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A D3 ALGORITHM

Algorithm 1 Distributional Dataset Distillation

Require: Distillation Algorithm MTT; Distribution Matching Algorithm DM; Expert trajectories set
E . Total number of classes C; Generator Neural Network f(·;θ) with parameters θ; number of
training steps N ; Per-class latent distribution parameters {(µi

c,Σ
i
c)

PPC
i=1 }Cc=1

1: for i = 1, ... N do
2: LMTT = MTT(PS , E) ▷ Compute MTT and KL Loss
3: (µc,Σc,θ)← (µc,Σc,θ)−∇µc,Σc,θLMTT ▷ Update distilled distribution w.r.t LMTT

4: LMMD = MMD(PS ,D) ▷ Compute DM Loss
5: (µc,Σc,θ)← (µc,Σc,θ)−∇µ,Σ,θLDM ▷ Update distilled distribution w.r.t LDM

6: end for
7: Return: latent prior distribution per class {(µi

c,Σ
i
c)

PPC
i=1 }Cc=1 and posterior distribution f(·;θ)

B DETAILS ON THE DECODER

Our decoder is adopted from the decoder part of the VAE designed by Li et al. (2017), with small
modifications. First, we project the 64 dimensional latent z in to a 256 dimension feature vector,
which is then fed into a sequence of 2D ConvTranspose blocks. Each of the decoder block
contains a ConvTranspose layer followed by a BatchNorm layer and a LeakyReLU activation.
We inherent the default parameter choice for those layers: starting from the dimension of feature
vector(256 channels), each ConvTranspose layer reduces the channel number from the previous
block by half. After the those blocks, there is a 2D convlutional layer followed by a tanh activation.
The exact dimension of the convolution layer differs by image output size. The original VAE was
designed only for images with size 32× 32, and used only 3 blocks. We also increase the number of
deconv blocks for larger datasets: 4 for TinyImageNet and 5 for ImageNet subsets.

C DETAILS ON EXPERIMENT SETUP

In this section, we provide a detailed description on experiment setups for all experiment resuls
presented in the paper.

Dataset CIFAR-10 stands as the smallest dataset in our suite of experiments. It encompasses a
corpus of 50,000 training images, each with dimensions of 32 × 32. TinyImageNet, in contrast,
presents a more extensive dataset, consisting of 100,000 images distributed across 200 classes.
The images within TinyImageNet are characterized by larger dimensions, measuring 64 × 64. In
comparison to CIFAR-10, TinyImageNet exhibits enlargement across all three dimensions: image
size, class count, and image quantity. Finally, we extend our investigation to include two renowned
subsets of ImageNet: ImageNette and ImageWoof. In line with established practices from prior
work, we resize the images within both subsets of ImageNet to dimensions of 128 × 128. Each
subset comprises 10 classes in their respective training sets, with ImageNette possessing a total size
of 12,894 images, and ImageWoof containing 12,454 images.

Dataset preprocessing For all three datasets, only a simple channel-based mean-variance scaling
is performed as the preprocessing step. For ImageNet subsets, we crop the data into size 128× 128.
For CIFAR-10 we perform ZCA whitening as done in all data distillaion work (Nguyen et al. (2020),
Nguyen et al. (2021)) using Kornia implementation with default parameters (Riba et al. (2020).
To generated experts used in MTT, we also perform random simple augmentations to the images,
including rotations, flip, crop, and color changes. The preprocessing step is chosen to mirror the
baselines we make direct comparisons to.

Student network architecture The student network is a neural network consists of multiple convet
blocks, and we call them ConvNet. The ConvNet configuration consists of multiple convolutional
blocks, each housing a convolutional layer, a normalization layer, ReLU activation, and an average
pooling layer. For larger datasets, we increase the number of convolutional blocks used in the
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ConvNet. For CIAR10 we use ConvNet with 3 convolutional blocks, and for TinyImageNet we use 4
convolution blocks. For ImageNet subsets, we use 5 convolutional blocks. In our DM objective, we
use the features generated by those convolutional blocks to compute MMD. Finally, a linear layer
with Softmax activation is used to map the features generated by convolutional blocks into class
prediction.

Training The distillation time is not the primary concern for data distillation tasks since it only
needs to be done once for all downstream tasks. However, methods that are overly expensive to train
might become infeasible when distilling large datastes. Because we compute and back propagate on
both MTT and DM losses, our compute time is comparable to both method combined. For CIFAR-10,
our method converges around 10,000 steps, totaling around 10 GPU hours. For TinyImageNet,
our method converges around 20,000 steps, totalling around 160 GPU hours. Finally, for the two
ImageNet subsets, our method converges around 3,000 steps, totalling around 20 GPU hours.

Evaluation Our evaluation is systematically structured as follows:

1. Learning Distilled Distributions: We execute the method delineated in Algorithm 1 to learn
distilled distributions tailored to each dataset under consideration.

2. Training Student Networks: We initiate the training of five neural networks with randomly
initialized parameters from scratch. These student networks may adhere to the same architectural
encountered during distillation (i..e, ConvNet, see section 4.1), or they may deviate into different
choices (i.e., cross architecture generalization section 4.2).

3. Validation of Performance: To train each student network, we draw data samples from the distilled
distribution as the training dataset. We assess their performance on the original validation dataset.

For evaluation, we use SGD optimizer with momentum 0.9 and weight decay 5 × 10−4. We only
allow hyper-parameter tuning on the learning rate and we train student networks until convergence.

D ABLATION STUDY

D.1 LOSS FUNCTION CONTRIBUTION

To understand the contribution of each loss terms, we repeat Algo. 1 to performance distillation
on CIFAR-10 with subsets of different loss terms. Table 7 exhibits test performance of 1 PPC and
Table 8 exhibits test performance for 2 PPC, where there is an additional diversity term in the loss
function. Both tables indicate that MTT loss generate distributions that work well on seen architecture,
but fail to generalize to new architectures. On the other hand, DM loss generates distributions that
generalize well to unseen architectures but overall converge to a lower distillation quality. The sub-par
performance for DM on seen architecture is more prominent at higher PPC case, as reflected in
Table 8. However, our when we use MTT and DM together, the distilled distributions show a clear
improvement from both loss terms alone. Table 9 shows that diversity loss contributed to a small but
consistent increase in the overall distillation quality.

Table 7: Results (Test Accuracy%) of ablation study on the contribution of each loss terms at 1 PPC
scenarios using CIFAR-10

Evaluation Model
Loss Terms Used ConvNet ResNet18 VGG11 AlexNet

DM 57.4 (0.23) 48.1 (0.33) 42.6 (0.12) 35.6 (0.43)

MTT 56.5 (0.22) 43.7 (0.15) 48.6 (0.2) 27.7 (0.22)

MMT and DM 61.2 (0.14) 56.5 (0.35) 53.5 (0.47) 42.4 (0.68)

D.2 DM FEATURE SPACE

By using the same experts from MTT, the distillation algorithm has only seen one type of architecture
throughout the whole distillation process. However, our experiments have shown that the DM loss
term provides significant improvements to the cross-architecture generalizability of the distilled data.
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Table 8: Results (Test Accuracy%) of ablation study on the contribution of each loss terms at 2 PPC
scenarios using CIFAR-10

Evaluation Model
Loss Terms Used ConvNet ResNet18 VGG11 AlexNet

DM 55.6 (0.34) 44.9 (0.62) 43.9 (0.30) 42.4 (0.66)

MTT 61.5 (0.22) 47.3 (0.47) 47.6 (0.29) 27.6 (0.50)

MMT, DM 63.1 (0.51) 57.5 (0.39) 55.5 (0.22) 45.2 (0.24)

MMT, DM, Diversity 64.98 (0.14) 61.07 (0.30) 59.50 (0.53) 51.80 (1.80)

Table 9: Results (Test Accuracy%) of ablation study on the contribution of diversity loss terms at
various PPC scenarios using CIFAR-10

PPC
Loss Terms Used 2 3 5

MMT, DM 63.1 (0.31) 66.9 (0.23) 65.6 (0.12)

MMT, DM, Diversity 64.98 (0.14) 67.6 (0.2) 68.1 (0.2)

In our model, we used the feature space mapped by the pre-trained convolutional blocks in ConvNet.
Note that those features are directly passed into a single FC-layer for the classification task. In
general, one can take any intermediate layer output as the image feature. In this ablation task, we test
whether a shallower feature space mapping would impact the quality of the DM loss. In Table 10, we
used feature mapping from only two convolutions blocks out of three. We see that a shallower feature
mapping produces a much worse distillation outcome.

Table 10: Results (Test Accuracy%) of ablation study on the feature mapping of MMD using
CIFAR-10

Evaluation Model

DM feature space ConvNet ResNet18 VGG11 AlexNet

Deep 61.2 (0.14) 56.5 (0.35) 53.5 (0.47) 42.4 (0.68)

Shallow 57.27 (0.18) 38.68 (0.50) 41.65 (0.33) 26.14 (0.27)

E GENERATED SAMPLES FROM THE DISTILLED DISTRIBUTION
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Figure 3: ImageWoof 1 PPC average representations (column 1) followed by their corresponding
variations (colum 2 -10)

Figure 4: TinyImageNet 1 PPC average representations (column 1) followed by their corresponding
variations (colum 2 -10)
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Figure 5: TinyImageNet 2 PPC average representations (column 1) followed by their corresponding
variations (colum 2 -10). Same classes as above.
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Figure 6: TinyImageNet 1 PPC Average Representations
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