As defined in
Equation B, we have (note that § py, is the indicator function of the event D = I}):
S _ m; Of(I;) | Of(L) dm;
Van—Order,k - ZZ: zj: 7(aI] + 81'2)(IZ - I]) dak
B mimi(6ik —m) Of(L;) Of(Li)\,,
T af(Ij) of (Ir)
Tl'kaf Ik 7r]7rk8f()
= (I, — I, —1I;
2 oI, Z"J Z 2 oI, ()
1 o f of(D)
= §ED~7r[5DIk ID Zﬂ'J 1+ EDMT[™ 5D (I — Ip)]
1 of(D
= §EDN,‘.[J;(ID)(TFk(Ik—ID)+5D1k(ID—zi:7TiIi))] (10)
At the same time, based on the definition of @ReinMax, we have:
= 8f(D) 7Tk+5DIk 772+5DI;C
E[vReinMax,k] = EDN‘rr[oD (2 . 9 D Z 7-{ Dk - Z 71-2 z
1 of (D
= §ED~7\-[Q(D)(Wk(Ik_ID)"f‘(sDIk(Ik _zi:ﬂ-iIi))] (1D

13

Since épr, (I — Y, mi1;) = dpr,(Ip — Y, 7 I;), together with Equation [and [T, we have:

E [vReinMax,k} = v2nd-order7k

C Remark &1

Remark 3.1. When), ¢;f(I;) is used as the baseline and f(I;) — f(I;) is approximated as
E)f(i)(I — 1), we mark the resulting first-order approximation of V as ﬁlst-order-avg-baseline
Then, we have:

D= ~
Bl - V] = V]sl‘—order—avg—baseline
D

Proof. Using). ¢; f(I;) as the baseline, we have:
d i dm;
V=3 (@) quj 5 =ZZ¢J)=

Approximating f(I;) — f(I;) as %I?)(Ii — I;), we have:

N dm;
v1st—order—avg—baseline = Z Z ¢J I -) 10
¢J 3f j) dm;
= S I,
> ; =
_ [d)D VST]
™D

D Remark 4.2

Remark 3.2. In Equation 8, we approximate f(Iy,)— f(I;) as 3(=5 df(I) 4 97 (k) dfuk) V(I —IL;), and mark
the resulting second-order approximation of Vj, as §2nd—0rder—w0—baseline,k =Ty, Tis (3f(1 +
%II]C’C))(I;C — I,), Then, we have:

E [vReinMax} = V2nd—0rder—Wo—baseline

Proof. Here, we aim to proof, Vk € [1,n], we have E[Vreinmax.k| = V2nd-order-wo-baseline k-

= 1 8f 8f I
Vond-order-wo-baseline,k = Tk Z 2 O(I:))(Ik - I;)
1Of(I o 10f(Ie) .+
= Z i3 8I I IZ)+7rkzl:7r 5 oI, Iy — L)
0 I, —Ip)+opr, I — >, mil; ~
o [‘];(1)) Trk(- D) L2)I (: Z il)] = E[vReinMax,k]

O

14

E Forward Euler Method and Heun’s Method

For simplicity, we consider a simple function g(x) : R — R that is three times differentiable on
[to, t1]. Now, we proceed to a simple introduction to approximate f;l ¢'(x)dzx with the Forward
Euler Method and the Heun’s Method. For a detailed introduction to numerical ODE methods,
please refer to Ascher & Pefzold (T99R).

Forward Euler Method. Here, we approximate g(t1) with the first-order Taylor expansion, i.e.,
g(t1) = g(to) + ¢'(to) - (t1 — to) + O((t1 — t9)?), then we have fttol g (x)dz = ¢'(to)(t1 — to).
Since we used the first-order Taylor expansion, this approximation has first-order accuracy.

Heun’s Method. First, we approximate g(¢;) with the second-order Taylor expansion:

o(0) = t0) + (1) (1~ 10) + 0 (1 1o 1Ol —0)?). (12)

Then, we show that we can match this approximation by combining the first-order derivatives of two
samples. Taylor expanding ¢’ (¢1) to the first-order, we have:

g'(t1) = g'(to) + ¢" (to) - (t1 — to) + O((t1 — t0)?)
Therefore, we have:

gtto) + LTI (4 40— g(a0) 4/ 10) - (1~ t0) + LU 1y —10)? 4 O((11 —10)").

It is easy to notice that the right-hand side of the above equation matches the second-order Taylor
expansion of g(¢1) as in Equation [2. Therefore, the above approximation (i.e., approximating

gll (tO)
2

g(t1) — g(to) as g/(to)%g/(tl)(tl — tp)) has second-order accuracy.

Connection to f(I;) — f(I;) in Equation 8. By setting g(z) = f(z-I;+ (1 —z)-I;)), we have
g(1) —g(0) = f(I;) — f(I;). Then, it is easy to notice that the forward Euler Method approximates
fI)—f(I;) as %IIJ’) (I;—1;) and has first-order accuracy. Also, the Heun’s Method approximates

fI;) — f(I;) as %(6’;(11) + %I?))(IZ — I;) and has second-order accuracy.

F Experiment Details

F.1 Baselines

Here, we consider four methods as our major baselines:
* Straight-Through (ST; Bengio et all, 20T3) backpropagate through the sampling function as if it
had been the identity function.

¢ Straight-Through Gumbel-Softmax (STGS; Jang et all, P0IT7) integrates the Gumbel reparameter-
ization trick to approximate the gradient.

* Gumbel-Rao Monte Carlo (GR-MCK; Paulus’ef-all, PU77T) leverages the Monte Carlo method to
reduce the variance introduced by the Gumbel noise in STGS. To obtain the optimal performance
for this baseline, we set the number of Monte Carlo samples to 1000 in most experiments. Except
in our discussions of efficiency, we set the number of Monte Carlo samples to 100, 300, and 1000
for a more comprehensive comparisons.

* Gapped Straight-Through (GST-1.0; Fan“ef-all, P077) aims to reduce the variance of STGS and
constructs a deterministic term to replace the Monte Carlo samples used in GR-MCK. Here, as
suggested in (Fan_efall, 2027), we set the gap (a hyper-parameter) as 1.0.

GST-1.0 Performance. Despite GST-1.0 achieving good performance on most settings of MNIST-
VAE, it fails to maintain this performance on polynomial programming and unsupervised parsing,
as discussed before. At the same time, a different variant of GST (i.e., GST-p) achieves a signifi-
cant performance boost over GST-1.0 on polynomial programming. However, on MNIST-VAE and
ListOps, GST-p achieves an inferior performance. Upon discussing with the author of the GST-1.0,
we suggest that this phenomenon is caused by different characteristics of GST-1.0 and GST-p.

This observation verifies our intuition that, without understanding the mechanism of ST, different ap-
plications have different preferences on its configurations. Meanwhile, ReinMax achieves consistent
improvements in all settings, which greatly simplifies future algorithms developments.

15

F.2 Hyper-Parameters

Without specifically, we conduct full grid search for all methods in all experiments, and report the
best performance (averaged with 10 random seeds on MNIST-VAE and 5 random seeds on ListOps).
The hyper-parameter search space is summarized in Table [. The search results for Table I and
Table [are summarized in Table B.

Table 7: Hyper-parameter search space.

Hyperparameters Search Space

Optimizer {Adam(Kingma & Ba, 20T5), RAdam(Cinret-all, P020)}
Learning Rate {0.001, 0.0007, 0.0005, 0.0003}
Temperature {0.1,0.3,0.5,0.7, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5}

Table 8: Hyper-parameters Search Result for Results in Table [and Table D.
| STGS GR-MCK GST-1.0 ST ReinMax

Optimizer | Adam Adam Adam Adam Adam
MNIST-VAE 8 x 4 Learning Rate | 0.0003 0.0005 0.0005 0.001 0.0005
Temperature | 0.5 0.5 0.7 1.3 1.3
Optimizer ‘ RAdam RAdam RAdam RAdam RAdam
MNIST-VAE 4 x 24 Learning Rate | 0.0005 0.0005 0.0005 0.001 0.0005
Temperature | 0.3 0.3 0.5 1.5 1.5
Optimizer | RAdam RAdam RAdam RAdam RAdam
MNIST-VAE 8 x 16 Learning Rate | 0.0005 0.0007 0.0007 0.001 0.0007
Temperature | 0.5 0.7 0.5 1.5 1.5
Optimizer \ RAdam Adam RAdam Adam RAdam
MNIST-VAE 16 x 12 Learning Rate | 0.0007 0.0005 0.0007 0.0005 0.0007
Temperature | 0.7 1.0 0.5 1.5 1.5
Optimizer \ RAdam Adam RAdam Adam RAdam
MNIST-VAE 64 x 8 Learning Rate | 0.0007 0.0007 0.0007 0.0005 0.0005
Temperature | 0.7 2.0 0.7 1.5 1.5
Optimizer \ RAdam RAdam RAdam RAdam RAdam
MNIST-VAE 10 x 30 Learning Rate | 0.0005 0.0005 0.0005 0.0007 0.0005
Temperature | 0.5 1.0 0.5 1.4 1.3
Optimizer ‘ RAdam RAdam RAdam RAdam RAdam
ListOps Learning Rate | 0.0005 0.0005 0.001 0.001 0.0007
Temperature | 0.1 0.3 0.1 1.4 1.1

Polynomial Programming. As this problem is relatively simple, we set the learning rate to 0.001
and the optimizer to Adam, and only tune the temperature hyper-parameter.

MNIST-VAE. Following the previous study (Dong et all, 20200, P0721; Fanef all, 2027), we used
2-layer MLP as the encoder and the decoder. We set the hidden state dimension of the first-layer
and the second-layer as 512 and 256 for the encoder, and 256 and 512 for the decoder. For our
experiments on MNIST-VAE with 32 latent dimensions and 64 categorical dimensions, we set the
batch size to 200, training steps to 5 X 105, and activation function to LeakyReLU, in order to be
consistent with the literature. For other experiments, we set the batch size to 100, the activation
function to ReLU, and training steps to 9.6 x 10* (i.e., 160 epochs).

16

Table 9: Test —ELBO on MNIST. Hyper-parameters are chosen based on Train —ELBO.

| AVG | 8 x4 | 4 x 24 8 x 16 16 x 12 64 x 8 | 10x30
STGS 106.89 | 128.0940.79 | 103.60+£0.45 99.32+0.33 102.49+0.32 106.20+0.46 | 101.61+£0.54
GR-MCK | 109.03 | 127.90+0.71 | 102.76+0.33 102.12+0.29 104.234+0.65 113.54+0.50 | 103.62+0.13
GST-1.0 106.85 | 128.2041.12 | 103.95+£0.49 101.444+0.32 101.284+0.59 105.4440.62 | 100.78+0.44
ST 118.85 | 137.06+0.51 | 113.41+£0.49 114.25+0.29 114.48+0.56 115.43+0.29 | 118.46+0.18
ReinMax | 105.74 | 126.89+0.79 | 102.40+-0.43 100.63+0.41 100.85+0.50 102.91+0.67 | 100.75+0.50

Table 10: Test —ELBO on MNIST. Hyper-parameters are chosen based on Test —ELBO.

| AVG | 8x4 | 4x24 8 x 16 16 x 12 64x8 | 10x30
STGS 107.15 | 128.09+£0.79 | 103.25+£0.22 101.44£0.32 102294039 106.20£0.46 | 101.61+0.54
GR-MCK | 108.87 | 127.86+0.54 | 102404037 101.59+0.22 104.22+0.63 113544050 | 103.6240.13
GST-1.0 | 10655 | 128.03+1.02 | 103.63+0.24 100.67+0.34 101.04:£0.39 105.44+0.62 | 100.51+0.37
ST 118.79 | 137.05+£0.36 | 113.23£0.43 114.112031 114484056 115.43£0.29 | 118.46+0.18
ReinMax | 105.60 | 126.29+0.32 | 102.40+0.43 100.45:£0.26 100.84::0.56 102.91+0.68 | 100.69%0.48

Table 11: Train —ELBO on MNIST. Hyper-parameters are chosen based on Test —ELBO.

| AVG | 8 x4 | 4 x24 8 x 16 16 x 12 64 x 8 | 10x30
STGS 105.31 | 126.85+0.85 | 101.81£0.14 99.32+0.33 100.22+0.47 104.02£0.41 | 99.63+0.63
GR-MCK | 107.37 | 126.53+0.55 | 100.47£0.31 99.75+£0.29 103.11+0.58 112.34£0.48 | 102.02+0.18
GST-1.0 104.60 | 126.63£1.16 | 102.11+0.24 98.40+0.34 98.76+0.41 102.53+0.57 | 99.14+0.30
ST 117.76 | 136.75+£0.22 | 112.09+0.50 113.06+0.26 113.31£0.43 113.90£0.28 | 117.4630.09
ReinMax | 103.40 | 124.924+0.38 | 99.77+0.45 98.06+0.31 98.51+0.54 100.71+£0.70 | 98.40+0.48

Differentiable Neural Architecture Search.

We adopt most of the hyper-parameter setting from

Dong et al] (Z0204). Since GDAS employs a temperature schedule (decaying linearly from 10 to
0.1), and temperature scaling works differently in ReinMax and STGS (as discussed in Section B
and Section Bf), we removed the temperature scaling (i.e., set the temperature to a constant 1.0)
and increased the weight decay (i.e., from 0.001 to 0.09).

ListOps. We followed the same setting of Fanefall (2027), i.e., used the same model configuration
as in Choiefall (Z0177) and set the maximum sequence length to 100.

F.3 Hardware and Environment Setting

Most experiments (except efficiency comparisons) are conducted on Nvidia P40 GPUs. For effi-
ciency comparisons, we measured the average time cost per batch and peak memory consumption
on quadratic programming and MNIST-VAE on the same system with an idle A6000 GPU. Also,
to better reflect the efficiency of gradient estimators, we skipped all parameter updates in efficiency
comparisons.

F.4 Additional Results on Polynomial Programming

We visualized the training curve for polynomial programming with various batch sizes and latent
dimensions in Figure B (for p = 1.5), Figure B (for p = 2), and Figure [(for p = 3).

F.5 Additional Results on MNIST-VAE

In our discussions in Section B, we focused on the training ELBO only. Here, we provide a brief
discussion on the test ELBO.

Choosing Hyper-parameter Based on Training Performance. Similar to Table B, for each
method, we select the hyper-parameter based on its training performance. The Test —ELBO in
this setting is summarized in Table B. Despite the model being trained without dropout or other
overfitting reduction techniques, ReinMax maintained the best performance in this setting.

17

latent-dim = 4 | batch-size =2 latent-dim = 4 | batch-size = 8 latent-dim = 4 | batch-size = 32 latent-dim = 4 | batch-size = 256 latent-dim = 4 | batchsize =2 latent-dim = 4 | batch-size =8 latent-dim = 4 | batch-size = 32 latent-dim = 4 | batchsize = 256

02 012
T : 0.10
02 { \ \ 012 :

Loss

o1 0.10
tentlm =128 bchsize 2 et = 128 batchize 8 entlm = 128 bt = 32tenim = 128 | ach size = 256 et im =128 | Btz = 2 et im 126 | iz = aent i 128 | bl = 2atentm - 128 | bt = 256
02 N \ \\ 012 N\ A 5
Tox duu
o e k% me w am e w0 a1 m o 1 o % o T wm a0 ao w e a0 o am s o 10 . %
£poch Epoch Epoch poch Epoch epocn poch Epoch

(a)p:3andc: [OT’& L*0'5]_ (b)p: 3and c = [045, ,045]

L ? L

latent-dim = 4 | batch-size = 2 latent-dim = 4 | batch-size = 8 latent-dim = 4 | batch-size = 32 latent-dim = 4 | batch-size = 256 latent.dim = 4 | batch-size =2 latent-dim = 4| batch-size =8 _ latent-dim = 4 | batch-size =32 latent-dim = 4 | batch-size = 256
o2 024
oz “oz2
o S | _ J=—= == o —
latentdim = 16 | batch-size =2 latent-dim = 16 | batch-size = 8 latent-dim = 16 | batch-size = 32 latent.dim = 16 | batch-size = 256 latentdim = 16 | atchsize = 2 lotent-dim = 16 | batch-size = 8 _latentdim = 16 | bach-size = 32 latent-dim = 16 | batch-size = 256
03 \ 024
Zoa Sz
o1

latent-dim = 128 | batch-size = 2 latent-dim = 128 | batch-size = 8 _latent-dim = 128 | batch-size = 32 latent-dim = 128 | batch-size = 256 latent-dim = 128 | batch-size = 2 _latent-dim =

Loss
Loss

2 400 1

o 10 20 30 4 0 10 30 4 0 10 30 a0 o 10 20 30 a0 ° b 20 » o0 1 2 » 0 0 » 20 20
Epoch Epoch Epoch Epoch Epoch Epoch Epoch Epoch
()p=2andc=[%2, L5 ... L=05] dp [0.45,---,0.45].

— G —l___[030
latentdim = 128 | batch-size = 2 latent-dim = 128 | batch-size = 8 _latent-dim = 128 | batch-size = 64 latent-dim = 128 | batch-size = 256 latentdim = 128 | batch-size = 2 _latent-dim = 128 | batchsize = 8 latent-dim = 128 | batch-size = 32 latent-dim = 128 | batch-size = 256
4 « B p 5
go3 403
E Sox
02
— — 0s0 T e T EE———
o 10 2 0 4 0o 0 20 3 4 0 10 2 W 4 o W 20 30 4 o 10 20 3 4 o 10 20 30 40 0 0 20 3 4 0 0 2 3 40
Epoch Epoch Epoch Epoch Epoch Epoch Epoch
ReinMax = = = RODEQ ssssssss REINFORCE ReinMax = = = RODEQ sssreees REINFORCE

(@p=15ande=[%2 L5 ... L=05] (f)p=1.5and ¢ = [0.45,---,0.45].

L L)
Figure 7: T{aining curves of polynomial programming, i.e., ming EX[W], where X €
{0,1}L, X; "¢ Multinomial(softmax(6;)),0 = [01,-- ,0.]7,6; € R2, and L is the number of
latent dimensions.

Choosing Hyper-parameter Based on Test Performance. We also conduct experiments by
selecting hyper-parameters directly based on their test performance. In this setting, the test —ELBO
is summarized in Table [0, and the training —ELBO is summarized in Table . ReinMax achieves
the best performance in all settings except the test performance of the setting with 10 categorical
dimensions and 30 latent dimensions.

F.6 More Comparisons with RODEO

To better understand the difference between RODEO and ReinMax, we conduct more experiments
—c|P
on polynomial programming, i.e., ming EX[M] Specifically, we consider polynomial pro-

gramming under two different settings that define ¢ differently:

* In setting A, we have ¢ = [0.45, - - - ,0.45]. This is the setting we used in the submission.

. 5 5 — |4
* In setting B, we have ¢ = [OT", 15)7"' L LO"’].

As to the difference between the Setting A and the Setting B, we would like to note:

* In setting A, since Vi,¢; = 0.45 and 6; ~ Uniform(—0.01,0.01) at initialization,
| Xi—cilp
E

X-~softmax(0-)[Tp} would have similar values. Therefore, the optimal control variates
for O; are similar across different 3.

* In setting B, we set ¢; to different values for different 7, and thus the optimal control variate for
0, are different across different 7. Therefore, Setting A is a simpler setting for applying control
variate to REINFORCE.

18

As in Figure [, ReinMax achieves better performance in more challenging scenarios, i.e., smaller
batch size, more latent variables, or more complicated problems (Setting B or VAEs). Meanwhile,
REINFORCE and RODEO achieve better performance on simpler problem settings, i.e., larger batch
size, fewer latent variables, or simpler problems (Setting A).

BS=2|LD=2 BS=2|LD=64 BS=2|LD =128

e v

BS=4|LD=16 BS=4|LD=32 BS=4|LD=64 BS=4LD =128

Loss

BS=8|D=1 Bs=8|LD=2 Bs=8|LD=4 Bs=8|D=8 Bs=8|LD=16 Bs=8|LD =32 BS=8|LD=64 BS=8|LD =128

N m \ ;;;;; N \ ~~~~~

Loss

85 =16|1D =16 85 =16|1D =32 BS=16|LD =64 BS=16|1D =128

Loss

BS=32(LD=16 BS=32|LD=32 BS=32|LD=64 BS=32|LD=128

Loss

BS=64[LD=1 BS=64|LD=2 BS=64|LD=14 BS=64[LD=8 BS = 641D =16 BS=64|LD =32 BS=64|LD =64 BS=64|LD =128

Loss

Loss

ReinMax =~ —=———- [(R I— GR-MCK ~ =-=-=-= ST = GST-1.0 ===~ min ExX 7<)

Figure 8: Polynomial programming training curve, with different batch sizes and random vari-

1.5 .
able counts (L), i.e., ming E[%], where @ € RL*2 X € {0,1}%, and X S
Multinomial (softmax (6;)). More details are elaborated in Section B.

19

BS=2|D=1 BS=2[LD=2 BS=2[LD=4 BS=2[LD=8 BS=2[LD=16 BS=2[LD=32 BS=2|LD=64 BS=2|LD =128

B e Al e PV G SO na O
024 e A e
§ 0.23 "
022
oz

BS=4|LD=1 BS=4[LD=2 BS=4[LD=4 BS=4[LD=8 BS=4|LD=16 BS=4|LD=32 BS=4|LD=64 BS=4]LD =128

Nz A

BS=8|LD =128

BS=16|LD=1

Loss

BS=32|1D=1 BS=32[D=2 8S=32|1D=4 BS=32|LD=64

Loss

BS=64|LD =128

BS=64[LD=1 BS=64[LD=2 BS=64[LD=14 BS=64[LD=8

BS=128|LD=1

BS=128|1D =16

BS =256 (LD =1 85 =256 | LD = 16

X~
T

Figure 9: Quadratic programming training curve, with different batch sizes and random vari-

2 i
able counts (L), i.e., ming E[M], where® € RL*2 X e {0,1}f, and X;
Multinomial(softmax(6;)). More details are elaborated in Section B.

ReinMax ~ ——=—=- STGS

------- ST ——— GST-LO ----- minExl

20

BS=2|D=1 BS=2|LD=2 BS=2[LD=4 BS=2[LD=8 BS=2[LD=16 BS=2[LD=32 BS=2|LD=64 BS=2|LD =128

AV

BS=16|1D =132

BS=32|LD=64 BS=32|1D =128

BS=256|LD=1 BS=256|LD=2

BS=256|LD=8 BS =256 | LD = 64 BS =256 LD =128

0o 10)

20
Epoch

min Ex(25<L)

ReinMax

Figure 10: Polynomial programming training curve, with different batch sizes and random
3 ii
variable counts (L), i.e., ming E[”XzCH], where@ € REX2. X € {0,1}F, and X; lid

Multinomial(softmax(6;)). More details are elaborated in Section B.

21

	Introduction
	Related Work and Preliminary
	Discrete Variable Gradient Approximation: a Numerical ODE Perspective
	Straight-Through as a First-order Approximation
	Towards Second-order Accuracy: ReinMax

	ReinMax and Baseline Subtraction
	Benefits of Choosing E[f(D)] as the Baseline
	Independence of ReinMax over Baseline Subtraction

	Temperature Scaling for Gradient Estimators
	Experiments
	Polynomial Programming
	ListOps
	MNIST-VAE
	Applying ReinMax to Differentiable Neural Architecture Search
	Comparisons with REINFORCE-style Methods
	Discussions

	Conclusion and Future Work
	Theorem 3.1
	Theorem 3.2
	Remark 4.1
	Remark 4.2
	Forward Euler Method and Heun's Method
	Experiment Details
	Baselines
	Hyper-Parameters
	Hardware and Environment Setting
	Additional Results on Polynomial Programming
	Additional Results on MNIST-VAE
	More Comparisons with RODEO

