
A Theorem 3.1345

Let us define the first-order approximation of ∇ as ∇̂1st-order =
∑

i

∑
j πj

∂f(Ij)
∂Ij

(Ii − Ij)
dπi

d θ ,346

which approximates f(Ii)− f(Ij) in Equation 6 as ∂f(Ij)
∂Ij

(Ii − Ij).347

Theorem 3.1.
E[∇̂ST] = ∇̂1st-order.

Proof. Based on the definition, we have:348

∇̂1st-order =
∑
i

∑
j

πj
∂f(Ij)

∂Ij
(Ii − Ij)

dπi

dθ

=
∑
j

πj
∂f(Ij)

∂Ij

∑
i

Ii
dπi

dθ
−

∑
j

πj
∂f(Ij)

∂Ij
Ij

∑
i

dπi

dθ
(9)

Since
∑

i πi = 1, we have
∑

i
dπi

d θ = 0. Also, since π =
∑

i πiIi, we have dπ
d θ =

∑
i Ii

dπi

d θ . Thus,349

together with Equation 9, we have:350

∇̂1st-order =
∑
j

πj
∂f(Ij)

∂Ij

∑
i

Ii
dπi

dθ

= E[
∂f(D)

∂D

dπ

dθ
] = E[∇̂ST].

351

B Theorem 3.2352

Theorem 3.2.
E[∇̂ReinMax] = ∇̂2rd-order.

Proof. Here, we aim to proof, ∀k ∈ [1, n], we have E[∇̂ReinMax,k] = ∇̂2rd-order,k. As defined in353

Equation 8, we have354

∇̂2rd-order,k =
∑
i

∑
j

πj

2
(
∂f(Ij)

∂Ij
+

∂f(Ii)

∂Ii
)(Ii − Ij)

dπi

dθk

=
∑
i

∑
j

πjπi(δik − πk)

2
(
∂f(Ij)

∂Ij
+

∂f(Ii)

∂Ii
)(Ii − Ij)

=
∑
j

πjπk

2
(
∂f(Ij)

∂Ij
+

∂f(Ik)

∂Ik
)(Ik − Ij)

=
πk

2

∂f(Ik)

∂Ik
(Ik −

∑
j

πjIj) +
∑
j

πjπk

2

∂f(Ij)

∂Ij
(Ik − Ij)

=
1

2
E[δDk

∂f(D)

∂D
(ID −

∑
j

πjIj)] +
1

2
E[πk

∂f(D)

∂D
(Ik − ID)]

=
1

2
E[

∂f(D)

∂D
(πk(Ik − ID) + δDk(ID −

∑
i

πiIi))] (10)

At the same time, based on the definition of ∇̂ReinMax, we have:355

E[∇̂ReinMax,k] = E[
∂f(D)

∂D
(2 · πk + δDk

2
(Dk −

∑
i

πi + δDk

2
Ii)−

πk

2
(Dk −

∑
i

πiIi))]

=
1

2
E[

∂f(D)

∂D
(πk(Ik − ID) + δDk(Ik −

∑
i

πiIi))] (11)

12



Since δDk(Ik −
∑

i πiIi) = δDk(ID −
∑

i πiIi), together with Equation 10 and 11, we have:356

E[∇̂ReinMax,k] = ∇̂2rd-order,k

357

C Remark 4.1358

Remark 3.1. When
∑

i ϕif(Ii) is used as the baseline and f(Ii) − f(Ij) is approximated as359
∂f(Ij)
∂Ij

(Ii − Ij), we mark the resulting first-order approximation of ∇ as ∇̂1st-order-avg-baseline.360

Then, we have:361

E[
ϕD

πD
∇̂ST] = ∇̂1st-order-avg-baseline

Proof. Using
∑

i ϕif(Ii) as the baseline, we have:362

∇ =
∑
i

(f(Ii)−
∑
j

ϕjf(Ij))
dπi

dθ
=

∑
i

∑
j

ϕj(f(Ii)− f(Ij))
dπi

dθ

Approximating f(Ii)− f(Ij) as ∂f(Ij)
∂Ij

(Ii − Ij), we have:363

∇̂1st-order-avg-baseline =
∑
i

∑
j

ϕj
∂f(Ij)

∂Ij
(Ii − Ij)

dπi

dθ

=
∑
j

ϕj

πj
· πj

∂f(Ij)

∂Ij

∑
i

Ii
dπi

dθ

= E[
ϕD

πD
∇̂ST]

364

D Remark 4.2365

Remark 3.2. In Equation 8, we approximate f(Ik)−f(Ii) as 1
2 (

∂f(Ii)
∂Ii

+ ∂f(Ik)
∂Ik

)(Ik−Ii), and mark366

the resulting second-order approximation of∇k as ∇̂2rd-order-wo-baseline,k = πk

∑
i πi

1
2 (

∂f(Ii)
∂Ii

+367

∂f(Ik)
∂Ik

)(Ik − Ii), Then, we have:368

E[∇̂ReinMax] = ∇̂2rd-order-wo-baseline

Proof. Here, we aim to proof, ∀k ∈ [1, n], we have E[∇̂ReinMax,k] = ∇̂2rd-order-wo-baseline,k.369

∇̂2rd-order-wo-baseline,k = πk

∑
i

πi
1

2
(
∂f(Ii)

∂Ii
+

∂f(Ik)

∂Ik
)(Ik − Ii)

= πk

∑
i

πi
1

2

∂f(Ii)

∂Ii
(Ik − Ii) + πk

∑
i

πi
1

2

∂f(Ik)

∂Ik
(Ik − Ii)

= E[
∂f(D)

∂D

πk(Ik − ID) + δDk(Ik −
∑

i πiIi)

2
] = E[∇̂ReinMax,k]

370

13



Figure 7: Polynomial programming loss after 40 epochs, with different batch sizes and ran-
dom variable counts (L), i.e., minθ E[

∥X−c∥1.5
1.5

L ], where θ ∈ RL×2,X ∈ {0, 1}L, and Xi
iid∼

Multinomial(softmax(θi)). More details are elaborated in Section 6.

E Forward Euler Method and Heun’s Method371

For simplicity, we consider a simple function g(x) : R → R that is three times differentiable on372

[t0, t1]. Now, we proceed to a simple introduction to approximate
∫ t1
t0

g′(x)dx with the Forward373

Euler Method and the Heun’s Method. For a detailed introduction to numerical ODE methods, please374

refer to Ascher & Petzold (1998).375

Forward Euler Method. Here, we approximate g(t1) with the first-order Taylor expansion, i.e.,376

g(t1) = g(t0) + g′(t0) · (t1 − t0) + O((t1 − t0)
2), then we have

∫ t1
t0

g′(x)dx ≈ g′(t0)(t1 − t0).377

Since we used the first-order Taylor expansion, this approximation has first-order accuracy.378

Heun’s Method. First, we approximate g(t1) with the second-order Taylor expansion:379

g(t1) = g(t0) + g′(t0) · (t1 − t0) +
g′′(t0)

2
· (t1 − t0)

2 +O((t1 − t0)
3). (12)

Then, we show that we can match this approximation by combining the first-order derivatives of two380

samples. Taylor expanding g′(t1) to the first-order, we have:381

g′(t1) = g′(t0) + g′′(t0) · (t1 − t0) +O((t1 − t0)
2)

Therefore, we have:382

g(t0) +
g′(t0) + g′(t1)

2
(t1− t0) = g(t0) + g′(t0) · (t1− t0) +

g′′(t0)

2
· (t1− t0)

2 +O((t1− t0)
3).

It is easy to notice that the right-hand side of the above equation matches the second-order Taylor383

expansion of g(t1) as in Equation 12. Therefore, the above approximation (i.e., approximating384

g(t1)− g(t0) as g′(t0)+g′(t1)
2 (t1 − t0)) has second-order accuracy.385

Connection to f(Ii)− f(Ij) in Equation 6. By setting g(x) = f(x · Ii + (1− x) · Ij)), we have386

g(1)− g(0) = f(Ii)− f(Ij). Then, it is easy to notice that the forward Euler Method approximates387

f(Ii)−f(Ij) as ∂f(Ij)
∂Ij

(Ii−Ij) and has first-order accuracy. Also, the Heun’s Method approximates388

f(Ii)− f(Ij) as 1
2 (

∂f(Ii)
∂Ii

+
∂f(Ij)
∂Ij

)(Ii − Ij) and has second-order accuracy.389

F Experiment Details390

F.1 Baselines391

Here, we consider four methods as our major baselines:392

14



Figure 8: Polynomial programming loss after 40 epochs, with different batch sizes and ran-
dom variable counts (L), i.e., minθ E[

∥X−c∥3
3

L ] where θ ∈ RL×2,X ∈ {0, 1}L, and Xi
iid∼

Multinomial(softmax(θi)). More details are elaborated in Section 6.

• Straight-Through (ST; Bengio et al., 2013) backpropagate through the sampling function as if it393

had been the identity function.394

• Straight-Through Gumbel-Softmax (STGS; Jang et al., 2017) integrates the Gumbel reparameteri-395

zation trick to approximate the gradient.396

• Gumbel-Rao Monte Carlo (GR-MCK; Paulus et al., 2021) leverages the Monte Carlo method to397

reduce the variance introduced by the Gumbel noise in STGS. To obtain the optimal performance398

for this baseline, we set the number of Monte Carlo samples to 1000 in most experiments. Except399

in our discussions of efficiency, we set the number of Monte Carlo samples to 100, 300, and 1000400

for a more comprehensive comparisons.401

• Gapped Straight-Through (GST-1.0; Fan et al., 2022) aims to reduce the variance of STGS and402

constructs a deterministic term to replace the Monte Carlo samples used in GR-MCK. Here, as403

suggested in (Fan et al., 2022), we set the gap (a hyper-parameter) as 1.0.404

GST-1.0 Performance. Despite GST-1.0 achieving good performance on most settings of MNIST-405

VAE, it fails to maintain this performance on polynomial programming and unsupervised parsing, as406

discussed before. At the same time, a different variant of GST (i.e., GST-p) achieves a significant407

performance boost over GST-1.0 on polynomial programming. However, on MNIST-VAE and408

ListOps, GST-p achieves an inferior performance. Upon discussing with the author of the GST-1.0,409

we suggest that this phenomenon is caused by different characteristics of GST-1.0 and GST-p.410

This observation verifies our intuition that, without understanding the mechanism of ST, different411

applications have different preferences on its configurations. Meanwhile, ReinMax achieves consistent412

improvements in all settings, which greatly simplifies future algorithms developments.413

F.2 Hyper-Parameters414

Without specifically, we conduct full grid search for all methods in all experiments, and report the415

best performance (averaged with 10 random seeds on MNIST-VAE and 5 random seeds on ListOps).416

The hyper-parameter search space is summarized in Table 5.417

Table 5: Hyper-parameter search space.
Hyperparameters Search Space

Optimizer {Adam(Kingma & Ba, 2015), RAdam(Liu et al., 2020)}
Learning Rate {0.001, 0.0007, 0.0005, 0.0003}
Temperature {0.1, 0.3, 0.5, 0.7, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5}

15



Table 6: Test −ELBO on MNIST. Hyper-parameters are chosen based on Train −ELBO.
AVG 8× 4 4× 24 8× 16 16× 12 64× 8 10× 30

STGS 106.89 128.09±0.79 103.60±0.45 99.32±0.33 102.49±0.32 106.20±0.46 101.61±0.54
GR-MCK 109.03 127.90±0.71 102.76±0.33 102.12±0.29 104.23±0.65 113.54±0.50 103.62±0.13
GST-1.0 106.85 128.20±1.12 103.95±0.49 101.44±0.32 101.28±0.59 105.44±0.62 100.78±0.44

ST 118.85 137.06±0.51 113.41±0.49 114.25±0.29 114.48±0.56 115.43±0.29 118.46±0.18
ReinMax 105.74 126.89±0.79 102.40±0.43 100.63±0.41 100.85±0.50 102.91±0.67 100.75±0.50

Table 7: Test −ELBO on MNIST. Hyper-parameters are chosen based on Test −ELBO.
AVG 8× 4 4× 24 8× 16 16× 12 64× 8 10× 30

STGS 107.15 128.09±0.79 103.25±0.22 101.44±0.32 102.29±0.39 106.20±0.46 101.61±0.54
GR-MCK 108.87 127.86±0.54 102.40±0.37 101.59±0.22 104.22±0.63 113.54±0.50 103.62±0.13
GST-1.0 106.55 128.03±1.02 103.63±0.24 100.67±0.34 101.04±0.39 105.44±0.62 100.51±0.37
ST 118.79 137.05±0.36 113.23±0.43 114.11±0.31 114.48±0.56 115.43±0.29 118.46±0.18
ReinMax 105.60 126.29±0.32 102.40±0.43 100.45±0.26 100.84±0.56 102.91±0.68 100.69±0.48

Table 8: Train −ELBO on MNIST. Hyper-parameters are chosen based on Test −ELBO.
AVG 8× 4 4× 24 8× 16 16× 12 64× 8 10× 30

STGS 105.31 126.85±0.85 101.81±0.14 99.32±0.33 100.22±0.47 104.02±0.41 99.63±0.63
GR-MCK 107.37 126.53±0.55 100.47±0.31 99.75±0.29 103.11±0.58 112.34±0.48 102.02±0.18
GST-1.0 104.60 126.63±1.16 102.11±0.24 98.40±0.34 98.76±0.41 102.53±0.57 99.14±0.30

ST 117.76 136.75±0.22 112.09±0.50 113.06±0.26 113.31±0.43 113.90±0.28 117.46±0.09
ReinMax 103.40 124.92±0.38 99.77±0.45 98.06±0.31 98.51±0.54 100.71±0.70 98.40±0.48

Polynomial Programming. As this problem is relatively simple, we set the learning rate to 0.001418

and the optimizer to Adam, and only tune the temperature hyper-parameter.419

MNIST-VAE. Following the previous study (Dong et al., 2020, 2021; Fan et al., 2022), we used420

2-layer MLP as the encoder and the decoder. We set the hidden state dimension of the first-layer421

and the second-layer as 512 and 256 for the encoder, and 256 and 512 for the decoder. For our422

experiments on MNIST-VAE with 32 latent dimensions and 64 categorical dimensions, we set the423

batch size to 200, training steps to 5 × 105, and activation function to LeakyReLU, in order to be424

consistent with the literature. For other experiments, we set the batch size to 100, the activation425

function to ReLU, and training steps to 9.6× 104 (i.e., 160 epochs).426

ListOps. We followed the same setting of Fan et al. (2022), i.e., used the same model configuration427

as in Choi et al. (2017) and set the maximum sequence length to 100.428

F.3 Hardware and Environment Setting429

Most experiments (except efficiency comparisons) are conducted on Nvidia P40 GPUs. For efficiency430

comparisons, we measured the average time cost per batch and peak memory consumption on431

quadratic programming and MNIST-VAE on the same system with an idle A6000 GPU. Also, to432

better reflect the efficiency of gradient estimators, we skipped all parameter updates in this experiment.433

F.4 Additional Results on Polynomial Programming434

Here, we visualized the heat map for polynomial programming with various batch sizes and latent435

dimensions in Figure 7 (for p = 1.5) and Figure 8 (for p = 3). We visualized the training curve for436

polynomial programming with various batch sizes and latent dimensions in Figure 9 (for p = 1.5),437

Figure 10 (for p = 2), and Figure 11 (for p = 3).438

F.5 Additional Results on MNIST-VAE439

In our discussions in Section 6, we focused on the training ELBO only. Here, we provide a brief440

discussion on the test ELBO.441

16



Choosing Hyper-parameter Based on Training Performance. Similar to Table 2, for each442

method, we select the hyper-parameter based on its training performance. The Test −ELBO in this443

setting is summarized in 6. Despite the model being trained without dropout or other overfitting444

reduction techniques, ReinMax maintained the best performance in this setting.445

Choosing Hyper-parameter Based on Test Performance. We also conduct experiments by446

selecting hyper-parameters directly based on their test performance. In this setting, the test −ELBO447

is summarized in Table 7, and the training −ELBO is summarized in Table 8. ReinMax achieves448

the best performance in all settings except the test performance of the setting with 10 categorical449

dimensions and 30 latent dimensions.450

Figure 9: Polynomial programming training curve, with different batch sizes and random
variable counts (L), i.e., minθ E[

∥X−c∥1.5
1.5

L ], where θ ∈ RL×2,X ∈ {0, 1}L, and Xi
iid∼

Multinomial(softmax(θi)). More details are elaborated in Section 6.

17



Figure 10: Quadratic programming training curve, with different batch sizes and random
variable counts (L), i.e., minθ E[

∥X−c∥2
2

L ], where θ ∈ RL×2,X ∈ {0, 1}L, and Xi
iid∼

Multinomial(softmax(θi)). More details are elaborated in Section 6.

18



Figure 11: Polynomial programming training curve, with different batch sizes and random
variable counts (L), i.e., minθ E[

∥X−c∥3
3

L ], where θ ∈ RL×2,X ∈ {0, 1}L, and Xi
iid∼

Multinomial(softmax(θi)). More details are elaborated in Section 6.

19


	Introduction
	Related Work and Preliminary
	Understand Straight-Through: a Numerical ODE Perspective
	Straight-Through as a First-order Approximation
	Towards Second-order Accuracy: ReinMax 

	ReinMax and Baseline Subtraction
	Benefits of Choosing E[f(D)] as the Baseline
	Independence of ReinMax over Baseline Subtraction

	Temperature Scaling for Gradient Estimators
	Experiments
	Polynomial Programming
	ListOps
	MNIST-VAE
	Discussions

	Conclusion and Future Work
	Theorem 3.1
	Theorem 3.2
	Remark 4.1
	Remark 4.2
	Forward Euler Method and Heun's Method
	Experiment Details
	Baselines
	Hyper-Parameters
	Hardware and Environment Setting
	Additional Results on Polynomial Programming
	Additional Results on MNIST-VAE


