
A Implementation Details308

Model Architecture. We employ the ViT-B/16 version of the Segment Anything Model (SAM) as our309

base architecture [20], comprising 12 transformer layers. To integrate CLIP capabilities, we append a310

lightweight CLIP head consisting of 3 transformer layers to the SAM backbone. The patch token311

outputs from this CLIP head undergo a pooling layer to produce an image-level embedding, akin to the312

role of the CLS token output in ViT models. We adopt max-pooling since we observe that it can lead313

to better zero-shot classification and semantic segmentation performance of SAM-CLIP than average314

pooling. It is noteworthy that max-pooling has been found to be able to encourage the learning of315

spatial visual features [38]. With the pooling layer, the CLIP head can output an embedding for the316

whole image, which can be aligned with a text embedding just like the original CLIP model [37].317

Dataset Preparation. For the CLIP distillation, we merge images from several datasets: CC3M [44],318

CC12M [4], YFCC-15M [37] (a curated subset of YFCC-100M [47] by OpenAI) and ImageNet-319

21k [41]. This forms our DCLIP containing 40.6M unlabeled images. For the SAM self-distillation,320

we sample 5.7% subset from the SA-1B dataset to form DSAM , which originally comprises 11M321

images and 1.1B masks. We randomly select 1% of DCLIP and DSAM as validation sets. Overall, we322

have 40.8M images for training, which we term as Merged-41M in this work.323

Training. As we discussed in Sec. 2, the training is conducted in two phases to optimize convergence,324

in a “probing then full finetuning” style. The first stage of CLIP-head probing takes 20 epochs on325

DCLIP , while the backbone is kept frozen. Here, the teacher model is the OpenCLIP [18] ViT-L/14326

trained on the DataComp-1B dataset [12]. In the second stage (16 epochs), we unfreeze the backbone327

EncSAM-CLIP and proceed with joint fine-tuning together with HeadCLIP and HeadSAM , incorporating328

both CLIP and SAM distillation losses at the ratio of 1:10. The original SAM ViT-B model serves329

as the teacher in SAM loss. Further, the learning rates applied to EncSAM-CLIP and HeadSAM are 10330

times smaller than that of HeadCLIP in order to reduce the forgetting of the original SAM abilities.331

Besides, we adopt a mixed input resolution strategy for training. A notable difference between SAM332

and CLIP is their pretraining resolution. SAM is trained and works best on 1024px resolution while333

often lower resolutions (e.g., 224/336/448px) are adopted for CLIP training and inference [37, 7, 45].334

Hence, we employ variable resolutions of 224/448px for the CLIP distillation via the variable batch335

sampler approach of [31], while SAM distillation utilizes a 1024px resolution in accordance with336

SAM’s original training guidelines [20]. In every optimization step, we form a batch of 2048 images337

from DCLIP and 32 images (each with 32 mask annotations) from DSAM and perform training in a338

multi-task fashion.339

Resolution Adaption. After the two training stages, SAM-CLIP can accomplish CLIP tasks (e.g.,340

zero-shot classification) using the CLIP-head under 224/336/448px, and run inference with the341

SAM-head under 1024px. However, if one wants to apply the two heads together on a single input342

image for certain tasks (we present a demo of this in Sec. A.3), it would be inefficient to pass the343

image twice to the image encoder with two resolutions for the two heads respectively. To remedy this344

issue, we adapt the CLIP head for 1024px input using a very short and efficient stage of fine-tuning:345

freezing the image encoder and only finetuning the CLIP-head with LCLIP for 3 epochs (it is the346

same as the first stage of training, which is also CLIP-head probing) under variable resolutions of347

224/448/1024px. Note: resolution upscaling strategies are prevalent in CLIP training: [37, 45, 22]348

show it is more efficient than training with high resolution from the beginning.349

A.1 Zero-Shot Evaluations350

CLIP Task: Zero-Shot Image Classification. To examine the CLIP-related capabilities of351

SAM-CLIP, we evaluate it with zero-shot image classification on ImageNet [8], ImageNet-v2 [39] and352

Places365 [54], under image resolution of 224x. We use the text templates as CLIP [37] utilizing the353

textual embeddings from the text encoder of SAM-CLIP (which is kept frozen from our CLIP teacher)354

to perform zero-shot classification without any finetuning. The evaluation results are presented in355

Table 1. Employing a ViT-B architecture, our model achieves zero-shot accuracy comparable to the356

state-of-the-art CLIP ViT-B models pretrained on LAION-2B [43] and DataComp-1B [12] (both357

released by [18]), over the three datasets. These results validate the efficacy of our merging approach358

in inheriting CLIP’s capabilities.359

SAM Task: Zero-Shot Instance Segmentation. For the SAM component of SAM-CLIP , we evaluate360

its performance in instance segmentation, a task at which the original SAM model excels [20], with361
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(a) Input image (b) Ground-Truth (c) CLIP-head prediction (d) SAM-head refined

Figure 5: Demo on zero-shot semantic segmentation. Passing an input image through the image
encoder, HeadCLIP can predict a semantic segmentation mask, and HeadSAM can refine it to a more
fine-grained mask with auto-generated geometric prompts.

Table 1: Zero-shot evaluations on classification and instance segmentation tasks, comparing
SAM-CLIP with state-of-the-art models that use the ViT-B architecture. SAM-CLIP demonstrates
minimal forgetting compared to the baseline FMs on their original tasks.
Model Training Data 0-Shot Classification (%) 0-Shot Instance Seg. (mAP)

ImageNet ImageNet-v2 Places-365 COCO LVIS
SAM [20] SA-1B - - - 41.2 36.8

CLIP [37] OpenAI-400M 68.3 62.6 42.2 - -
CLIP [7] LAION-2B 71.1 61.7 43.4 - -
CLIP [12] DataComp-1B 73.5 65.6 43.0 - -

SAM-CLIP (Ours) Merged-41M 72.4 63.2 43.6 40.9 35.0

COCO [26] and LVIS [14] datasets. Following the original practices of [20], we first generate object362

detection bounding boxes using a ViT-Det model (ViT-B version) [23]. These bounding boxes act as363

geometric prompts for SAM’s prompt encoder, which then predicts masks for each object instance.364

The evaluation results of SAM-CLIP and the original SAM ViT-B are provided in Table 1 (both365

under 1024px resolution), showing that SAM-CLIP is very close to SAM on the two benchmarks, not366

suffering from catastrophic forgetting during training.367

Zero-Shot Transfer to Semantic Segmentation. We extend our evaluation to (text-prompted) zero-368

shot semantic segmentation over 5 datasets, Pascal VOC [10], Pascacl Context [33], ADE20k [55],369

COCO-Stuff [2] and COCO-Panoptic [19, 26]. We adopt a common evaluation protocol for this370

task: i) each input image is resized to 448⇥ 448px and pass to the image encoder and CLIP-head371

of SAM-CLIP to obtain 28 ⇥ 28 patch features; ii) OpenAI’s 80 pre-defined CLIP text templates372

are employed to generate textual embeddings for each semantic class, and these embeddings act as373

mask prediction classifiers and operate on the patch features from the CLIP head; iii) we linearly374

upscale the mask prediction logits to match the dimensions of the input image. Evaluation results of375

SAM-CLIP and previous zero-shot models over the five datasets are demonstrated in Fig. 2. Notably,376

SAM-CLIP establishes new state-of-the-art performance on all 5 datasets, with a significant margin377

over past works.378

A.2 Head-Probing Evaluations on Learned Representations379

By merging the SAM and CLIP models, we anticipate that the resultant model will inherit advantages380

at the representation level from both parent models. Specifically, SAM excels at capturing low-381

level spatial visual details pertinent to segmentation tasks, while CLIP specializes in high-level382

semantic visual information encompassing the entire image. We hypothesize that the merged model383

combines these strengths, thereby enhancing its utility in broad range of downstream vision tasks. To384
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Table 2: Zero-shot semantic segmentation performance comparison with recent works. (†SegCLIP is
trained on COCO data, so it is not zero-shot transferred to COCO-Stuff.)
Model Arch Training Data 0-Shot Semantic Segmentation (mIoU %)

Pascal VOC Pascal-Context ADE20k COCO-Stuff COCO-Panoptic

GroupViT [49] ViT-S Merged-26M 52.3 22.4 - 24.3 -
ViewCo [40] ViT-S Merged-26M 52.4 23.0 - 23.5 -
ViL-Seg [27] ViT-B CC12M 37.3 18.9 - 18.0 -
OVS [50] ViT-B CC4M 53.8 20.4 - 25.1 -
CLIPpy [38] ViT-B HQITP-134M 52.2 - 13.5 - 25.5
TCL [3] ViT-B CC3M+CC12M 51.2 24.3 14.9 19.6 -
SegCLIP [28] ViT-B CC3M+COCO 52.6 24.7 8.7 26.5† -

SAM-CLIP ViT-B Merged-41M 60.6 29.2 17.1 31.5 28.8

Table 3: Head probing evaluations on semantic segmentation datasets, comparing our model with
SAM and CLIP that use the ViT-B architecture. Avg is the average evaluation results of three heads.

Training Data Pascal VOC ADE20k
Model Linear DeepLabv3 PSPNet Avg Linear DeepLabv3 PSPNet Avg

SAM SA-1B 46.6 69.9 71.2 62.6 26.6 32.8 36.2 31.9
CLIP DataComp-1B 70.7 78.9 79.7 76.4 36.4 39.4 40.7 38.8
SAM-CLIP Merged-41M 75.0 80.3 81.3 78.8 38.4 41.1 41.7 40.4

Table 4: Composing both CLIP and SAM
heads of SAM-CLIP for zero-shot semantic
segmentation on Pascal VOC.

Method Resolution mIoU

CLIP head only 448px 60.6
CLIP+SAM heads 1024px 66.0

Table 5: Linear probing evaluations on image
classification datasets with ViT-B models.

Model Linear Probing
ImageNet Places365

SAM 41.2 41.5
CLIP (DataComp1B) 81.3 55.1
CLIP (LAION-2B) 79.6 55.2
SAM-CLIP 80.5 55.3

investigate this hypothesis, we conduct head-probing (i.e., learn a task specific head with a frozen385

image backbone) evaluations on SAM, CLIP, and SAM-CLIP , utilizing different segmentation head386

structures (linear head, DeepLab-v3 [5] and PSPNet [53]) across two semantic segmentation datasets,387

Pascal VOC and ADE20k. The results are presented in Table 3. We observe that SAM representations388

do not perform as well as those of CLIP for tasks that require semantic understanding, even for389

semantic segmentation task. However, SAM-CLIP outperforms both SAM and CLIP across different390

head structures and datasets, thereby confirming its superior visual feature representation capabilities.391

Besides, we apply linear probing to these models for image classification tasks on two datasets,392

ImageNet and Places365. Results in Table 5 show that SAM-CLIP attains comparable performance393

with CLIP, implying that the image-level representation of SAM-CLIP is also well-learned. All head394

probing evaluation results are visualized in Figure 3 to deliver messages more intuitively.395

A.3 Composing Both CLIP and SAM Heads for Better Segmentation396

Given that SAM-CLIP is a multi-task model with SAM and CLIP heads, one would naturally ask if397

the two heads can work together towards better performance on some tasks. Here, we showcase that a398

simple composition of the CLIP and SAM heads can lead to better zero-shot semantic segmentation.399

Specifically, we resize the input image to 1024px and pass it through EncSAM-CLIP , and use the CLIP400

head to generate low-resolution mask prediction (32⇥ 32) using text prompts. Then, we generate401

some point prompts from the mask prediction (importance sampling based on the mask prediction402

confidence), and pass the mask prediction and point prompts together to the prompt encoder module403

as geometric prompts. Finally, HeadSAM takes embeddings from both the prompt encoder and the404

image encoder to generate high-resolution mask predictions (256⇥ 256) as shown in Figure 2 (right).405

Examples of this pipline are shown in Figure 5. One can clearly observe that the refined segmentation406

by the SAM-head is more fine-grained.407
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(a) Zero-Shot Accuracy (%) (b) Zero-Shot Instance Segmentation (mAP)

Figure 6: Wise-FT [48] to a CLIP-distilled SAM ViT-B model. The red dashed line marks the
performance of the CLIP teacher model.

Note that this pipeline requires only one forward pass on EncSAM-CLIP with 1024px resolution. For408

fair comparison, in Table 1 and Figure 1 we report SAM-CLIP zero-shot segmentation performance409

with 448px resolution using HeadCLIP only. Using our high-resolution pipeline we obtain further410

gain in zero-shot semantic segmentation as shown in Table 4.411

B Weight Averaging412

Weight averaging is a straightforward post-processing method proven to mitigate forgetting across a413

variety of fine-tuning tasks. Specifically, Wise-FT [48] proposes linearly interpolating the pretrained414

and fine-tuned parameters using a coefficient ↵. In this study, we explore the application of Wise-FT415

in our setup. We focus exclusively on CLIP distillation applied to SAM ViT-B (serving as the416

student model), with a CLIP ViT-B/16 model acting as the teacher model. The model is trained on417

ImageNet-21k for 20 epochs. It is evident that the fine-tuned student model (↵ = 1) gains zero-shot418

classification capabilities at the expense of forgetting its original zero-shot instance segmentation419

abilities. Upon applying Wise-FT to the fine-tuned model, we observe an inherent tradeoff between420

learning and forgetting. Notably, no optimal point exists where both high classification accuracy421

(> 60% on ImageNet) and a high mAP (> 35 mAP on COCO) are achieved simultaneously.422
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