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Abstract

We consider data augmentation technique to improve data efficiency and general-
ization performance of reinforcement learning (RL). Our empirical study on Open
AI Procgen shows that the timing of augmentation is critical, and that to maximize
test performance, an augmentation should be applied either during the entire RL
training, or after the end of RL training. More specifically, if the regularization
imposed by augmentation is helpful only in testing, then augmentation is best used
after training than during training, because augmentation often disturbs the training
process. Conversely, an augmentation that provides regularization that is useful in
training should be used during the whole training period to fully utilize its benefit
in terms of both generalization and data efficiency. Considering our findings, we
propose a mechanism to fully exploit a set of augmentations, which automatically
identifies the best augmentation (or no augmentation) in terms of RL training
performance, and then utilizes all the augmentations by network distillation after
training to maximize test performance. Our experiment empirically justifies the
proposed method compared to other automatic augmentation mechanism.

1 Introduction

Reinforcement Learning (RL) from visual observations is a fundamental problem, because visual data
are among the most common form; e.g., video games [23], board games [29, 30] , and robots [33, 17].
However, images are high-dimensional, so RL from vision often suffers from poor sample efficiency
and poor generalization capability. due to the high-dimensional nature of images. To overcoming
these problems, regularization by data augmentation has been widely considered [19, 18]; in this
process, visual data are augmented by transformations that preserve the meaning or context, e.g.,
by cropping out unimportant parts of images, or by randomizing colors. Transformations resolve
the data scarcity, and also provide an explicit implementation of inductive bias for generalization
performance.

Use of the appropriate type of data augmentation significantly improves both data efficiency and gener-
alization performance [25]. However, the correct data augmentation scheme is highly task-dependent:
a poor choice can degenerate the generalization and destabilize the training [19, 25]. Hence, a variety
of transformations have been developed to enlarge the set of augmentation methods [20, 12]. Mean-
while, numerous regularization methods that use data augmentation e.g., self-supervised learning
[25] and representation learning [31, 12] have been proposed to stabilize training process with data
augmentation by reducing the interference between RL training and regularization. Previous work
addressed what data augmentation to use and how to use it, but the understanding of when to apply
it in the training process is limited. We test the hypothesis that applying augmentation method at
different epochs can have different effects. This is a non-trivial question, because the timing of data
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augmentation is not critical in supervised learning (SL) [1, 10], whereas a curriculum learning can
accelerate RL training [26].

To address our main question, we devise two frameworks with different timings of augmentation:
Intra Distillation with Augmented observations (InDA) and Extra Distillation with Augmented
observations (ExDA) (Section 3). Implementing the regularization by augmentation in a form of
distillation to minimize interference in RL training, InDA interleave the distillation with RL training,
whereas ExDA applies the distillation at the end of RL training. From experiments with InDA and
ExDA, we find that: Time does matter when using augmentation in RL in contrast to the case of
SL [10], in which the effect of data augmentation is relatively insensitive to timing. The difference
mainly comes from the fact that RL agent collects samples when training, whereas SL uses a fixed
data set. To be specific, the main findings from experiments are:

(i) If augmentation can accelerate RL training, then it must be applied as early as possible for
sample efficiency and generalization; e.g., cropping out an unnecessary part of an image
induces an efficient attention mechanism. To maximize sample efficiency, RL training must
be accelerated from the beginning. However, we observe that this kind of augmentation
often connotes generalization that is transferable only by a diverse experience in training
process, i.e., InDA fully exploits generalization gain whereas ExDA does not. Hence, to
gain generalization, this augmentation must be applied during training.

(ii) If the regularization imposed by augmentation is helpful only in testing, then to ensure
sample efficiency, augmentation must be postponed to the end of RL training; e.g., augmen-
tation by changing colors is useless when the training task shows a single background, but
the testing task has multiple backgrounds. This type of augmentation may interfere with
RL training, but delay of augmentation does not degrade sample efficiency and increase
generalization ability. Hence, in this case, ExDA, which never disturbs RL training, is better
than InDA.

(iii) The optimal time to apply augmentation for each task can be determined automatically
by the upper confidence bound [3] (UCB) based auto augmentation [25] algorithm. We
show that the choice of no augmentation is necessary, because augmentation can disturb the
training. Thus, auto augmentation with a ’no change’ (’identity’) function can be used as a
discriminator to identify the benefit of augmentation during training.

The above findings suggest effective timings of augmentation in RL. Our contribution also includes the
InDA and ExDA algorithms, in particular, which are equipped with the distillation augmentation (DA),
which address the independent interest in developing a regularization method that uses augmentation
with minimal interference with RL training. The potential advantages of the proposed method over
existing methods DrAC [25], RAD [19], Rand-FM [20], are discussed in Section 3.

2 Related Works

Augmented experience in RL. To solve the problem of poor generalization and sparse data, a popular
approach is to generate diverse (virtual) experiences and let the RL agent learn from them. Domain
randomization is a technique to produce such experiences from a simulator of a targeted system
[33, 24, 26]. Accurate simulators of practical systems are difficult to obtain, and this problem limits
the spectrum of applications. However, visual augmentation has no such limit because the method
uses simple image transformations such as cropping, tilting and color jitter, although applications
require a careful understanding of the targeted system to guide design of an appropriate image
transformer. A method of a curriculum learning for domain randomization, in which the difficulty is
gradually increasing [26] provided insights that coincide with some of our findings. However, we
provide further understanding of the types of visual augmentation that should early or late during
training.

Regularization from augmented data in vision-based RL has been implemented in various learning
frameworks, including but not limited to representation [12, 32], self-supervised [25], and contrast
[31]. One proposed algorithm [25] applies the UCB algorithm [3] to automatically select the most
effective augmentations over RL training, where each augmentation is considered as an arm and then
evaluate effectiveness of augmentation by using a sliding window average. The idea of adapting
augmentation concurs with our main message regarding the timing of augmentation. In [25], ’not
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augmenting’ is not an option, whereas our findings indicate that it should be. In addition, [25] does
not consider post augmentation followed by RL training, as in ExDA.

Different time-sensitivity of augmentation than SL. During deep learning, the early state of training
often has a significant effect [6, 1]. Therefore, we devised time-sensitive methods that adapt to the
progress of training, such as learning rate decay [36] and curriculum learning [34]. Golatkar et
al. [10] studied such a time-sensitivity of regularization techniques for SL, where the effect of
data augmentation in different time does not change much. We find that the time-sensitivity of
augmentation can be significant in RL. This contrast may occur because of the non-stationary nature
of RL, which SL does not have. Although a set of techniques originally developed for SL such
as convolutional neural network, weight decay, batch normalization, dropout and self-supervised
learning improve deep RL [14, 4, 22, 8, 31, 35, 13], a thorough study should be conducted before
introducing a method from different learning framework, because we find the contrasting time-
sensitivities of data augmentation. This spirit is also shared with an application [15] of implicit bias
in SL [11, 2, 9] to RL.

3 Method

Notation. We consider a standard agent-environment interface of vision-based reinforcement
learning in a discrete Markov decision process of state space S, action space A and kernel
P = P (st+1, rt|st, at) which determines the state transition and reward distribution. The goal
of the RL agent is to find a policy that maximizes the expectation of cumulative reward

∑t′−1
t=0 γtrt,

where t′ is terminating time and γ ∈ [0, 1] is discount factor. At each timestep t, the agent se-
lects an action at ∈ A and receives reward rt and an image ot+1 = O(st+1) ∈ Rk×k as an
observation(possibly partial) of the next state st+1. To augment observations, we consider image
transformation function ϕ : Rk×k 7→ Rk×k which maintains the dimension.

Baseline RL algorithm. As the baseline deep-RL algorithm, we use Proximal Policy Optimization
(PPO) [27] which is an on-policy actor-critic RL algorithm to learn policy πθ(a | o) and value
function Vθ with network parameter θ. Storing a set of recent transitions τt := (ot, at, rt, ot+1)
in experience buffer D, the network parameter θ is updated to maximize the following objective
function:

LPPO(θ) = Lπ(θ)− αLV (θ) , (1)

where α is a hyperparameter and some regularization terms are omitted. The clipped policy objective
function Lπ and value loss function LV are defined as:

Lπ(θ) = Ê
[
min(ρt(θ)Ât, clip(ρt(θ), 1− ϵ, 1 + ϵ)Ât)

]
(2)

LV (θ) = Ê
[(
Vθ(ot)− V targ

t

)2]
, (3)

where the expectation Ê is taken with respect to τ ∼ D, θold is the network parameter before
the update, ρt(θ) is the importance ratio πθ(at|ot)

πθold (at|ot) , Ât is advantage from Generalized Advantage
Estimator [27].

Overall framework. We propose two frameworks: Intra Distillation with Augmented observations
(InDA) and Extra Distillation with Augmented observations (ExDA). To be specific, both of them use
PPO for RL and the Distillation with Augmented observation (DA) (Section 3.1), for regularization,
although our frameworks can use other RL algorithms and augmentation-based regularization. InDA
(Section 3.2), interleaves PPO and DA, whereas ExDA (Section 3.3), performs PPO first then DA.
We design InDA and ExDA to conduct either DA or PPO in each epoch (Figure 1).

3.1 Distillation with Augmented observations (DA)

DA regularizes reinforcement learning by using distillation with data augmentation, in which we train
the network to output the same policies and values for given both original and augmented observations.
To do so, we fix the network θold to be distilled and store observation ot, which is sampled from
πθold , in D. Their augmented observations are represented as ϕ(ot) , where ϕ : Rn×n 7→ Rn×n is a
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Intra Distillation with Augmented Observations
Epoch

Extra Distillation with Augmented Observations

After RL training
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PPO (RL training)  

DA (regularization)

Figure 1: An illustration comparing InDA and ExDA

transformation function. For given D, θold and ϕ, we then train a network θ to minimize the following
distillation loss function:

LDA(θ) = LPD(θ) + LVD(θ) , (4)

where LPD is Kullback–Leibler divergence between policies πθold and πθ and LVD is the mean-squared
deviation between value functions Vθold and Vθ, i.e.,

LPD(θ) = Êot∼D [KL[πθold(·|ot), πθ(·|o′t)]] , (5)

LVD(θ) = Êot∼D
[
(Vθold(ot)− Vθ(o

′
t))

2
]
. (6)

Here o′t is either the original observation ot or the augmented one ϕ(ot) with equal probability. The
proposed method not only matches the outputs of θ for ot and ϕ(ot) and also conserves the behavior
of θ for ot to be identical to that of θold for ot. This behavior can reduce the interference between
reinforcement learning and distillation. Indeed, the performance of RL training can be degraded
by distillation without careful consideration on the interference; e.g., [25] with distillation loss
of Êot∼D [KL[πθ(·|ot), πθ(·|ϕ(ot))]] and Êot∼D

[
(Vθ(ot)− Vθ(ϕ(ot)))

2
]

can change the behavior
learned in RL training. Separating distillation from RL training provides substantial performance
gain (Table 1) compared to other existing methods e.g., [25, 12] (Section 4.1). In addition, the target
behaviors (πθold(·|ot) and Vθold(ot)), which are used several times during the distillation, are fixed in
DA, so we can reduce the computational cost by pre-computing them.

3.2 Intra Distillation with Augmented observations

InDA (Algorithm 1), iteratively optimizes PPO and DA, with PPO and DA explicitly separated. Such
a separation reduces their interference [12], whereas they are often optimized simultaneously in
other methods [25]. This separation increases the robustness of our algorithm, in addition to the
conservative distillation loss functions in (5) and (6). We varied the timing of augmentation by
adjusting the time S of starting DA and time T of terminating DA. We can control the frequency
and timing of applying distillation with hyperparameters I , S′ and T ′, where we perform DA after
each I rounds of RL training only if the number RL training rounds n is in the interval of [S′, T ′] (or
equivalently, the number of timesteps that have been observed is in the range of [S, T ]). We provide
further details on InDA in supplementary material.

3.3 Extra Distillation with Augmented observations

ExDA (Algorithm 2) performs the distillation after the end of RL training, where the lengths of DA
and RL training are parameterized by M and N , respectively. Computational cost can be reduced
by replacing LDA with LPD in DA, because value function is not necessary after DA. We check
empirically that this reduction does not degrade RL performance. We also consider re-initialization
after pre-training, because we expect that diminishing of non-stationarity can improve generalization,
as mentioned in [15]. However, training performance is not preserved after re-initialization because
πθold is not completely distilled by low data diversity. Thus, we do not use re-initialization for DA.
We leave more interesting details in the supplementary material.
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Algorithm 1 InDA
1: Hyperparameter: N, I, ϕ and (S′, T ′) in rounds (or (S, T ) in time steps)
2: Initialize θ close to origin.
3: for n = 1, 2, . . . , N do
4: // RL training
5: Store sampled transitions to D;
6: Optimize RL objective LPPO(θ) with D;
7: // Distillation
8: if n ∈ [S′, T ′] and mod(n− 1, I) = 0 then
9: Store θold ← θ;

10: Minimize LDA(θ) for D, θold and ϕ;
11: end if
12: end for

Algorithm 2 ExDA
1: Hyperparameter: N , M , ϕ
2: Initialize θ close to origin.
3: //Pre-training phase with RL algorithm
4: for n = 1, 2, . . . , N do
5: Store sampled transitions to D;
6: Optimize RL objective LPPO(θ) with D;
7: end for
8: Store θold ← θ;
9: // Distillation at the end of RL training

10: for m = 1, 2, . . . ,M do
11: Minimize LDA(θ) for D, θold and ϕ;
12: end for

3.4 Auto Augmentation Discriminator

The training benefit by augmentation differs depending on the task. This dependency complicates the
choice of whether to use InDA or ExDA for augmentation. Hence, we devise an auto-augmentation
method, called UCB-InDA, inspired by UCB-DrAC [25], where each augmentation is corresponded
to an arm in multi-armed bandit problem and assessed its gain in training with upper confidence bound
(UCB) [3]. More formally, the set of arms is the set of image transformations Φ = {ϕ1, . . . , ϕk}
which includes the identity function also. The inclusion of identity function is an important difference
than UCB-DrAC [25] since we observe that using augmentation sometimes needs to be postponed
after RL training for the sake of better sampling complexity and test performance. Then, the gain
of the augmentation G(s) at the sth sampling is the average return during Interval I , where the
augmentation is injected via InDA rather than the distillation method in UCB-DrAC [25]. The return
is the sum of estimated advantage Â and predicted value Vθ. The general UCB algorithm uses a mean
of rewards from the entire sampling process, but in RL, the distribution of return is non-stationary
[25], so we use the window-average gain Ḡϕ(s) as a reward of each transformation ϕ. Hence, inspired
by UCB1 algorithm [3], UCB-InDA selects actions each time using the sum of a window average
gain Ḡϕ(s) and a degree of exploration:

ϕt = argmax
ϕ∈Φ

[
Ḡϕ(s) + c

√
log(s)

Nϕ(s)

]
(7)

where c is the UCB exploration coefficient and Nϕ(s) is the selected number of each augmentation
after the sth sample. We find c with in adaptive manner, because the appropriate c is different for
each training as a result of drastic change of return during the transient time (details in supplementary
material). We remark that compared to UCB-DrAC [25], the proposed UCB-InDA has subtle but
important differences summarized in two folds: (i) the inclusion of identity transformation (i.e., no
augmentation) and (ii) the distillation with augmentation via InDA. The gain of each component is
numerically studied in Section 4
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4 Experiment

Setups. We evaluate the time-sensitivity of applying augmentation on the OpenAI Procgen benchmark
of 16 games, [5], where at each time t, visual observation ot is given as an image of size 64× 64, and
contains full or partial information on the system state. A training or testing environment is defined
as a pair of game and mode, where mode determines a set of levels and backgrounds shown in the
environment. As the training environment, we use one of two modes: easy and easybg. Easy mode
provided by Cobbe et al. [5] contains a set of 200 levels, where an agent can learn basic dynamics of
game and experience various backgrounds. To see clear advantage from visual augmentation, we
further easicate easy mode and devise easybg mode of which only difference from easy mode is
showing only a single background. To evaluate generalization capabilities, we use two modes: test-bg
and test-lv, which contain unseen backgrounds and levels, respectively, in addition to the mode that
we use for training. The details of modes in our evaluation is provided in supplementary material.

For clarity, we mainly focus on two visual augmentations, each of which has clearly distinguishing
inductive bias:

(a) Random convolution transforms an image by passing a single convolutional layer initialized
randomly [20]. Augmentation with this can impose invariant behavior on color changes, and
thus is anticipated to provide strong generalization on background changes.

(b) Crop leaves a randomly-selected rectangle and zero-pads the rest of the image [25]. This
augmentation is particularly useful in the fully-observable scenarios, because it imposes an
efficient attention mechanism.

We also report the result with other visual augmentations including color jitter, gray and cutout color
in the supplementary material, where the same main messages can be found. All results in the main
paper are averages over five runs.

Augmentation PPO Oracle DrAC RAD Rand-FM InDA ExDA

Rand conv Train 1.00 0.85 0.88 0.98 0.88 0.88 0.98
Test-bg 1.00 2.33 1.86 1.08 1.04 1.92 2.11

Color jitter Train 1.00 0.85 0.95 0.94 - 0.96 0.98
Test-bg 1.00 2.33 1.44 1.37 - 1.43 1.48

Grayscale Train 1.00 0.85 0.93 0.94 - 0.95 0.99
Test-bg 1.00 2.33 1.03 1.04 - 0.97 1.13

Cutout color
Train 1.00 0.82 0.82 0.72 - 0.76 0.94

Test-bg 1.00 2.51 1.27 1.33 - 1.19 1.53
Test-lv 1.00 - 0.83 0.69 - 0.69 0.93

Crop Train 1.00 - 1.08 0.28 - 1.25 0.91
Test-lv 1.00 - 1.52 0.46 - 1.80 1.09

Table 1: Train and test score of InDA and ExDA on Open AI Procgen, compared to baselines PPO,
Oracle, Drac [25], RAD [19], Rand-FM [20]. Oracle is trained with test backgrounds. Boldface
indicates the best method, and red indicates Oracle. ExDA outperforms other baselines except when
we use crop, which is evaluated on unseen levels.

4.1 Improving generalization on Procgen

We compare the train and test performances of InDA and ExDA with those of several baselines
(Table 1). Every method are trained on 200 levels, using easybg mode, which contains a single
background. InDA and other baselines are trained for 25M time steps. ExDA is trained with PPO
for 20M time steps, then distills for 30 epochs with 0.5M time steps, after training with PPO for
20M time steps. Test-bg is used for random convolution, color jitter, grayscale and cutout color,
which give information of color diversity. Test-lv is used for cutout color and crop, which give a
consistency of partial observation. Further details about implementation and hyperparameter are
described in the supplementary material. ExDA outperforms other baselines with most augmentation
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on test-bg. Especially, ExDA with random convolution has a comparable performance to Oracle,
despite being trained on a single background. Moreover, ExDA consumes only 0.5M time steps to
inject knowledge from augmented images, whereas the others use all of the training data. We describe
the computation issue about both ExDA and InDA in the supplementary material. However, InDA
have a better train and test performance with crop on test-lv. These results demonstrate that each
combination of environment and augmentation has a suitable time at which to apply augmentation.
Thus, we analyze the proper condition to use InDA or ExDA in the next section.
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Figure 2: Comparison according to timing of augmentation with InDA: (S, T ) are hyperparameters
of InDA for the start and terminal time step of distillation. As an augmentation method, InDA uses
random convolution on Jumper, and uses crop on Bigfish. Test results are evaluated on test-bg
(unseen backgrounds) and test-lv (unseen levels). Shaded region: standard deviation of five runs.
The difference between Jumper (easybg) and Jumper (easy) shows that the benefits of data efficiency
and the maintenance of generalization can be changed by the diversity of factors in observations.
Augmentation can accelerate the training, such as Bigfish. Furthermore, delayed augmentation
commonly improves generalization as much as fully-used cases.

4.2 Time dependency of augmentation in RL

In this section, we study when and how the agent is particularly helped by augmentation during RL
training. For this purpose, we varied DA time (S, T) of InDA to see how generalization’s effect
depends on the time at which augmentation is used. We evaluate InDA with seven different pairs
of start and terminal time of distillation (S, T ), where the number of entire timesteps used is 25M:
(0, 25), (0, 5), (0, 15), (10, 0), (20, 0), (10, 15), (0, 0). Note that InDA with (S, T ) = (0, 0) means
RL training only without augmentation, i.e., vanilla PPO. We explain with Jumper and Bigfish in
the main paper, and experiments on other environments are described in the supplementary material.
Figure 2 represents three environments, Jumper with easybg (Figure 2(a), 2(d)) and easy (Figure 2(b),
2(e)) mode and Bigfish (Figure 2(c), 2(f)) with easybg mode. In the following, we call the curve
using a parameter (S,T ).

Interrupted augmentation . To determine how generalization would change after regularization
stopped, we stop the DA during training, such as (0, 5), (0, 15). Jumper with easybg mode rapidly
lost generalization performance (after interruption at both (0, 5) and (0, 15)) (Figure 2(d)), whereas
Jumper with easy mode do not (Figure 2(e)). InDA, which uses augmentation throughout training,
performs better than PPO during training (Figure 2(b)), but augmentation does not improve the
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training performance (Figure 2(a)). These results mean that the random convolution alleviates the
difficulty by various backgrounds.

On the contrary, random convolution can induce a growing difficulty by increasing the number of
factors on a single background. Therefore, the generalization rapidly decreases after augmentation is
interrupted during training with a single background because the learning direction toward general-
ization about various backgrounds is not helpful to train. In contrast, the training can help when their
difficulty is solved by augmentation (Figure 2(b), 2(c)). Thus, in deep RL, neural networks maintain
the regularization when augmentation helps the training.

Regularization biases toward regions of loss landscape can have several equivalent generalized
solutions [10]. For the same reason, augmentation regularizes a neural network model by imposing a
bias toward generalization in deep RL. Moreover, in Bigfish, (0, 5) and (0, 15) increase the training
performance and generalization, similar to (0, 25), although they use augmented observations only
for a while. Therefore, the augmentation may not be necessary during the whole training process in
some tasks.

Delayed augmentation . To determine when we start to use augmentation, we delayed its use
until after 10M or 20M steps. The generalization rapidly increases after using augmentation at 10M
and 20M (Figre 2(d), 2(e)). Although we impose augmentation late, the augmentation helps the
generalization regardless of the start timing. In SL, delayed augmentation cannot achieve as much as
using augmentation during whole training [10]. However, (10, 25) improves the generalization to
be comparable with that of (0, 25), which use augmentation throughout training; this result differs
from the case of supervised learning. However, when augmentation noticeably helps the training, the
performance achieved using delayed augmentation may not catch up (Figure 2(e)) to the performance
achieved using early augmentation (Figure 2(f)), because the RL gradually improves the policy and
trajectory, as a result of its Markov property. Furthermore, the number of samples is limited for RL,
but not for supervised learning, so using augmentation from the initial time is more critical than
supervised learning if augmentation helps the training.

However, we confirm that delayed augmentation can induce bias toward generalization after the inter-
ruption, although the augmentation is not used during the initial transient time. For example, curves
(10, 15) (Figure 2(e), 2(f)) equivalent results to those of with (10, 25) even after 15M time steps. This
result indicates that a bias toward generalization can occur regardless of the timing of augmentation,
but usage from the start is essential when the augmentation gives important knowledge during training.
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Figure 3: Comparison of train performance according to background diversity on Heist easybg
when InDA use random convolution in 3(a). We describe the degree of background diversity in
numbers, e.g., PPO(1). As the diversity of the background increases, the performance of the PPO
approaches that of InDA. Figure 3(b) show the selected number of augmentations by UCB on Heist.
We compare two UCB-InDAs, w/ and w/o identity function with PPO, InDA, ExDA, UCB-ExDA
on Heist easybg in Figure 3(c). UCB-InDA is trained after UCB-InDA w/ identity, we use random
convolution as a data augmentation in InDA, ExDA. Solid line: train performance; dotted line: test
performance. ExDA achieves larger test performance than InDA by preserving train performance.
Moreover, UCB-InDA w/ identity outperforms UCB-InDA w/o identity in the training.
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When ExDA should be used. ExDA have different response than other methods to the timing of
applying augmentation. Most methods combined with data augmentation in RL use augmentation
throughout RL training. We show that augmentation rapidly increases the generalization performance
in spite of the late usage of augmentation (Figure 2). These results motivate suggest that generalization
by augmentation after training in RL.

The performance of PPO approached that of InDA as the diversity of the background increased
(Figure 3(a)). This result means that the various backgrounds increase the difficulty of training, and
also that random convolution has a similar effect to diverse background images. In contrast, ExDA
preserves its training score after pure RL training. These gaps in training are quantified by the test
performance.

The two analyses suggest that ExDA is appropriate in environments in which training is difficult as a
result of various factors such as background, and object color in the image. Thus, for generalization,
ExDA should be used when only one background is present.

When InDA should be used. ExDA does not always guarantee improvement of generalization.
InDA is better generalized to unseen levels with crop than ExDA is (Table 1). ExDA cannot surpass
InDA in some environments, for two reasons.

First, the diversity of data has an important ability to generalize about unseen levels [5]. InDA is
trained with various observations during training, whereas ExDA applies the augmentation only on a
pre-trained policy’s trajectories. Thus, augmentation after training may have difficulty overcoming
the limitation of data diversity when the generalization needs the diversity of data distribution.
Second, InDA can accelerate the training such as 2(c), so ExDA cannot overcome the gap in training
performance. Thus, InDA should be used in both cases.

How to choose between InDA and ExDA. InDA is appropriate when the augmentation methods
help to train, and ExDA is appropriate when the augmentation methods increase the difficulty of
training. However, we cannot know in advance whether certain augmentation helps the training. Thus,
we use UCB-InDA to automatically determine the necessity of the augmentation during training.
UCB selects the identity function most often (Figure 3(b)). This means that other augmentations
are not helpful to train on Heist(easybg), so ExDA is more appropriate than InDA. Furthermore,
UCB-InDA w/ identity performs better than w/o identity. It suggests that identity should be included
in the UCB action, because of the environments do not need augmentation during training. In contrast,
PPO is the same as InDA with identity, which is the best transformation on Heist(easybg). Thus,
we can use UCB-InDA as pre-trained method for ExDA, e.g., UCB-ExDA, because UCB-InDA w/
identity achieves comparable train performance to that of PPO (Figure 3(c)). As the result, we can
automatically select InDA or ExDA appropriately for each task.

5 Discussion
We have showed that the timing of visual augmentation affects the performance of RL, although
not affect the performance of SL. The difference is a result of non-stationary data generation in
RL. If the regularization imposed by augmentation is useful only for testing, then augmentation
should be delayed to the end of RL training than being use throughout learning, because sample and
computation complexity since it can disturb RL training. However, an augmentation that provides
useful regularization in training should be used during the whole training period to fully utilize its
benefit in terms of both generalization and data efficiency. We believe that our findings provide
useful insights into auto-augmentation to adjust the use of augmentation round-by-round, where
DA at the end of RL training would provide substantial gains as ExDA does. However, design of
auto-augmentation for RL remains an open problem, because the gain from augmentation has highly
non-stationary characteristics, so its evaluation is challenging.
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A Modified Procgen Environments

(a) train (partial) (b) test-bg (partial) (c) test-lv (partial)

(d) train (fully) (e) test-bg (fully) (f) test-lv (fully)

Figure 4: An example set of training and testing environments in Procgen benchmark: (upper row)
an example of partially observable environment with Coinrun; (lower row) an example of fully
observable environment with Heist; (left column) train: a set of levels and backgrounds for training;
(center column) test-bg: the same training levels on unseen backgrounds; (right column) test-lv: a set
of unseen levels on the same training backgrounds

This section explains Modified Procgen Environments, which is designed to verify different types of
generalization, backgrounds, and levels. Open AI Procgen environments [5] share background themes
such as space_backgrounds, platform_backgrounds, topdown_backgrounds, water_backgrounds,
water_surface_backgrounds. We create new difficulties as Easybg, Easybg-test, Easy-test. Easybg
generates environments which contain only one for each background, wall and agent theme. Easybg-
test and Easy-test are for test about background change after trained on Easybg and Easy. Wall theme
in (Climber, Coinrun, Jumper, Ninja) and Agent theme in (Climber, Coinrun) also compose with only
one image resource in Easybg. Figure 4 presents an example set of modes that we use in evaluation.
Furthermore, We fix the exit_wall_choice and enemy theme in Dodgeball. We describe the usage
themes in each environment, which are grouped by backgrounds theme as below:

• space_backgrounds (Bossfight, Starpilot)
Background: "space_backgrounds/deep_space_01.png"

• platform_backgrounds (Caveflyer, Climber, Coinrun, Jumper, Miner, Ninja)
Background:"platform_backgrounds/alien_bg.png", Coinrun (Agent color: Beige, Wall
themes: Dirt), Climber (Agent color: Blue, Wall themes: tileBlue), Jumper (Wall theme:
tileBlue), Ninja (Wall theme: bricksGrey)

• topdown_backgrounds (Chaser, Dodgeball, Fruitbot, Heist, Leaper, Maze)
Background:"topdown_backgrounds/floortiles.png", Dodgeball (Enemy theme:
"misc_assets/character1.png", Exit_wall_choice: 0)

• water_backgrounds (Bigfish)
Background:"water_backgrounds/water1.png"

• water_surface_backgrounds (Plunder)
Background:"water_backgrounds/water1.png"

Easybg-test uses backgrounds in each background group, except the one used in Easybg. Easy-test is
only defined for Climber, Jumper, Ninja, and they compose with topdown_backgrounds.
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B Implementation details

In this section, we explain about InDA, ExDA, UCB-InDA and other baselines. We train the agent
with IMPALA-CNN [7] in every experiment.

B.1 InDA

We use PPO [28] as a base RL algorithm, For data efficiency, we store the observations during RL
training in buffer DO. Before DA phase, we also make policy buffer DΠ, value function buffer DV

and augmented observation buffer Dϕ for distillation, because we only use one network model. We
randomly sample pairs of (o, π, V ) from buffer, and minimize loss function LDA(θ). We reuse the
sample three times like PPO, it can be controlled by # Epochs of DA. We did a greed searches
for learning rate of DA lDA ∈ [1 × 10−3, 5 × 10−4, 2 × 10−4, 1 × 10−4, 5 × 10−5] and interval
I ∈ [1, 5, 10] and found the best combination lDA = 10−4 and interval I = 5. We fix the buffer
size DO = 40960, because we collect the observations during five RL phases (5× 256× 32). We
describe the every hyperparameter as below:

Hyperparamter Value

γ 0.999
λ 0.95

# Timesteps per rollout 256
# Epochs per rollout 3

# Minibatches per epoch 8
Reward Normalization Yes

# Workers 1
# Environments per worker 32

Total timesteps 25M
LSTM No

Frame Stack No
Optimizer Adam optimizer

Entropy bonus 0.01
PPO clip range 0.2
Learning rate 5× 10−4

Interval I 5
Size of DO 40960

# Epochs of DA 3
Learning rate of DA lDA 1× 10−4

Image transformation ϕ Any augmentation

B.2 ExDA

In ExDA, we generate and store (o, π, V ) using fθold in buffer D. The optimal buffer size depends
on the episode length of each environment. However, we standardize the buffer size as 0.5M in
every environment. We augment the observation with three epochs intervals when using randomized
augmentation methods. We did greed searches for # minibatches [1024, 2048, 4096] and learning rate
[5 × 10−4, 1 × 10−3, 2 × 10−3]. As a result, we select # of minibatches 4096 and a learning rate
1e− 3.We describe every hyperparameter as below:

Hyperparameter Value

Size of DO 0.5M
# Epoch 30

# Minibatches per epoch 4096
Learning rate 1× 10−3

# Workers 1
Optimizer Adam optimizer

Image transformation ϕ Any augmentation

13



B.3 UCB-InDA

We use UCB-InDA as a discriminator to determine the necessity of augmentation during the training.
The gain of an augmentation is a mean of return during interval I, G(s) = 1

I

∑j−1
i=0 R(s+ j). The

return is computed by the sum of estimated advantage and predicted value, which are expected value
of the agent trajectory, R(s) = Ê(ot,at)∼πθ

[Ât + Vθ(ot)]. The Ât is advantage from Generalized
Advantage Estimator [27]. Thus, we can evaluate how augmentation affects the return on the agent
trajectory. However, the distribution of return is non-stationary, as the agent policy is changed.
Therefore, we use the window average gain Ḡϕ rather than the whole gain from the past evaluation.
Furthermore, the drastic change of return causes the gap of gain between the augmentation according
to sampling time at the transient time of training and leads to poor exploration about some augmen-
tation methods. For stable exploration, we fix the minimum exploration frequency and use forced
exploration method after the minimum exploration as below:

Ḡϕmax
(s) + c

√
log(s)

Nϕmax
(s)
≤ Ḡϕmin

(s) + c

√
log(s)

Nϕmin
(s)

(8)

c =
Ḡϕmax − Ḡϕmin + ϵ√

log(s)×max( 1√
Nϕmin

(s)
− 1√

Nϕmax (s)
, 1√

W−1
− 1√

W
)

(9)

where ϕmax = argmaxϕ∈Φ Ḡϕ, ϕmin = argminϕ∈Φ Ḡϕ. We set the hyperparameter as below
table:

Hyperparameter Value

Window size of gain W 3
Minimum exploration frequency 15

B.4 Baselines

We compare ExDA and InDA with PPO [5], DrAC [25], Rand-FM [20], RAD [19]. Every baseline is
based on PPO [5] and we adopt the implementation of PPO in [5].

• DrAC [25] regularizes both policy and value function as self-supervised learning.
Regularization term have hyperparameter αr for ratio with PPO objective. We use the
hyperparameter recommended by the author.

• Rand-FM [20] is composed with random convolution networks and feature matching. They
also need hyperparameter β for ratio between feature matching and PPO objective. We use
same β with author.

• RAD [19] naively use augmented observations in state distribution. Thus, there are no
additional hyperparameters.

We describe the hyperparameter of baselines in below table:
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Hyperparameter Value

γ 0.999
λ 0.95

# of timesteps per rollout 256
# of epochs per rollout 3

# of Minibatches per epoch 8
Reward Normalization Yes

# of Workers 1
# of environments per worker 64

Total timesteps 25M
LSTM No

Frame Stack No
Optimizer Adam optimizer

Entropy bonus 0.01
PPO clip range 0.2
Learning rate 5× 10−4

αr (DrAC) 0.1
β (Rand-FM) 0.002

C Data augmentation

In our experiments, we use five augmentation methods: crop, grayscale, cutout color, random
convolution and color jitter. We refer the implementation of augmentations from Lee et al. [20]
(random convolution), Laskin et al. [19] (cutout color, color jitter) and Raileanu et al. [25] (grayscale,
crop). We expect the generalization about background change from random convolution, color jitter,
gray, cutout color. About the change of levels, we use crop and cutout color for generalization.
Examples of data augmentation are represented below:

(a) Original (b) Rand Conv (c) Crop

(d) Color jitter (e) Gray (f) Cutout color

Figure 5: Examples of visual augmentations

D Generalization with augmented observations in RL

We mention that data augmentation causes the bias toward generalization in 4.2. Thus, we examine
how data augmentation improves the generalization during training. First, We compare the policy
distances between augmented observations and non-augmented observations for each usage timing of
augmentations in Figure 6(a) and Figure 6(b). We measure the policy distance using Jensen-Shannon
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Figure 6: Comparison of distance using Jensen-Shannon Divergence (JSD) between policy from
augmented observations and non-augmented observations in (a) Jumper(easy mode) with random
convolution and (b) Bigfish (easybg mode) with crop. We compare different two samples which
trained on Bigfish (easybg mode) about test performance on unseen levels in (c) and optimizing
trajectory in (d). We call two samples as S1 and S2 in both (c) and (d). Optimizing trajectory in
(c) consists of scattered network parameters after dimension reduction using PCA. The graph of
JSD shows that the distance between original and augmented observations is not maintained after
augmentation interrupted, in spite of retained generalization in Figure 2(e) and Figure 2(f). Figure (c)
represents the learning direction are biased except the S2(0, 1) and (0, 0). This result coincides with
the score in (d). Thus, the direction of bias in (c) is toward improving the generalization.

Divergence because it is a lower bound for the joint empirical risk across non-augmented and aug-
mented observations [16, 25]. The policy distances are remarkably reduced when using augmentation
in spite of delayed usage at (10, 25), (20, 25) in Figure 6(a) and Figure 6(b). Conversely, the policy
distances of (0, 5) and (0, 15) have a rapid increase after interrupted augmentation. Nevertheless, the
generalization is similar with fully utilized augmentation such as (0, 25) in Figure 2(e) and Figure 2(f).
This shows that the generalization about the change of backgrounds and levels is not relevant to
policy consistency about augmented observations after generalization.

We analyze about two samples, which are trained on Bigfish environments, for verifying when
generalization occurs. When using augmentation from the initial time, the rising time of performance
differs for each sample in Figure 6(d). Sample 1 increases rapidly almost as soon as it starts, while
Sample 2 begins to increase after learning for 5M time steps. After 1M, 5M, and 10M, the suspension
of the augmentation increases the performance such as non-interrupted one, except when S2(0, 1)
at Figure 6(d). Also, Figure 6(c) represent the optimizing trajectories [21] about each sample and
PPO using PCA on model parameter space. The method of plotting trajectory is explained in the
supplementary material in detail. Each sample learns through different learning paths from the
randomly initialized point. We can see that the rest of the agents except S2(0, 1) and PPO are
biased toward the generalized orientation. Thus, augmentation causes bias toward improving the
generalization, but the learning path’s direction differs depending on the initial point. Furthermore,
the time step to regularize by augmentation also differs in each random seed.

As a result, the generalization is made by bias toward generalization while matching the policy
between augmented observations and non-augmented observations. We need augmentation until
the model parameters are biased toward generalization. However, the time to regularize is random
according to the learning path. Thus, it is hard to decide when we can stop the augmentation.

E Optimization path plotting

We refer the method from Lie et al. [21] and Golatkar et al. [10] to represent the optimization
trajectories in Figure 6(c). We do PCA analysis with the matrix M, which is combined the weights of
the networks for each sample and duration of augmentation. The PCA analysis projects the weights
of the networks on the first two principal components as shown in Figure 6(c). We can take a guess
about the direction of optimization from the PCA.
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F Robustness in loss function change

In ExDA, we transfer the policy after training 20M time steps with PPO. Thus, we explain why other
augmentations are not used after pre-training. We compare the results of training and test performance
with Drac [25], Rand-FM [20], Rad [19] when we train each method for 5M after training PPO for
20M time steps. We use random convolution and crop as data augmentation methods, and we do not
compare with RAD when we use crop in Figure 9 and Figure 10. The crop method used in our paper
do not work well in RAD, because they use a different crop method with [25] in their paper [19].
InDA is more stable than others in training, and it affects generalization performance.
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Figure 7: Comparison of the training performance when random convolution is applied after 20M
timesteps with various augmentation methods.
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Figure 8: Comparison of the test performance when random convolution is applied after 20M
timesteps with various augmentation methods.

Every training curves decline immediately after starting training with augmented observations at 20M
time steps. The objective function is changed to each baseline, and augmented data is newly added to
data distribution. Thus, the optimizer should find a new optimal point for new objective function and
data. During find the new optimal points, the agent learns along with the different directions from
the optimization direction in pure PPO. Thus, performance can be degraded because the learning
direction on loss landscape is different from maximizing rewards on non-augmented data in PPO.
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In spite of using self-supervised learning or representation learning, the policy is changed because
they update the same network’s parameter for matching policy or latent features, such as DrAC [25]
and Rand-FM [20]. However, InDA is more stable than the others because we distill the fixed policy
and value using DA. It does the stable training through conserving the policy on non-augmented
observations during optimizing for augmented data.
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Figure 9: Comparison of the training performance when crop is applied after 20M timesteps with
InDA and Drac.
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Figure 10: Comparison of the test performance when crop is applied after 20M timesteps with InDA
and Drac.
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G Ablation study of ExDA

G.1 Initialization and regularization term

In this section, we do an ablation study about the factor of ExDA. We mention the loss function and
re-initialization issue in subsection 3.3. ExDA does not have to minimize LV D because the value
function is useless after RL training. The below results show that LV D cannot give any benefit in
ExDA. Thus, we only use LPD for computational complexity. Furthermore, we also compare to
verify the effect of non-stationarity with a re-initialized agent before distillation. Igl et al. [15] argued
that the non-stationarity causes the reduction of generalization. However, the re-initialization is not
critical in test performance, as shown in Figure 12. Moreover, sometimes re-initialization makes
it difficult to distill training performance such as Fruitbot and Ninja in Figure 11. We use random
convolution as an augmentation method in here.
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Figure 11: Training performance of ExDA with re-initialization or regularization with value funtion.
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Figure 12: Test performance of ExDA with re-initialization or regularization with value funtion on
unseen backgrounds.

G.2 ExDA after InDA with various backgrounds

When augmentation helps the training, ExDA struggle to follow the training performance of InDA
because ExDA’s training performance is limited by pre-trained agent’s policy. Thus, we use InDA for
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ExDA’s pre-training , and call it as ExDA (InDA). As shown in Table 3, ExDA (InDA) is comparable
to InDA, but not beyond. Thus, unless there is a meaningful difference in training performance,
ExDA has no better generalization than InDA. However, in computational complexity, ExDA is more
efficient than others such as InDA and DrAC when they have a similar performance. In the following
section, we discuss computational complexity.

Easy PPO InDA ExDA (PPO) ExDA (PPO) + reinit ExDA (InDA) ExDA (InDA) + reinit

Jumper 8.55 8.94 8.5 8.6 8.83 8.83
±0.17 ±0.09 ±0.183 ±0.156 ±0.215 ±0.126

Ninja 7.49 8.88 7.03 7.23 8.71 8.56
±0.42 ±0.34 ±0.058 ±0.159 ±0.344 ±0.394

Climber 8.63 8.5 8.1 8.09 8.16 7.99
±0.46 ±0.29 ±0.268 ±0.268 ±0.441 ±0.383

Table 2: The comparison with diverse agents which are trained with ExDA

Easy PPO InDA ExDA (PPO) ExDA (PPO) + reinit ExDA (InDA) ExDA (InDA) + reinit

Jumper 6.85 7.94 7.54 7.48 7.98 7.67
±0.19 ±0.19 ±0.158 ±0.154 ±0.148 ±0.155

Ninja 6.29 6.5 5.56 5.73 6.27 5.94
±0.19 ±0.19 ±0.158 ±0.154 ±0.148 ±0.155

Climber 6.96 7.28 7.06 6.89 6.8 5.45
±0.65 ±0.35 ±0.541 ±0.237 ±0.441 ±0.383

Table 3: Test performance of agents, which is trained on easy mode with random convolution.

G.3 Computational complexity

We compare the computational complexity with ExDA and InDA. InDA do DA for every 25M
observations during training and reuse the sample in three times. However, ExDA only use 0.5M for
DA during 30 epochs. Thus, ExDA is almost 5 times more efficient than InDA by roughly calculation.
Furthermore, the ExDA save the time for augmentation comparing to InDA. When we train with
same computational setting (GPU: GeForce RTX 2080 TI), ExDA only consumes 5 hours + 2 hours
(PPO) when using random convolution, but, InDA consumes 18 hours. Thus, we recommend ExDA
when InDA cannot give meaningful gain in training performance.

H Time matter in training

This section shows every result of Figure 2 about time dependency with InDA. We experiment with
random convolution, crop, color jitter, gray, cutout color and evaluate the test on unseen backgrounds
(random convolution, color jitter, gray, cutout color) and levels (random crop, cutout color). However,
the effect of generalization is hard to recognize in most cases, as shown in Appendix I. Thus, we
mainly discuss the most effective augmentation, such as random convolution and crop in the main
paper, and only represent some environments that have helped the generalization by color jitter, gray,
and cutout color. easybg mode is used as default mode with three easy mode (Climber, Jumper, Ninja)
in our experiments. The shaded regions and solid line represent the standard deviation and mean,
across five runs (random convolution, crop) and three runs (color jitter, cutout color, gray).
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H.1 Random convolution
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Figure 13: Comparison of training performance according to usage period of augmentation with
InDA (random convolution): The easybg is disturbed by random convolution, but, easy mode is
improved training performance by random convolution.
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Figure 14: Comparison of generalization on unseen backgrounds according to usage period of
augmentation with InDA (random convolution): Most cases’ tendencies are coincidence with the
jumper, which is mentioned in the main paper..
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H.2 Crop
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Figure 15: Comparison of training performance according to usage period of augmentation with InDA
(crop): Crop improve the training performance in Bigfish, Chaser, Dodgeball, Plunder. Furthermore,
interrupted augmentation is also improved similarly with (0, 25).
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Figure 16: Comparison of generalization on unseen levels according to usage period of augmentation
with InDA (crop): The generalization is improved by crop, and it is conserved after interrupted in
Heist and Maze. Bigfish, Chaser, Dodgeball, and Plunder have similar curves with training.
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H.3 Color jitter
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Figure 17: Comparison of training performance according to usage period of augmentation with
InDA (color jitter): Color jitter does not impede the training as much as random convolution in most
environments. However, color jitter helps the training in easy mode.
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Figure 18: Comparison of generalization on unseen backgrounds according to usage period of
augmentation with InDA (color jitter): Test performance is influenced by color jitter as the trend,
which is similar to random convolution.
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H.4 Gray
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Figure 19: Comparison of training performance according to usage period of augmentation with
InDA (gray): The effect of gray is similar to color jitter.
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Figure 20: Comparison of generalization on unseen backgrounds according to usage period of
augmentation with InDA (gray): Gray improves the generalization, even if the usage of augmentation
is delayed. However, it is hard to recognize by low effectiveness of gray.
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Figure 21: Comparison of training performance according to usage period of augmentation with
InDA (cutout color): Cutout color impedes the training, especially Chaser and Dodgeball are ruined.
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Figure 22: Comparison of generalization on unseen backgrounds according to usage period of
augmentation with InDA (cutout color): Chaser and Dodgeball have benefited from delayed augmen-
tation because the early used cutout color ruins the training.

I Benchmark on Modified Open AI Procgen

We compare the training and test performance on various environments with each augmentation. We
also use DrAC [25], RAD [19], Rand-FM [20] as baselines. In every reults, we train the agent for
25M timesteps, except the ExDA. ExDA is trained with 0.5M after training 20M with PPO. We also
compare the average score after normalized by PPO’s score and indicate the best score as bold except
the Oracle. Red one is the Oracle score, which is trained on test environments such as easybg-test,
easy-test. Mean and standard deviation is calculated after five runs (random convolution, crop) and
three runs (color jitter, cutout color, gray). For your information, RAD does not work well when
using crop, because we use [25]’s crop method which is different with [19].

I.1 Random convolution

Easy PPO DrAC Rand_FM RAD InDA ExDA

Climber 8.63 8.33 8.27 7.93 8.5 8.1
±0.462 ±0.407 ±0.187 ±0.37 ±0.291 ±0.268

Jumper 8.55 8.62 8.47 8.51 8.94 8.5
±0.168 ±0.075 ±0.13 ±0.102 ±0.09 ±0.183

Ninja 7.49 8.57 7.69 7.9 8.88 7.03
±0.421 ±0.069 ±0.529 ±0.652 ±0.343 ±0.058

Avg 1.00 1.04 0.99 0.99 1.07 0.96
Table 4: Training performance benchmark on easy with random convolution.
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Easy PPO DrAC Rand_FM RAD InDA ExDA

Climber 6.96 7.21 6.63 6.08 7.28 7.06
±0.651 ±0.447 ±0.39 ±0.264 ±0.341 ±0.541

Jumper 6.85 7.97 6.7 6.74 7.94 7.54
±0.192 ±0.128 ±0.167 ±0.299 ±0.185 ±0.158

Ninja 6.29 6.18 6.22 6.22 6.5 5.56
±0.529 ±0.193 ±0.57 ±0.324 ±0.191 ±0.158

Avg 1.00 1.06 0.97 0.95 1.08 1
Table 5: Test performance benchmark on unseen backgrounds (easy, random convolution).

Easybg PPO Oracle DrAC Rand-FM RAD InDA ExDA

Climber 12.35 9.78 11.23 12.2 12.15 10.89 12.07
±0.083 ±0.306 ±0.353 ±0.128 ±0.09 ±0.162 ±0.073

Coinrun 9.64 7.11 9.17 9.57 9.56 8.81 9.44
±0.07 ±0.205 ±0.161 ±0.126 ±0.107 ±0.992 ±0.149

Fruitbot 29.78 29.74 26.07 30.19 29.92 26.17 28.76
±0.899 ±0.443 ±0.658 ±0.512 ±0.623 ±0.575 ±0.79

Heist 9 7.21 5.95 7.7 7.94 5.15 8.72
±0.513 ±0.27 ±0.343 ±0.6 ±0.919 ±0.614 ±0.533

Jumper 8.95 8.72 8.86 8.91 9.04 8.78 8.94
±0.066 ±0.119 ±0.088 ±0.13 ±0.135 ±0.172 ±0.048

Maze 9.75 8.56 8.1 9.61 9.51 9.12 9.73
±0.513 ±0.27 ±0.343 ±0.6 ±0.919 ±0.614 ±0.533

Ninja 9.75 7.81 9.43 9.75 9.78 9.53 9.7
±0.073 ±0.422 ±0.109 ±0.084 ±0.03 ±0.113 ±0.062

Avg 1.00 0.85 0.98 0.98 0.88 0.88 0.98
Table 6: Training performance benchmark on easybg with random convolution.

Easybg PPO Oracle DrAC Rand-FM RAD InDA ExDA

Climber 1.97 9.78 7.13 2 2.34 7.36 8.11
±0.51 ±0.306 ±0.419 ±0.59 ±1.258 ±0.273 ±0.457

Coinrun 5.48 7.11 7.54 5.65 5.48 7.14 7.81
±0.583 ±0.205 ±0.188 ±0.216 ±0.542 ±0.479 ±0.388

Fruitbot 10.83 29.74 19.77 15.19 11.61 21.93 23.57
±1.908 ±0.443 ±0.77 ±3.363 ±4.615 ±0.664 ±0.745

Heist 5.18 7.21 5.47 5.03 4.78 4.96 8.15
±0.838 ±0.27 ±0.326 ±0.6 ±0.785 ±0.777 ±0.633

Jumper 3.38 8.72 8.14 4.12 3.77 8.16 7.87
±0.368 ±0.119 ±0.17 ±0.514 ±0.435 ±0.231 ±0.485

Maze 6.48 8.56 6.4 6.6 6.29 8.41 8.92
±0.523 ±0.665 ±0.419 ±0.494 ±0.466 ±0.436 ±0.155

Ninja 3.83 7.81 6.8 3.36 3.98 6.61 6.85
±0.462 ±0.422 ±0.243 ±0.505 ±0.44 ±0.327 ±0.25

Avg 1.00 2.33 1.86 1.08 1.04 1.92 2.11
Table 7: Test performance benchmark on unseen backgrounds (easybg, random convolution).
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I.2 Crop

Easybg PPO DrAC RAD InDA ExDA

Bigfish 14.08 15.92 5.05 19.35 11.07
±2.229 ±1.535 ±3.718 ±2.792 ±3.683

Chaser 5.63 3.97 1.24 6.52 4.81
±0.467 ±0.642 ±0.253 ±0.825 ±0.325

Dodgeball 7.71 10.74 1.23 12.74 6.74
±0.678 ±0.711 ±0.944 ±1.729 ±0.815

Heist 9 7.58 4.53 8.15 8.79
±0.513 ±0.11 ±0.266 ±0.57 ±0.424

Maze 9.75 9.03 3.95 9.63 9.72
±0.033 ±0.348 ±3.418 ±0.143 ±0.026

Plunder 7.18 10.73 0 10.29 6.59
±0.73 ±1 ±0 ±0.285 ±1.108

Avg 1.00 1.08 0.28 1.25 0.91
Table 8: Training performance benchmark on easybg with crop.

Easybg PPO DrAC RAD InDA ExDA

Bigfish 7.43 13.63 4.93 15.19 6.35
±1.65 ±1.504 ±3.696 ±2.724 ±2.466

Chaser 4.83 3.59 1.2 5.86 4.48
±0.56 ±0.519 ±0.259 ±0.745 ±0.379

Dodgeball 3.78 9.26 1.11 11.92 3.79
±0.659 ±0.685 ±0.831 ±1.556 ±0.748

Heist 4.13 5.4 3.81 5.91 5.35
±0.146 ±0.448 ±0.412 ±0.516 ±0.22

Maze 6.79 7.77 3.9 8.01 7.74
±0.158 ±0.328 ±3.377 ±0.288 ±0.054

Plunder 5.94 9.49 0 8.98 5.98
±0.698 ±0.605 ±0 ±0.369 ±0.944

Avg 1.00 1.519 0.459 1.798 1.094
Table 9: Test performance benchmark on unseen levels (easybg, crop).

I.3 Color jitter

Easy PPO DrAC RAD InDA ExDA

Climber 8.5 9.33 8.64 9.43 8.18
±0.575 ±0.212 ±0.156 ±0.21 ±0.45

Jumper 8.54 8.64 8.63 8.92 8.44
±0.22 ±0.135 ±0.17 ±0.174 ±0.185

Ninja 7.48 8.69 8.24 9.23 7.37
±0.324 ±0.331 ±0.251 ±0.081 ±0.212

Avg 1.00 1.09 1.04 1.13 0.98
Table 10: Training performance benchmark on easy with color jitter.
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Easy PPO DrAC RAD InDA ExDA

Climber 6.92 8.53 8.37 8.66 8.14
±0.761 ±0.422 ±0.023 ±0.24 ±0.477

Jumper 6.89 7.58 7.86 7.97 7.25
±0.223 ±0.053 ±0.297 ±0.292 ±0.131

Ninja 6.39 6.79 7.31 7.57 6.2
±0.585 ±0.32 ±0.613 ±0.555 ±0.085

Avg 1.00 1.13 1.16 1.2 1.07
Table 11: Test performance benchmark on unseen backgrounds (easy, color jitter).

Easybg PPO Oracle DrAC RAD InDA ExDA

Climber 12.35 9.78 11.84 12 11.94 12.04
±0.083 ±0.306 ±0.223 ±0.256 ±0.071 ±0.152

Coinrun 9.64 7.11 8.94 8.62 9.74 9.45
±0.07 ±0.205 ±0.285 ±0.091 ±0.05 ±0.09

Fruitbot 29.78 29.74 30.05 29.48 26.87 29
±0.899 ±0.443 ±0.611 ±0.507 ±0.912 ±0.878

Heist 9.00 7.21 7.22 6.89 7.63 8.53
±0.513 ±0.27 ±0.76 ±0.348 ±0.338 ±0.307

Jumper 8.95 8.72 8.9 8.94 9.03 9.03
±0.066 ±0.119 ±0.05 ±0.029 ±0.123 ±0.086

Maze 9.75 8.56 9.46 9.46 9.3 9.67
±0.513 ±0.27 ±0.404 ±0.184 ±0.379 ±0.111

Ninja 9.75 7.81 9.52 9.65 9.75 9.54
±0.073 ±0.422 ±0.393 ±0.112 ±0.046 ±0.171

Avg 1.00 0.85 0.95 0.94 0.96 0.98
Table 12: Training performance benchmark on easbg with color jitter.

Easybg PPO Oracle DrAC RAD InDA ExDA

Climber 1.97 9.78 5.05 4.31 4.25 4.34
±0.51 ±0.306 ±0.407 ±0.492 ±0.338 ±0.856

Coinrun 5.48 7.11 6.46 6.47 7.13 6.53
±0.583 ±0.205 0±.526 ±0.194 ±0.372 ±0.375

Fruitbot 10.83 29.74 9.49 8.51 10.88 18
±1.908 ±0.443 ±8.098 ±1.941 ±2.263 ±7.442

Heist 5.18 7.21 5.65 5.39 5.66 5.43
±0.838 ±0.27 ±0.984 ±0.745 ±0.271 ±0.508

Jumper 3.38 8.72 5.65 5.67 5.81 5.31
±0.368 ±0.119 ±0.09 ±0.953 ±0.369 ±0.351

Maze 6.48 8.56 8.22 8.26 8.35 8.65
±0.523 ±0.665 ±0.455 ±0.175 ±0.238 ±0.017

Ninja 3.83 7.81 4.22 4.18 4.34 4.07
±0.462 ±0.422 ±0.487 ±0.475 ±0.345 ±0.332

Avg 1.00 2.33 1.44 1.37 1.43 1.48
Table 13: Test performance benchmark on unseen backgrounds (easybg, color jitter).
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Easybg PPO Oracle DrAC RAD InDA ExDA

Climber 12.35 9.78 11.12 11.84 11.9 12.06
±0.083 ±0.306 ±0.26 ±0.505 ±0.115 ±0.03

Coinrun 9.64 7.11 9.53 9.49 9.74 9.48
±0.07 ±0.205 ±0.135 ±0.188 ±0.046 ±0.08

Fruitbot 29.78 29.74 30.01 29.6 28.03 29.32
±0.899 ±0.443 ±0.572 ±0.27 ±0.994 ±0.937

Heist 9.00 7.21 6.24 6.53 5.51 8.51
±0.513 ±0.27 ±0.214 ±0.474 ±0.146 ±0.225

Jumper 8.95 8.72 8.91 8.93 9.18 8.95
±0.066 ±0.119 ±0.19 ±.247 ±0.18 ±0.075

Maze 9.75 8.56 9.46 9.48 9.2 9.75
±0.513 ±0.27 ±0.192 ±0.08 ±0.367 ±0.087

Ninja 9.75 7.81 9.73 9.61 9.6 9.72
±0.073 ±0.422 ±0.045 ±0.096 ±0.081 ±0.021

Avg 1.00 0.85 0.93 0.94 0.95 0.99
Table 14: Training performance benchmark on easybg with gray.

I.4 Gray

Easybg PPO Oracle DrAC RAD InDA ExDA

Climber 1.97 9.78 1.75 1.81 1.24 2.45
±0.51 ±0.306 ±0.654 ±0.211 ±0.502 ±0.727

Coinrun 5.48 7.11 5.34 5.31 6.05 5.79
±0.583 ±0.205 ±0.751 ±0.501 ±0.465 ±0.061

Fruitbot 10.83 29.74 17.57 15.47 15.12 15.81
±1.908 ±0.443 ±0.191 ±1.449 ±0.958 ±0.11

Heist 5.18 7.21 5.43 5.15 4.32 5.1
±0.838 ±0.27 ±0.18 ±0.172 ±0.112 ±0.504

Jumper 3.38 8.72 2.7 4.07 3.55 4.47
±0.368 ±0.119 ±0.894 ±0.46 ±0.992 ±0.415

Maze 6.48 8.56 7.77 7.93 7.67 8.33
±0.523 ±0.665 ±0.611 ±0.104 ±0.312 ±0.119

Ninja 3.83 7.81 3.72 3.91 4.02 4.03
±0.462 ±0.422 ±0.131 ±0.62 ±0.666 ±0.071

Avg 1.00 2.33 1.03 1.04 0.97 1.13
Table 15: Test performance benchmark on unseen backgrounds (easybg, gray).

Easy PPO DrAC RAD InDA ExDA

Climber 8.5 6.95 7.55 7.22 8.05
±0.575 ±0.547 ±0.256 ±0.312 ±0.461

Jumper 8.54 8.4 8.58 8.85 8.5
±0.22 ±0.224 ±0.199 ±0.015 ±0.224

Ninja 7.48 6.67 7.1 8.91 7.05
±0.324 ±0.435 ±0.718 ±0.165 ±0.24

Avg 1 0.9 0.95 1.026 0.96
Table 16: Training performance benchmark on easybg with gray.
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Easy PPO DrAC RAD InDA ExDA

Climber 6.92 4.49 5.57 5.11 7.24
±0.761 ±0.332 ±0.307 ±0.483 ±0.721

Jumper 6.89 5.38 6.59 6.35 6.87
±0.223 ±0.215 ±0.055 ±0.234 ±0.182

Ninja 6.39 5.67 5.14 6.84 6.01
±0.585 ±0.318 ±0.628 ±0.206 ±0.651

Avg 1 0.77 0.86 0.91 0.99
Table 17: Test performance benchmark on unseen backgrounds (easy, gray).

I.5 Cutout color

Easybg PPO Oracle DrAC RAD InDA ExDA

Climber 12.35 9.78 11.92 8.26 11.76 12.07
±0.083 ±0.306 ±0.158 ±0.663 ±0.027 ±0.127

Coinrun 9.64 7.11 9.23 8.07 9.7 9.39
±0.07 ±0.205 ±0.323 ±0.645 ±0.084 ±0.012

Fruitbot 29.78 29.74 29.73 29.2 27.18 28.95
±0.899 ±0.443 ±0.898 ±0.64 ±1.302 ±0.907

Heist 9.00 7.21 8.47 6.25 6.1 8.65
±0.513 ±0.27 ±0.397 ±0.704 ±0.693 ±0.21

Jumper 8.95 8.72 8.87 8.75 9.1 8.91
±0.066 ±0.119 ±0.123 ±0.131 ±0.081 ±0.053

Maze 9.75 8.56 9.41 9.17 9.27 9.74
±0.513 ±0.27 ±0.134 ±0.118 ±0.125 ±0.133

Ninja 9.75 7.81 9.65 7.17 9.72 9.7
±0.073 ±0.422 ±0.138 ±1.993 ±0.02 ±0.02

Bigfish 13.89 13.22 2.54 5.19 1.95 11.22
±3.127 ±1.488 ±0.13 ±3.658 ±0.311 ±3.66

Chaser 5.49 3.04 2.88 1.98 3.34 5
±0.562 ±0.183 ±0.699 ±0.112 ±0.755 ±0.187

Dodgeball 7.76 5.74 5.71 5.98 2.79 6.57
±0.859 ±1.118 ±1.008 ±0.103 ±1.612 ±0.693

Plunder 7.15 6.05 5.43 4.34 4.92 6.87
±0.95 ±0.58 ±0.082 ±0.24 ±0.625 ±1.255

Avg 1.00 0.77 0.82 0.72 0.76 0.94
Table 18: Training performance benchmark on easybg with cutout color.

Easy PPO Oracle DrAC RAD InDA ExDA

Climber 8.5 9.85 7.69 6.67 9.02 8.02
±0.575 ±0.298 ±0.237 ±0.381 ±0.473 ±0.506

Jumper 7.48 7.56 6.28 5.6 8.57 7.41
±0.324 ±0.286 ±0.257 ±0.276 ±0.122 ±0.125

Ninja 8.54 8.67 8.45 8.32 8.93 8.53
±0.22 ±0.132 ±0.183 ±0.051 ±0.166 ±0.095

Avg 1.00 1.06 0.91 0.84 1.08 0.98
Table 19: Training performance benchmark on easy with cutout color.
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Easybg PPO Oracle DrAC RAD InDA ExDA

Climber 1.97 9.78 3.54 3.97 3.4 4.29
±0.51 ±0.306 ±0.164 ±0.999 ±0.645 ±0.154

Coinrun 5.48 7.11 5.87 5.93 6.2 6.41
±0.583 ±0.205 ±.251 ±0.061 ±0.357 ±0.131

Fruitbot 10.83 29.74 18.18 19.24 17.69 17.7
±1.908 ±0.443 ±3.744 ±3.385 ±4.026 ±0.888

Heist 5.18 7.21 6.6 5.76 4.97 7.51
±0.838 ±0.27 ±.092 ±0.551 ±0.33 ±0.119

Jumper 3.8 8.72 4.99 5.48 5.43 6.02
±0.368 ±0.119 ±0.114 ±0.28 ±1.116 ±0.235

Maze 6.48 8.56 7.33 7.66 7.01 7.83
±0.523 ±0.665 ±0.223 ±.243 ±0.17 ±0.22

Ninja 3.83 7.81 4.29 3.96 3.75 3.76
±0.462 ±0.422 ±0.245 ±0.152 ±0.333 ±0.348

Bigfish 3.4 13.22 1.29 2.5 1.29 4.49
±0.487 ±1.488 ±0.08 ±2.331 ±0.152 ±0.776

Chaser 0.91 3.04 1.08 1.13 1.68 1.73
±0.061 ±0.183 ±0.038 ±0.157 ±0.305 ±0.698

Dodgeball 2.17 5.74 3.92 4.02 1.97 4.37
±0.53 ±1.118 ±0.53 ±0.345 ±1.098 ±0.527

Plunder 6.87 6.05 5.27 4.77 4.71 6.45
±0.933 ±0.58 ±0.208 ±0.612 ±0.622 ±1.232

Avg 1.00 2.44 1.27 1.33 1.19 1.53
Table 20: Test performance benchmark on unseen backgrounds (easybg, cutout color).

Easy PPO Oracle DrAC RAD InDA ExDA

Climber 6.92 9.85 6.54 5.24 7.61 7.25
±0.761 ±0.298 ±0.213 ±0.417 ±0.486 ±0.325

Jumper 6.39 7.56 5.06 4.9 6.71 5.78
±0.585 ±0.286 ±0.137 ±0.382 ±0.352 ±0.488

Ninja 6.89 8.67 6.88 6.79 6.81 6.92
±0.223 ±0.132 ±0.083 ±0.278 ±0.355 ±0.212

Avg 1.00 1.29 0.91 0.84 1.05 0.99
Table 21: Test performance benchmark on unseen backgrounds (easy, cutout color).
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Easybg PPO DrAC RAD InDA ExDA

Climber 11.14 10.77 7.26 9.45 10.75
±0.077 ±0.279 ±0.843 ±0.193 ±0.114

Coinrun 8.64 8.36 6.89 7.76 8.32
±0.05 ±0.348 ±0.503 ±0.096 ±0.224

Fruitbot 28.26 26.88 26.22 23.79 26.33
±0.461 ±1.276 ±1.258 ±0.971 ±0.894

Heist 4.07 3.92 2.27 2.15 3.93
±0.07 ±0.276 ±0.448 ±0.553 ±0.184

Jumper 7.38 7.32 6.98 6.68 7.25
±0.15 ±0.195 ±0.199 ±0.24 ±0.117

Maze 6.8 6.84 6.04 5.91 6.17
±0.2 ±0.137 ±0.258 ±0.03 ±0.162

Ninja 8.56 8.63 6.28 7.81 8.34
±0.061 ±0.132 ±1.866 ±0.21 ±0.119

Bigfish 7.16 0.91 2.29 0.95 6.04
±2.263 ±0.037 ±2.306 ±0.06 ±2.783

Chaser 4.54 2.61 1.8 2.47 4.22
±0.503 ±0.509 ±0.12 ±0.506 ±0.331

Dodgeball 3.78 2.71 2.53 1.26 2.82
±0.823 ±0.362 ±0.135 ±0.48 ±0.593

Plunder 5.99 5.08 4.07 4.55 5.83
±0.814 ±0.305 ±0.479 ±0.393 ±1.061

Avg 1.00 0.83 0.69 0.69 0.93
Table 22: Test performance benchmark on unseen levels (easybg, cutout color).

Easy PPO DrAC RAD InDA ExDA

Climber 5.45 5.9 5.3 4.26 5.71
±0.77 ±0.352 ±0.307 ±0.122 ±0.303

Jumper 5.81 6.01 4.93 4.56 5.43
±0.227 ±0.389 ±0.08 ±0.161 ±0.333

Ninja 5.77 5.67 5.8 5.65 5.87
±0.09 ±0.023 ±0.071 ±0.166 ±0.079

Avg 1.00 1.03 0.94 0.85 1
Table 23: Test performance benchmark on unseen levels (easy, cutout color).
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