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Abstract

Causal language modeling (CLM) serves as001
the foundational framework underpinning re-002
markable successes of recent large language003
models (LLMs). Despite its success, the train-004
ing approach for next word prediction poses a005
potential risk of causing the model to overly006
focus on local dependencies within a sentence.007
While prior studies have been introduced to pre-008
dict future N words simultaneously, they were009
primarily applied to tasks such as masked lan-010
guage modeling (MLM) and neural machine011
translation (NMT). In this study, we introduce012
a simple N -gram prediction framework for the013
CLM task. Moreover, we introduce word dif-014
ference representation (WDR) as a surrogate015
and contextualized target representation dur-016
ing model training on the basis of N -gram017
prediction framework. To further enhance the018
quality of next word prediction, we propose019
an ensemble method that incorporates the fu-020
ture N words’ prediction results. Empirical021
evaluations across multiple benchmark datasets022
encompassing CLM and NMT tasks demon-023
strate the significant advantages of our pro-024
posed methods over the conventional CLM.025

1 Introduction026

With the remarkable advancements in deep learning027

techniques, neural language modeling has become028

a central component in modern natural language029

processing (NLP) tasks, such as natural language030

understanding (NLU), neural machine translation031

(NMT) and question answering. Among the ap-032

proaches to language modeling, causal language033

modeling (CLM), which predicts the next word034

given the previous words, is a widely employed lan-035

guage modeling framework. For example, promi-036

nent large language models (LLMs) like GPT-2037

(Radford et al., 2019) and GPT-3 (Brown et al.,038

2020) rely on CLM as their primary training frame-039

work. Despite their successful applications, the040

prevalent next word prediction manner can inad-041

verently lead models to overfit to local dependen- 042

cies rather than capturing long-term dependencies 043

between words. This tendency arises from some 044

phrases or paired words that have strong dependen- 045

cies with each other, such as "Barack Obama" and 046

"Harry Potter" (Qi et al., 2020). 047

A way of mitigating this problem involves pre- 048

dicting not solely the next word but also subse- 049

quent words in later time-steps such as N -gram 050

prediction. Researchers (Sun et al., 2019; Joshi 051

et al., 2020; Xiao et al., 2020; Qi et al., 2020) have 052

adopted this N -gram prediction methodology for 053

the masked language modeling (MLM) during the 054

pre-training phase of LLMs (Devlin et al., 2018). 055

Similar approaches have been applied to the NMT 056

task (Shao et al., 2018; Ma et al., 2018; Shao et al., 057

2020). However, these methods often require sig- 058

nificant modifications to the model architecture, a 059

different loss function than the conventional cross- 060

entropy loss, or an expansion of the vocabulary for 061

N -grams. 062

This paper introduces a novel N -gram predic- 063

tion framework designed specifically for CLM and 064

proposes innovative methods aimed at fortifying 065

this framework. The contributions of this work can 066

be summarized as follows. (1) A simple N -gram 067

prediction for CLM: we propose a simple N -gram 068

prediction integrated to existing CLM models. Ex- 069

cept for an additional multi-layer perceptron (MLP) 070

layer, our method does not require other modifi- 071

cations to model architecture, loss function, and 072

vocabulary. (2) Word difference representation: we 073

propose to use the embedding vectors’ difference 074

between contiguous words, termed word difference 075

representation (WDR), as a surrogate representa- 076

tion for individual words. Departing from the con- 077

ventional approaches that employing a fixed word 078

embedding as target representation, we provide di- 079

verse WDR as target representations in accordance 080

with context. We discovered this method can vary 081

backpropagated gradient during training so that it 082

1



Figure 1: Model illustrations of (a) conventional CLM, (b) simple N -gram CLM, and (c) WDR N -gram CLM when
N = 3. Note that all of the drawn logit layers above the MLP layers are the same function with the same parameter.
Red diagonal lines in (c) on lines from logit layer to ∆r

ix
e,l
t indicate detaching operation.

can enhance generalizability. The algorithmic re-083

versibility of WDR preserves the feasibility of the084

above simple N -gram prediction method. (3) An085

ensemble method suitable for the CLM task: we086

propose an ensemble method designed to refine the087

next word prediction by leveraging other multiple088

N predictions from the N -gram prediction.089

Our preliminary and primary experimental re-090

sults, conducted several CLM benchmark datasets,091

highlight the gradual improvements in perplexity092

achieved by our proposed simple N -gram frame-093

work, the WDR diverse target representations, and094

ensemble method when compared to several base-095

line models. Our qualitative analysis focusing096

on gradient elucidates the advantage of the WDR097

method from the perspective of optimization gener-098

alizability. In addition to the main CLM task, we099

demonstrate the applicability and advantages of our100

proposed approaches to the NMT task, which is a101

conditional form of the CLM task.102

2 Background: Conventional CLM103

Since the work of (Bengio et al., 2000), neural104

network-based language modeling has been devel-105

oped and become mainstream in language model-106

ing. As background knowledge, we describe the107

conventional training framework of CLM (the next108

word prediction) in this section.109

A sentence consists with words, X =110

{x1, x2, · · · , xT }, x ∈ V , where T means the se-111

quence length of the sentence and V is the vocab-112

ulary set. Conventional CLM computes the likeli-113

hood of a word conditioned on its preceding words114

in the sentence, p(xt|x<t). For processing, words115

are mapped to embedding vectors (Mikolov et al.,116

2013), and the encoded hidden state at time-step t117

is formulated as follows: 118

ht = Encθ({xe
1,x

e
2, · · · ,xe

t−1}) ∈ Rd, (1) 119

where xe
t ∈ Rd means the embedded vector of xt. 120

Encθ is an encoder model with its parameter set 121

θ. d is the dimension of the encoded hidden state 122

and the embedding vector spaces. Recently, most 123

language models use Transformer (Vaswani et al., 124

2017) as their encoder architecture. After encoding, 125

the encoded hidden state is linearly transformed 126

to a logit value of each word in a vocabulary set 127

V . Finally, the likelihood of the predicted word is 128

formulated as follows: 129

p(x̂t|x<t; θ) = softmax(x̂l
t), 130

x̂l
t = Wlht = Wlx̂e,l

t , (2) 131

where Wl ∈ R|V|×d is the weight matrix of the 132

logit layer. 133

To help the understanding of our idea, we note 134

that a parameter vector of logit layer’s weight is 135

another word embedding set that is mapped to the 136

target word, that is Wl = [xe,l
1 ,xe,l

2 , · · · ,xe,l
|V|]

⊤. 137

In this point of view, the encoded hidden state, 138

ht, is the predicted word embedding vector of the 139

logit layer, x̂e,l
t . Then, the inner product between 140

Wl and x̂e,l
t outputs the predicted score of each 141

embedding that indicates how the predicted word 142

embedding is similar to the logit layer’s original 143

word embedding. 144

Finally, the model learns to minimize the nega- 145

tive log-likelihood (NLL) loss as follows: 146

L(X, θ) = −
T∑
t=1

log p(x̂t = xt|x<t; θ). (3) 147
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This loss becomes the minimum when the model148

exactly predicts the logit layer’s embedding of the149

target word, that is x̂e,l
t = xe,l

t . This process is150

illustrated in Fig.1(a).151

3 Proposed Methods152

In this section, we propose three ideas: (1) a simple153

N -gram CLM, (2) word difference representation154

N -gram CLM, and (3) an ensemble method over155

N -gram predictions.156

3.1 Simple N -gram CLM157

First, we propose a simple N -gram prediction on158

the conventional framework of CLM. The core idea159

is adding an MLP layer to predict a future word160

given the same hidden state of the conventional161

CLM. This process is formulated as follows:162

x̂e,l
t+n = MLPn(ht). (4)163

For instance, assuming N is 3, two MLP layers,164

MLP 1 and MLP 2, are employed and predict165

x̂e,l
t+1 and x̂e,l

t+2, respectively, as shown in Fig.1(b).166

The limited capability of the MLP layer to learn167

an effective function from a large and complicated168

dataset may regularize the main encoder, Encθ, to169

encode a simultaneously informative hidden state170

for all N -gram predictions. This regularization171

might be beneficial to prevent the model to overly172

focus on local dependencies.173

We compute the likelihoods of the future target174

words, p(x̂t+1|x<t; θ) and p(x̂t+2|x<t; θ) in the175

above example, following each logit layer and the176

softmax function. Instead of using individual logit177

layers for each future word prediction, we share178

the parameters of all logit layers, including the con-179

ventional CLM model’s logit layer. Therefore, this180

approach increases just a small amount of param-181

eters for each additional MLP layer. Furthermore,182

it re-uses the original (unigram) vocabulary set for183

the future word prediction, not an additional large184

vocabulary set of N -grams. The loss for n-th future185

word prediction is as follows:186

Ln(X, θ) = −
T−n∑
t=1

log p(x̂t+n = xt+n|x<t; θ).

(5)187

As like Eq.(3), this loss becomes minimum when188

the model exactly predicts the future target word’s189

embedding, i.e., x̂e,l
t+n = xe,l

t+n. The total loss for190

the training of this simple N -gram CLM model is191

the mixture of Eq.(3) and Eq.(5) as follows: 192

Ltot
N (X, θ) =

1

2
L(X, θ)+

1

2(N − 1)

N−1∑
i=1

Li(X, θ).

(6) 193

Notably, we do not equally take the average of the 194

original loss, Eq.(3), with other losses, since the 195

next word typically has stronger dependencies with 196

the preceding words than other future words. In 197

other words, averaging the entire set of loss terms 198

together might introduce excessive regularization. 199

3.2 Word Difference Representation (WDR) 200

N -gram CLM 201

To use a more informative target than simple N - 202

gram CLM, we introduce the idea of WDR which is 203

a contextualized surrogate representation of words 204

within a sentence. Basically, it is based on a 205

form of word embedding compositions: the dif- 206

ference vector, xe
t+1 − xe

t . Since (Mikolov et al., 207

2013) demonstrated that arithmetic compositions 208

of learned word embedding can convey semantic 209

meanings, many researches have explored the word 210

embedding compositionality (Xu et al., 2015; Har- 211

tung et al., 2017; Poliak et al., 2017; Scheepers 212

et al., 2018; Li et al., 2018; Frandsen and Ge, 2019). 213

Their studies utilized composed word embeddings 214

as inputs to models, instead of original word embed- 215

dings, showcasing their advantages across various 216

NLP tasks. 217

Unlike the prior research, we provide WDR to 218

the model as the target to predict, rather than uti- 219

lizing it as input. The difference vector of contigu- 220

ous words offers a different representation for the 221

word depending on its adjacent words. Therefore, 222

by leveraging WDR as the target, we expect the 223

model can learn more diverse targets than previous 224

works. Generating WDR is simple repetition of 225

vector subtractions which is computationally cheap 226

and easy to parallelize, so it does not impose a high 227

computational cost. Moreover, generating WDR 228

is reversible, so that original embedding vectors 229

can be reconstructed from WDR. This property fa- 230

cilitates the development of WDR-based N -gram 231

CLM integrating the same framework of the simple 232

N -gram CLM without a significant modification. 233

Detailed explanations elucidating these advantages 234

are provided in the subsequent sections. 235

3.2.1 Definition of n-level WDR 236

As we briefly mentioned above, we use the differ- 237

ence of contiguous embedding vectors as the base 238
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of WDR. Given an embedding vector sequence239

{xe
1,x

e
2, · · · ,xe

T }, the 1-level WDR at the time-240

step t is defined as follows:241

∆1x
e
t =

{
xe
t+1 − xe

t if 1 ≤ t < T,

xe
T if t = T.

(7)242

In an inductive manner, the n-level WDR at the243

time-step t when n > 1 is defined as follows:244

∆nx
e
t =

{
∆n−1x

e
t+1 −∆n−1x

e
t if 1 ≤ t < T,

∆n−1x
e
T = xe

T if t = T.

(8)

245

As an alternative of the above n-level WDR246

definition, we explored the opposite direction to247

subtract the contiguous vectors, that is ∆n−1x
e
t −248

∆n−1x
e
t+1. In our internal empirical studies, we249

discovered the alternative design achieved similar250

performances. Therefore, we follow the design of251

Eq. 8 throughout this paper.252

Based on the definitions of Eqs. 7 and 8, the253

n-level WDR can be represented by the composi-254

tion of original word embeddings. For example,255

the 2 and 3-level WDRs at time-step t can be repre-256

sented as follows: ∆2x
e
t = xe

t+2−2xe
t+1+xe

t and257

∆3x
e
t = xe

t+3 − 3xe
t+2 + 3xe

t+1 − xe
t , respectively.258

With this manner, we can derive the formulation of259

n-level WDR as follows:260

∆nx
e
t =

n∑
i=0

(
n

i

)
(−1)ixe

t+(n−i), (9)261

where
(
n
i

)
= n!

(n−i)!i! is the binomial coefficient.262

This equation holds for every positive integer of n263

and for every time-step t when t ≤ T − n. See264

Appendix A.1 for a proof of this equation.265

As we mentioned earlier, n-level WDR is re-266

versible to the original word embedding. For267

the 1-level WDR, xe
t+1 can be reconstructed by268

adding xe
t to ∆1x

e
t . Likewise, xe

t+n can be recon-269

structed by adding −
∑n

i=1

(
n
i

)
(−1)ixe

t+(n−i) to270

∆nx
e
t (note that the first term of the right-hand side271

of Eq.(9) is xe
t+n). For simplicity, we use a new272

notation for the conjugate term that reconstructs273

the original embedding by addition to the n-level274

WDR as follows:275

∆r
nx

e
t = −

n∑
i=1

(
n

i

)
(−1)ixe

t+(n−i), (10)276

This leads to ∆nx
e
t+∆r

nx
e
t = xe

t+n. The conjugate277

term for reconstruction, ∆r
nx

e
t , can be obtained by278

Eq.(10) or iterative operations of Eq.(8).279

3.2.2 Training of WDR N -gram CLM 280

We develop the WDR-based N -gram CLM from 281

the framework of simple N -gram CLM. To achieve 282

the mentioned goal that providing the WDR as 283

the target of the model, we apply the definitions 284

and derivations in Sec.3.2.1 to the logit layer’s 285

embeddings. Following the idea of the simple 286

N -gram CLM described in Sec.3.1, we employ 287

MLP layers for predictions of N -gram. However, 288

in WDR N -gram CLM, the MLPn layer outputs 289

∆nx̂
e,l
t instead of x̂e,l

t+n. Then we produce its cor- 290

responding conjugate term, ∆r
nx

e,l
t , based on the 291

logit layer’s embedding matrix. Adding those two, 292

∆nx̂
e,l
t +∆r

nx
e,l
t , yields x̂e,l

t+n as in the simple N - 293

gram CLM. Then, we take the same processes of 294

the logit, likelihood, and loss computations as in 295

the simple N -gram CLM. 296

An essential design of this framework is detach- 297

ment of the produced conjugate term, ∆r
nx

e,l
t , from 298

the backpropagation process. Absence of this de- 299

tachment might lead the model to adjust the logit 300

layer’s weight matrix in a distorted manner, be- 301

cause the input of the logit layer is recursively pro- 302

duced from itself. 303

In WDR N -gram CLM, the minimum value of 304

NLL loss of xt+n prediction, Eq.(5), is achieved 305

when x̂e,l
t+n = xe,l

t+n, which is ∆nx̂
e,l
t +∆r

nx
e,l
t = 306

∆nx
e,l
t + ∆r

nx
e,l
t based on the equation led by 307

Eq.(10). Because the conjugate term, ∆r
nx

e,l
t , is 308

detached, the model would learn to predict ∆nx
e,l
t , 309

which is true n-level WDR. In other words, WDR 310

N -gram CLM learns to predict composed word em- 311

beddings, offering diverse and contextualized target 312

representations, even for the same target word. The 313

entire process of WDR trigram CLM example is 314

illustrated in Fig.1(c). 315

3.2.3 How Diverse Are WDR-based Target 316

Representations? 317

In order to gain a more profound understanding 318

of WDR as target representations, we explored 319

how WDR would diversify target representations 320

compared to the conventional CLM or the sim- 321

ple N -gram CLM. As we mentioned in Sec.2 and 322

Sec.3.1, the conventional CLM and the simple N - 323

gram CLM utilize the logit layer’s embeddings as 324

target representations to predict. To see the practi- 325

cal examples of these target representations, we col- 326

lected 1,270 representations from the logit layer’s 327

embedding matrix of the pre-trained conventional 328

CLM model (‘TF’ in the preliminary experiment, 329
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Figure 2: From the left-to-right, they are visualizations of the original embeddings (first), 1-level WDR and the plot
zoomed in around the original word ‘to’ (second and third), and 2-level WDR (last), respectively. In the third plot,
(‘to-word’) means the 1-level WDR vector, that is xe,l

to −xe,l
word based on the word ‘to’ fragment within the sentence.

Sec.4.1.3). The 1,270 representations correspond330

to all the tokens of randomly selected 10 sentences331

from the Penn TreeBank (PTB) (Mikolov et al.,332

2014) testset. Also, we computed 1 and 2-level333

WDRs with the collected embeddings, and added334

them to the collection, resulting in 3,810 represen-335

tations in total. Finally, we reduced the dimension336

of the total collection to 2-dimension with t-SNE337

algorithm (Van der Maaten and Hinton, 2008).338

Fig.2 shows the collected representations in a339

2-dimensional space. The first plot illustrates the340

original embeddings, xe,l. Note that the represen-341

tations of frequent words, such as ‘to’ may be in-342

cluded more times than other words in the collec-343

tion. We interpret that this is the reason why t-SNE344

places frequent words (e.g., ‘in’, ‘to’, and ‘the’)345

distant from other less frequent words to resemble346

the non-uniform distribution of the collection. On347

the other hand, the 1-level WDR representations,348

∆1x
e,l, look more diverse compared to the original349

embeddings as in the second plot. For example, by350

composing adjacent words such as ‘want’, ‘unable’,351

‘returned’, into the frequent word ‘to’, it diversifies352

the embedding representations according to its pre-353

vious word as in the third plot which is zoomed in.354

The 2-level WDR looks more diverse even com-355

pared to 1-level WDR as in the last plot. Based356

on this analysis, we expect WDR N -gram CLM to357

give more diverse target representations than other358

methods, such as conventional CLM and the simple359

N -gram CLM.360

3.3 Ensemble Method to Refine the Next361

Word Prediction Leveraging N -gram362

Predictions363

We propose a new ensemble method to incorpo-364

rate the N -gram predictions into the process of the365

next word prediction. The encoder model, such as366

Transformer, outputs {h2,h3, · · · ,ht} given the367

embedded input sentence {xe
1,x

e
2, · · · ,xe

t−1}. The368

encoded hidden state hi represents the computed369

hidden state given the inputs up to time-steps (i−1). 370

At testing, in addition to the predicted embedding 371

x̂e,l
t from the conventional CLM, MLPn layer of 372

N -gram CLM can estimate the target word for time 373

t given ht−n. Therefore, we can get N predicted 374

embeddings for the current time-step. We ensem- 375

ble these predicted embeddings just before the logit 376

layer using the following formulation: 377

x̂e,l
t,ens = (1− λ)x̂e,l

t +
λ

N − 1

N−1∑
i=1

MLP i(ht−i),

(11) 378

where λ is a scalar value between 0 and 1. It con- 379

trols the influences of future word predictions (but 380

derived from past time-steps) on the current word 381

prediction. Similar to the rationale behind the dom- 382

inance of the original NLL loss in its total loss 383

formulation, Eq.(6), we do not equally average the 384

original predicted embedding with others. In the 385

case of WDR-based N -gram CLM, we ensemble 386

MLP i(ht−i) + ∆r
ix

e,l
t−i = x̂e,l

t in the summation 387

part in Eq.(11). 388

After this ensemble computation, we input it to 389

the logit layer and compute the next word’s likeli- 390

hood. At testing, this ensemble likelihood result 391

is used to compute perplexity (PPL) in CLM tasks 392

or serving as candidate scores for beam search in 393

NMT tasks. 394

4 Experiments and Results 395

To assess the performances of our proposed meth- 396

ods, we conducted CLM and NMT experiments on 397

multiple benchmark datasets. 398

4.1 Causal Language Modeling (CLM) 399

For the CLM task, we executed two experiments: 400

preliminary and primary. The preliminary exper- 401

iment was dedicated to monitor the dynamics of 402

two hyperparameters: N and λ toward the perfor- 403

mance. In contrast, we only report the results of the 404
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best hyperparameters in the primary experiment’s405

demonstration.406

4.1.1 Data Description407

PTB (-, 0.9M tokens, 10K vocabulary), WikiText-408

2 (W2, 2M tokens, 33K vocabulary), Text8 (T8,409

15M tokens, 254K vocabulary), and WikiText-103410

(W103, 103M tokens, 268K vocabulary) (Mikolov411

et al., 2014; Merity et al., 2016). To ensure stan-412

dardization and transparency in our data-related413

processes (e.g., download, tokenization, vocabu-414

lary, and train/valid/testsets splitting), we relied on415

open sources. Specifically, the W2 and T8 datasets416

were sourced from the GitHub repository1, while417

the PTB and W103 datasets were sourced from the418

Tensorized Transformer (Ma et al., 2019)’s GitHub419

repository2. In the primary experiment, we used420

the whole datasets, whereas the preliminary experi-421

ment was conducted solely on the PTB dataset.422

4.1.2 Models and Training423

For the baseline model of the preliminary experi-424

ment, we implemented Transformer (TF) encoder-425

based CLM. The total number of parameters of the426

TF baseline is 12M, and our proposed simple and427

WDR methods increase only 0.1M parameters per428

an additional MLP layer (note that the logit layer’s429

parameters are all shared). The details of model ar-430

chitecture and training method for the preliminary431

experiment are described in Table 4 (in Appendix432

A.2) in the column of ‘Small Enc. TF CLM’.433

For the baseline models of the primary experi-434

ment, we trained the two baseline models that are435

advanced ones based on TF: tensorized transformer436

(TT) (Ma et al., 2019) and Reformer (RF)3 (Kitaev437

et al., 2020). We mostly followed their reported438

configurations, except some minor changes such as439

the number of tokens in a mini-batch and learning440

rates. The details of these changes for each dataset441

are described in Table 5 (in Appendix A.2). As a442

result, the total numbers of parameters of (TT, RF)443

models according to datasets are (6.7M, 15.3M) for444

PTB and W2, (82.4M, 236.6M) for T8 and W103,445

respectively. Our proposed simple and WDR meth-446

ods increase the number of parameters by 0.1M and447

0.5M, respectively, per an additional MLP layer re-448

gardless of the type of dataset.449

On top of the baseline models, we applied our450

proposed method, and we call them ‘TF+Sim’,451

1https://github.com/chakki-works/chazutsu
2https://github.com/szhangtju/The-compression-of-

Transformer
3https://github.com/lucidrains/reformer-pytorch

Table 1: Word-level PPL results of the preliminary ex-
periment with Transformer encoder-based CLMs on the
PTB dataset. A different value of λ indicates the ap-
plication of the proposed ensemble method with the λ
value.

Model
Test PPL

λ=0.0 0.2 0.4 0.6
TF 161.0 - - -

TF+Sim N=2
N=3
N=4

150.8
153.3
158.1

134.6
134.4
133.6

135.3
133.0
129.1

156.3
151.9
147.1

TF+WDR N=2
N=3
N=4

149.0
153.1
150.5

136.5
136.1
131.6

129.8
128.2
124.1

128.1
128.8
127.5

‘TF+WDR’, ‘TT+Sim’, ‘TT+WDR’, ‘RF+Sim’, 452

and ‘RF+WDR’. We varied N from 2 to 4 and 453

λ from 0.0 to 0.6 for every experiment of our pro- 454

posed methods. In the demonstration of the primary 455

experiment results, we report the result of the best 456

hyperparameter setting of each model. These set- 457

tings are reported in the ‘CLM Task’ column of 458

Table 6 (in Appendix A.2). 459

4.1.3 Preliminary Experimental Results 460

Table 1 presents the outcomes of the preliminary 461

experiments. We trained the model of each con- 462

figuration five times with different seeds, and we 463

report the average PPL scores. Both ‘TF+Sim’ and 464

‘TF+WDR’ surpass the performances of the conven- 465

tional CLM baseline. This observation aligns with 466

findings from previous studies on other tasks (Sun 467

et al., 2019; Joshi et al., 2020; Xiao et al., 2020; 468

Qi et al., 2020). The ensemble method consis- 469

tently improves performance compared to the non- 470

ensemble ones (where λ=0.0). It usually achieves 471

the best scores at λ=0.4 for both the ‘TF+Sim’ and 472

‘TF+WDR’ models. Also, we observed that the 473

‘TF+WDR’ model maintains strong performance 474

even at λ=0.6, while the ‘TF+Sim’ model does 475

not. This implies that ‘TF+WDR’ generally gen- 476

erates more accurate predictions for future words. 477

Moreover, ‘TF+WDR’ tends to outperform their 478

‘TF+Sim’ counterparts in each setting. These find- 479

ings collectively suggest that the WDR training 480

approach offers benefits over N -gram prediction 481

methodologies. 482

4.1.4 Gradient Diversity Analysis 483

As an additional exploration of the advantages of 484

WDR, we checked the connection between the di- 485

verse target representations and its benefit during 486
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Figure 3: Gradient diversity comparison between simple
4-gram CLM and WDR 4-gram CLM.

training. Given the evidence in Sec.3.2.3 that WDR487

gives more diverse target representations compared488

to other CLMs, it is plausible to guess the backprop-489

agated gradients are also diverse. To quantify this490

property, we measured ‘gradient diversity (GD)’491

(Yin et al., 2018) which is formulated as follows:492

GD(D, θ) =

∑|D|
i=1 ||gi||22

||
∑|D|

i=1 gi||22
,493

=

∑|D|
i=1 ||gi||22∑|D|

i=1 ||gi||22 +
∑

i ̸=j⟨gi, gj⟩
, (12)494

gi = ∇θLtot
N (Xi, θ),495

where D = {X1, X2, · · · , X|D|} is a mini-batch,496

|| · ||22 is the squared L2 norm operation, ⟨·, ·⟩ is497

the inner product operation, and ∇θ is gradient498

operator with respect to θ. This metric is large499

when the inner product terms in denominator are500

small, which means the gradients are different from501

each other.502

We measured GD of the ‘TF+Sim N=4’ and503

‘TF+WDR N=4’ models in Table 1 during train-504

ing. The GDs over epochs are presented in Fig.3.505

‘TF+WDR N=4’ usually has higher GD than506

‘TF+Sim N=4’. As the stochastic property of507

stochastic gradient descent is known for noisy gra-508

dient which enhances generalizability compared to509

full-batch gradient descent (Hardt et al., 2016; Yin510

et al., 2018), higher GD may offer similar advan-511

tages due to the stochastic property. Given this un-512

derstanding, we believe WDR-based training could513

be beneficial for improving generalization.514

4.1.5 Primary Experimental Results515

Table 2 presents the entire results of the primary516

experiments (6 models on 4 datasets). Results show517

that, with the exception of TT-based models on W2,518

Table 2: Word-level PPL results of the primary experi-
ment. Regarding the unsatisfying PPL of ‘RF (baseline)’
on W103, as in the experiments on PTB, W2, and T8
datasets, we trained ‘RF’ on W103 based on the same
provided source code with the default configuration ex-
cept a few changes described in Table 5. Note that
‘RF+Sim’ and ‘RF+WDR’ models were trained under
the same setting for fair comparisons.

Model
Test Word-level PPL

PTB W2 T8 W103
TT (baseline) 55.0 56.1 121.4 20.1

TT+Sim
Ensemble

51.6
45.5

62.0
56.0

106.5
89.5

17.1
17.9

TT+WDR
Ensemble

47.5
44.4

57.7
53.8

91.7
90.2

16.8
16.9

RF (baseline) 28.0 31.6 64.3 50.3
RF+Sim

Ensemble
27.8
26.4

31.6
31.0

62.1
62.2

43.1
43.4

RF+WDR
Ensemble

26.0
25.9

31.5
30.8

62.2
62.1

41.8
41.9

Table 3: Experiment results of NMTs on several bench-
mark datasets. We used translations of TED and TEDx
talks for IWSLT14 En-De. Also, we used Newstest18
and Newstest14 for WMT18 En-Tr and WMT14 En-De,
respectively. The left and right numbers of ‘/’ mean En-
to-(De or Tr) and (De or Tr)-to-En translation results,
respectively.

Model
BLEU Scores

IWSLT WMT14 WMT18
TF 27.6/32.5 26.5/30.4 11.9/18.2

BOW NMT 27.5/32.3 26.3/30.4 11.9/18.3
TF+Sim

Ensemble
28.0/33.0
28.3/33.4

26.2/30.9
26.3/31.0

11.6/18.2
11.6/18.3

TF+WDR
Ensemble

27.9/33.5
28.3/34.0

26.7/31.1
26.7/31.2

11.8/18.5
11.9/18.8

our proposed N -gram CLMs consistently either 519

match or surpass the baseline CLMs, even without 520

the ensemble method. Remarkably, WDR N -gram 521

CLMs generally improve performance on top of 522

the simple N -gram CLMs. Upon applying our pro- 523

posed ensemble method, they generally exhibit im- 524

provements over their non-ensemble counterparts, 525

except the models trained on W103. Notably, the 526

effect of ensemble method is relatively significant 527

in smaller datasets (PTB and W2) in contrast to 528

larger datasets (T8 and W103). Based on these 529

results, we argue that our proposed methods have 530

actual advantages on various models and datasets 531

for the CLM task. 532
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4.2 Neural Machine Translation533

4.2.1 Data Description534

Since NMT includes language modeling as a535

part of the decoder, we view the NMT could536

be an appropriate additional experimental task to537

demonstrate the effectiveness of our proposed ap-538

proach in addition to the main CLM tasks. We539

conducted NMT experiments on several datasets:540

‘IWSLT14 English-German’(En-De, 160K training541

pairs) (Hwang and Jeong, 2023), ‘WMT14 English-542

German’(En-De, 3.9M training pairs) (Vaswani543

et al., 2017), and ‘WMT18 English-Turkish’ (En-544

Tr, 207K training pairs) (Bojar et al., 2018). We545

used the same preprocessing, tokenization and sub-546

word byte-pair encoding methods with (Ott et al.,547

2019). We used 10K, 10K, 32K most frequents548

subwords to organize vocabularies for datasets, re-549

spectively.550

4.2.2 Models and Training551

As a baseline, we used our implementation552

of Transformer (TF) (Vaswani et al., 2017) in553

the encoder-decoder architecture. We used the554

small Transformer for the ‘IWSLT14 En-De’ and555

‘WMT18 En-Tr’ datasets, and the base Transformer556

for the ‘WMT14 En-De’ dataset. The total number557

of parameters of small and base TF baselines are558

32M and 77M, respectively. We applied our simple559

and WDR N -gram CLM methods onto the decoder560

parts of the baselines, ‘TF+Sim’ and ‘TF+WDR’.561

Each additional MLP layer in our simple and WDR562

methods increases the number of parameters by563

around 0.5M. Information about the models and564

how TF models are optimized can be found in565

the columns labeled ’Small Enc-Dec TF NMT’566

and ’Base Enc-Dec TF NMT’ in Table 4. Also,567

the hyperparameters (N and λ) for ‘TF+Sim’ and568

‘TF+WDR’ are described in the ‘NMT Task’ col-569

umn of Table 6 (in Appendix A.2).570

As a more closely related baseline, bag-of-words571

(BOW) NMT was proposed to predict the whole572

words in the context of the original NMT task (Ma573

et al., 2018). However, their approach was not ap-574

plied to the TF architecture, and they evaluated575

the model only on the English-Chinese translation576

dataset of NIST. To ensure a fair comparison, we577

re-implemented BOW NMT based on our TF archi-578

tecture and compared with our proposed method.579

Following their prescribed approach, we integrated580

the computed loss of whole words prediction into581

the original loss.582

4.2.3 BLEU Results 583

Table 3 presents the experiment results of the mod- 584

els on each testset with SacreBLEU (Post, 2018) 585

as the evaluation metric. Our proposed ‘TF+Sim’ 586

and ‘TF+WDR’ models exhibit usually enhanced 587

performances compared to the ‘TF’ and ‘BOW 588

NMT’ baselines. ‘TF+WDR’ always outperforms 589

its counterpart of ‘TF+Sim’. Notably, the integra- 590

tion of the ensemble method from both of ‘TF+Sim’ 591

and ‘TF+WDR’ further increases performances. 592

Specifically, we note that ‘TF+WDR’ with en- 593

semble method improved performances by 0.7 1.5 594

BLEU scores compared to ‘TF’ baseline on the 595

both translation directions of ‘IWSLT14 En-De’, 596

and German-to-English translations of ‘WMT14 597

En-De’ testsets. 598

To explain why N -gram prediction approaches 599

are more effective for German-to-English transla- 600

tion compared to English-to-German translation 601

in ‘IWSLT14 En-De’ and ‘WMT14 En-De’ ex- 602

periments, we hypothesize that the difference in 603

word diversity between the two languages plays a 604

role. We analyzed the ‘WMT14 En-De’ training 605

dataset (subword-level tokenized) and found that 606

English has around 33.6K unique unigrams and 607

6.7M unique bigrams, while German has around 608

34.9K unique unigrams and 9.3M unique bigrams. 609

This suggests that German-to-English translation 610

might have simpler local dependencies to learn 611

compared to English-to-German translation due to 612

the lower number of unique bigrams. Consider- 613

ing simple local dependencies might lead to the 614

over-fitting problem, we believe that this is a po- 615

tential reason why N -gram prediction approaches, 616

which can help mitigate over-fitting to local depen- 617

dencies, are more effective for German-to-English 618

translation. 619

5 Conclusion 620

In this work, we have constructed an advanced N - 621

gram prediction framework tailored specifically to 622

causal language modeling. In addition to the con- 623

struction of this framework, our work includes the 624

introduction of new strategies for providing diverse 625

target representations and an ensemble method over 626

the predicted N words. Extensive experiments on 627

language modeling and neural machine translation 628

have confirmed the practical benefits of the pro- 629

posed method. 630
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6 Limitations631

Given the demonstrated performance improve-632

ments of the WDR-based N -gram CLM, we tried633

to apply the WDR method to other tasks beyond634

CLM, such as the MLM task. In addition to the635

standard loss function of MLM, which involves pre-636

dicting the masked word (Devlin et al., 2018), we637

added new loss terms to predict n-level WDR tar-638

get representations of the masked position. For this639

experiment, we utilized the CrammedBERT model640

(Geiping and Goldstein, 2023), a streamlined vari-641

ant of BERT that facilitates faster pre-training642

while maintaining competitive performance on the643

GLUE benchmark. We integrated the WDR ap-644

proach into this model and conducted a compar-645

ative analysis with the original CrammedBERT646

configuration. Further experimental details are pro-647

vided in Appendix A.3.648

Table 7 (in Appendix A.3) presents the results649

of our experiments comparing CrammedBERT and650

the applications of WDR models on the GLUE test651

set. While the application of 2-level WDR resulted652

in a 1.0 point increase in the average GLUE score,653

the performance benefits of the WDR method is654

less consistent across individual sub-tasks com-655

pared to the benefits observed in the CLM tasks.656

We attribute this result to the fundamental differ-657

ence between the CLM and MLM tasks. Specifi-658

cally, in MLM, when the WDR method combines659

the masked word embedding with the embeddings660

of the next words, such information is already pro-661

vided as input. This partial visibility of the target662

representation might lead to an unexpected opti-663

mization behavior, such as the model dispropor-664

tionately focusing on the right-side (future) context665

which is incorporated in the target, rather than con-666

sidering the entire context.667

Since there are prior works for N -gram predic-668

tion within the MLM framework (Sun et al., 2019;669

Joshi et al., 2020; Xiao et al., 2020; Qi et al., 2020),670

we believe we can apply the WDR method to the671

prior works by combining the only masked words672

when WDR is calculated to solve the aforemen-673

tioned issue. We expect that the high gradient di-674

versity characteristic of the WDR method may offer675

additional benefits to the prior MLM framework.676
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A Appendix 823

A.1 Proof of Eq.(9) 824

We provide a proof of Eq.(9) with the induction method. To avoid confusion, we temporarily change the 825

notation of ∆nx
e
t in conjecture Eq.(9) to ∆̂nx

e
t until it is proved. Based on the definitions of the 1 and 826

n-level WDR, Eq.(7) and Eq.(8), we can verify the initial condition, that is n = 1, holds as follows: 827

∆1x
e
t = xe

t+1 − xe
t 828

=

(
1

0

)
(−1)0xe

t+1 +

(
1

1

)
(−1)1xe

t 829

=

1∑
i=0

(
1

i

)
(−1)ixe

t+(1−i) 830

= ∆̂1x
e
t . 831

Therefore, the conjecture holds for the initial condition. Then, by following the induction method, we 832

assume the conjecture at n-level is true, that is ∆̂nx
e
t = ∆nx

e
t . Then, the (n+ 1)-level WDR from the 833

definition Eq.(8) is derived to ∆n+1x
e
t = ∆nx

e
t+1 −∆nx

e
t = ∆̂nx

e
t+1 − ∆̂nx

e
t . Each term is derived as 834

follows: 835

∆̂nx
e
t+1 =

(
n

0

)
(−1)0xe

t+n+1 +

(
n

1

)
(−1)1xe

t+n+ 836

· · ·+
(

n

n− 1

)
(−1)n−1xe

t+2 +

(
n

n

)
(−1)nxe

t+1, 837

−∆̂nx
e
t =

(
n

0

)
(−1)1xe

t+n +

(
n

1

)
(−1)2xe

t+n−1+ 838

· · ·+
(

n

n− 1

)
(−1)nxe

t+1 +

(
n

n

)
(−1)n+1xe

t , 839

∆̂nx
e
t+1 − ∆̂nx

e
t =

(
n

0

)
(−1)0xe

t+n+1 +

((
n

0

)
+

(
n

1

))
(−1)1xe

t+n+ 840

· · ·+
((

n

n− 1

)
+

(
n

n

))
(−1)nxe

t+1 +

(
n

n

)
(−1)n+1xe

t 841

=

(
n+ 1

0

)
(−1)0xe

t+n+1 +

(
n+ 1

1

)
(−1)1xe

t+n+ 842

· · ·+
(
n+ 1

n

)
(−1)nxe

t+1 +

(
n+ 1

n+ 1

)
(−1)n+1xe

t 843

=

n+1∑
i=0

(
n+ 1

i

)
(−1)ixe

t+(n+1−i) 844

= ∆̂n+1x
e
t . 845

Note that the binomial coefficient,
(
n
i

)
, is the n-th row and i-th value of Pascal’s triangle, and it satisfies 846(

n
i−1

)
+

(
n
i

)
=

(
n+1
i

)
. Based on this outcome, the conjecture holds for (n+ 1)-level if the n-level is true. 847

Therefore, the conjecture is proved. 848

A.2 Experiment Details 849

We trained the models described in Sec. 4.1.2 and Sec. 4.2.2 following the configurations described in 850

Table 4 for Transformer-based models, ‘TF’, and the configurations reported in the previous works’ papers 851

(Ma et al., 2019; Kitaev et al., 2020) with several changes as described in Table 5 for the primary CLM 852

baselines, ‘TT’ and ‘RF’. For Transformer-based models’ experiments, we saved the best checkpoint 853

based on the validation results. We early stopped the training whenever the model does not beat its 854
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Table 4: Model and optimizer configurations of Transformer architectures used in the preliminary experiment of
CLM and NMT tasks. We used the same notation for model configurations as in (Vaswani et al., 2017), except the
number of layers (# of Layers) and multi-head attention’s heads (# of Heads). ‘ISRS’ means the inverse square root
learning rate scheduler (Ott et al., 2019) and ‘# of Tokens’ indicates the total number of tokens in a mini-batch at
each iteration.

Config.
Small
Enc.

TF CLM

Small
Enc-Dec
TF NMT

Base
Enc-Dec
TF NMT

dmodel 256 512 512
dff 2100 1024 2048

dk = dv 64 64 64
Pdrop 0.3 0.3 0.1
ϵls 0.1 0.1 0.1

# of Layers 6 6 6
# of Head 4 4 8
Optimizer Adam Adam Adam

Learning Rate 0.00025 0.0005 0.001
Scheduler None ISRS ISRS

# of Tokens 4K 4K 25K
Patience 50 50 50

Table 5: Changed configurations from the original Tensorized Transformer and Reformer (Ma et al., 2019; Kitaev
et al., 2020). We note that ‘# of Tokens’ indicates the total number of tokens in a mini-batch at each iteration.

Dataset
Tensorized Transformer Reformer

# of Tokens # of Layers Learning Rate # of Tokens Learning Rate
PTB 3,840 3

0.0025

16,384

0.0001
WikiText-2 3,840 3 8,192

Text8 4,800 6 512
WikiText-103 4,800 6 512

Table 6: Configurations of our proposed N -gram approaches: N and λ, used in the primary experiments of the
CLM task and experiments of the NMT task.

CLM Task NMT Task

Model Config.
Dataset

Model Config.
Dataset

PTB W2 T8 W103 IWSLT14 WMT14 WMT18
TT+Sim N/λ 2/0.2 4/0.2 3/0.2 2/0.1

TF+Sim
N 3 2 2

TT+WDR N/λ 2/0.4 4/0.3 3/0.1 2/0.1 λ 0.3 0.1 0.2
RF+Sim N/λ 4/0.2 2/0.2 3/0.1 4/0.1

TF+WDR
N 3 2 2

RF+WDR N/λ 4/0.1 2/0.3 3/0.1 4/0.1 λ 0.5 0.1 0.3
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Table 7: Experiment results of MLMs on the GLUE task. We used the same metrics with (Geiping and Goldstein,
2023) for each sub-task in GLUE.

Model MNLI SST-2 STSB RTE QNLI QQP MRPC CoLA GLUE Avg.
CrammedBERT 78.5/79.0 90.0 82.3 57.4 85.7 85.7 85.2 28.5 74.6
+1-level WDR 78.3/79.2 88.2 80.0 54.2 85.9 85.7 84.4 30.3 74.0
+2-level WDR 78.6/79.1 88.4 82.4 55.2 85.5 85.8 86.9 38.6 75.6
+3-level WDR 78.8/79.1 89.0 81.8 56.3 86.4 85.9 85.6 32.8 75.1

previous best performance for the ‘Patience’ times on the validation (Heo and Choi, 2023). For the 855

primary CLM baselines, we followed the pre-defined total training iterations. Table 6 describes the 856

specific configurations, such as N and λ, we used for our proposed N -gram CLMs, simple-based and 857

WDR-based. 858

About the information of our computational environment, we used a single NVIDIA RTX3090 GPU for 859

the large CLM datasets, such as T8 and W103, and a GTX1080Ti GPU for the small CLM datasets, such 860

as PTB and W2. On average, they took 1 day and 3 hours, respectively, for training. We used 4x NVIDIA 861

RTX3090 GPUs for the large NMT datasets, such as WMT14 English-German, and 2x GTX1080Ti 862

GPUs for the small NMT datasets, such as IWSLT14 English-German and WMT18 English-Turkish. On 863

average, they took 3 days for training. 864

A.3 Masked Language Modeling Experiment 865

We adhered to the environmental settings established by CrammedBERT (Geiping and Goldstein, 2023) 866

for all aspects of our study, including dataset preprocessing, model configurations, pre-training, fine-tuning 867

procedures, and evaluations. Comprehensive details of these settings can be found in the associated 868

GitHub repository4. Building on the CrammedBERT architecture, we apply the WDR method that is 869

analogous to the method conducted in our WDR-based N -gram CLM experiment. Specifically, we utilized 870

N additional MLP layers designed to predict n-level WDRs alongside the original word embedding at the 871

masked position. These n-level WDRs are calculated by composing the next words of the masked word. 872

The final loss is computed as the average of the original loss and the additional losses derived from the 873

WDR method, with the original and additional losses being averaged unequally, as described in Section 874

3.1. 875

Table 7 presents the experimental results for CrammedBERT and our proposed models, evaluated on 876

the GLUE test set following fine-tuning. We varied the number of grams, N , from 1 to 3. The results 877

indicate that the application of 2-level WDR yields an increase of 1.0 point in the average GLUE score. 878

However, the performance improvements across individual sub-tasks are not consistently superior; in 879

some cases, they were similar to or worse than the baseline. 880

4https://github.com/JonasGeiping/cramming
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