
Under review as a conference paper at ICLR 2023

A ALGORITHM DETAILS

Algorithm 1 MERL: Multimodal end-to-end deep RL
Parametric networks: Image encoder fξ , proprioception encoder gζ , multimodal fusion for critic
hψcritic , multimodal fusion for actor hψactor , actor πθ, critic Qϕ
Hyper-parameters: Training steps T , mini-batch size B, learning rate α, target update rate τ ,
standard deviation σ, clip value c
Image augmentations: Random shift aug

for t← 1 · · ·T do
at ← πθ(hψactor(fξ(o

image
t ), gζ(o

prop
t ))) + ϵ and ϵ ∼ N (0, σ2)

ot+1 ∼ P (· | ot,at)
D ← (ot,at, R(ot,at),ot+1) ∪ D
UPDATECRITIC(D)
UPDATEACTOR(D)

end for
procedure UPDATECRITIC(D)
{(ot,at, rt:t+n−1,ot+n)} ∼ D
rmm_c
t , rmm_c

t+n ← hψcritic(fξ(aug(o
image
t )), gζ(o

prop
t )), hψcritic(fξ(aug(o

image
t+n )), gζ(o

prop
t+n))

rmm_a
t , rmm_a

t+n ← hψactor(fξ(aug(o
image
t )), gζ(o

prop
t )), hψactor(fξ(aug(o

image
t+n )), gζ(o

prop
t+n))

at+n ← πθ(r
mm_a
t+n ) + ϵ and ϵ ∼ clip(N (0, σ2),−c, c)

Compute Lϕ1,ψcritic,ξ,ζ and Lϕ2,ψcritic,ξ,ζ

ξ ← ξ − α∇ξ(Lϕ1,ψcritic,ξ,ζ + Lϕ2,ψcritic,ξ,ζ)

ζ ← ζ − α∇ζ(Lϕ1,ψcritic,ξ,ζ + Lϕ2,ψcritic,ξ,ζ)

ψcritic ← ψcritic − α∇ψcritic(Lϕ1,ψcritic,ξ,ζ + Lϕ2,ψcritic,ξ,ζ)

ϕk ← ϕk − α∇ϕk
Lϕk,ψcritic,ξ,ζ ∀k ∈ {1, 2}

ϕ̄k ← (1− τ)ϕ̄k + τϕk ∀k ∈ {1, 2}
end procedure
procedure UPDATEACTOR(D)
{(ot)} ∼ D
rmm_c
t ← hψcritic(fξ(aug(o

image
t )), gζ(o

prop
t ))

rmm_a
t ← hψactor(fξ(aug(o

image
t )), gζ(o

prop
t ))

at ← πθ(r
mm_a
t ) + ϵ and ϵ ∼ clip(N (0, σ2),−c, c)

Compute Lθ,ψactor

ψactor ← ψactor − α∇ψactorLθ,ψactor

θ ← θ − α∇θLθ,ψactor

end procedure

14



Under review as a conference paper at ICLR 2023

B TASK DETAILS

In this section, we describe details of the three 3D robotic manipulation tasks from DMC (jaco reach
duplo, jaco move box, and jaco lift box) with respect to task descriptions, reward design, and task
visualizations.

B.1 TASK DESCRIPTIONS

We design a set of three 3D robotic manipulation tasks from DMC (jaco reach duplo, jaco move
box, and jaco lift box) (Tunyasuvunakool et al., 2020) to include two different types of raw sensory
data (that is, RGB images obtained from a fixed vision camera and proprioception obtained from a
robot’s joint encoders) as observation, where task success requires joint reasoning over visual and
proprioceptive feedback. For each task, we randomize the configuration of the initial positions of the
robot and the box at the beginning of each episode, during both training and testing, to enhance the
robustness and generalization of the model.

In the case of the task jaco reach duplo, the robot (more precisely, the center point of the robot’s
end-effector) is required to reach a duplo randomly placed on a workspace. The task is considered
successful when the robot reaches within 5 cm of the duplo.

In the case of the task jaco move box, the robot is required to move a box randomly placed on a
workspace to a specific target position. The task is considered successful when the box reaches within
1 cm of the target position.

In the case of the task jaco lift box, the robot is required to lift a box randomly placed on a workspace
to a specific target position. The task is considered successful when the box reaches within 1 cm of
the target position.

B.2 REWARD DESIGN

We adopt a staged, structured, and multi-component reward function to guide the RL algorithm,
which simplifies the challenge of exploration and leads to effective policy learning (Lee et al., 2020b;
Yu et al., 2020). The reward function, R, is a combination of a reaching reward, pushing reward,
vertical reward, floating reward, and lifting reward, or subsets thereof for simpler tasks that only
include reaching or pushing. With this design, the reward is bounded by [0, 1] per timestep.

Jaco Reach Duplo The reward function for task jaco reach duplo is defined as follows:

rt = rreaching (reaching) (3)

Jaco Move Box The reward function for task jaco move box is defined as follows:

rt =

{
rreaching (reaching)
rreaching + rpushing if dist(ptcp,pobj) < εreaching (pushing)

(4)

Jaco Lift Box The reward function for task jaco lift box is defined as follows:

rt =


rreaching + rvertical (reaching)
rreaching + rvertical + rfloating if dist(ptcp,pobj) < εreaching (floating)
rreaching + rvertical + rfloating + rlifting if zobj > εfloating (lifting)

(5)

where rreaching = 1
N tolerance

(
dist(ptcp,pobj), εreaching

)
, rpushing = 1

N tolerance
(
dist(ptarget,

pobj), εpushing
)
, rvertical = 1

N tolerance
(
cosdist(vhand,u-z), 1 − εvertical

)
, rfloating = 1

N
zobj

ztarget
, and

rlifting = 1
N tolerance

(
dist(pobj,ptarget), εlifting

)
. ptcp represents the position of the end-effector’s

center point, pobj represents the position of the object (here, the box’s center point), ptarget represents
the target position, zobj represents the z-axis value of the object’s center point, ztarget represents the
z-axis value of the target position, vhand represents a unit vector vertical to the robot hand, and u-z
represents a unit vector [0, 0,−1]. The number of stages is represented by N . Here, we adopted the
same function tolerance as in DMC (Tunyasuvunakool et al., 2020).

15



Under review as a conference paper at ICLR 2023

B.3 TASK VISUALIZATIONS

Figure 4 provides visualizations for behaviors generated by MERL in relation to the three 3D robotic
manipulation tasks from DMC (jaco reach duplo, jaco move box, and jaco lift box). The visualization
of behaviors learned by MERL during the training procedure is shown in Figure 4a. We note here
that MERL solves all three of the 3D robotic manipulation tasks in less than 1M environment steps.
Figure 4b illustrates the visualization of successful trajectories generated by MERL.

(a) Visualization of final behaviors generated by MERL during the training procedure.

(b) Visualization of successful trajectories generated by MERL.

Figure 4: Visualizations for behaviors generated by our method (MERL) in relation to the 3D robotic
manipulation tasks from DMC (jaco reach duplo, jaco move box, and jaco lift box): (a) we visualize
the behaviors learned by MERL during the training procedure and (b) we visualize the successful
trajectories learned by MERL.

16



Under review as a conference paper at ICLR 2023

Figure 5: An additional ablation study that led us to the final version of MERL in relation to the
proprioception encoder. We observe that the proprioception encoder set as the identity encoder
(red) provides the best performance for the given 3D robotic manipulation tasks compared to MLP
encoders (blue, green, and yellow).

C IMPLEMENTATION DETAILS

In this section, we describe our implementation details for MERL. We use PyTorch as a deep learning
tool and DMC and MuJoCo for our simulation. We conduct our experiments on a workstation with
an Intel i9-9980XE CPU and Nvidia Quadro RTX 8000 GPU.

C.1 NETWORK ARCHITECTURES

For all networks, we initialize the weight matrix of the convolutional and fully-connected layers with
an orthogonal initialization (Saxe et al., 2013) and set the bias to be zero.

Image Encoder Network The image encoder network is modeled as four convolutional layers with
3×3 kernels and 32 channels, as in SAC+AE (Yarats et al., 2021c). An ReLU activation is applied
after each convolutional layer. We use stride 1 everywhere, except for the first convolutional layer,
which has stride 2. Here, we note that only the critic optimizer is allowed to update the image encoder
network weights (that is, we prevent the actor’s gradients from updating the image encoder network
weights).

Proprioception Encoder Network The proprioception encoder network is modeled as a 2-layer
MLP with ReLU activations after each layer. Here, the final version of our method uses the pro-
prioception encoder as the identity encoder. This is because as shown in Figure 5, contrary to
the results in (Lee et al., 2019a; 2020b), the case where the proprioception encoder is set as the
identity encoder provides better performance in relation to the three 3D robotic manipulation tasks
from DMC (jaco reach duplo, jaco move box, and jaco lift box), compared to the case where the
proprioception encoder is set as an MLP encoder. This suggests that the proprioception itself is
enough to learn a latent multimodal representation and a policy in an efficient, joint, and end-to-end
manner, without the need for additional encodings; that is, it is already well-encoded. Note that only
the critic optimizer is allowed to update the proprioception encoder network weights.

Multimodal Fusion Network The encoded visual and proprioceptive representations are fed into
multimodal fusion to learn a latent multimodal representation. The multimodal fusion network
is modeled as a single fully-connected layer normalized by LayerNorm (Ba et al., 2016). After
LayerNorm, the tanh nonlinearity is applied to the output of the fully-connected layer, which serves
to match the latent multimodal representation and action to the same scale. Finally, each output is
concatenated to produce a single latent multimodal representation vector of dimension d. The weights
of each multimodal fusion network for actor and critic are updated by the gradients of actor and critic,
respectively.

Actor and Critic Networks As in TD3 (Fujimoto et al., 2018), we use clipped double Q-learning
for the critic network, where each Q-function is parametrized as a 3-layer (in the case of the tasks jaco
reach box and jaco lift box) or 4-layer (in the case of the task jaco move box) MLP with LeakyReLU
activations with α of 0.1 after each layer except the last. The actor network is also modeled as a
3-layer (in the case of the tasks jaco reach box and jaco lift box) or 4-layer (in the case of the task jaco

17



Under review as a conference paper at ICLR 2023

move box) MLP with LeakyReLU activations with α of 0.1, which outputs the mean and covariance
for the diagonal Gaussian that represents the policy. The hidden dimension is set to 1024 for both the
critic and the actor.

C.2 HYPER-PARAMETERS

We provide a comprehensive overview of the hyper-parameters used in the case of the three 3D
robotic manipulation tasks from DMC (jaco reach duplo, jaco move box, and jaco lift box) in Table 1.

Table 1: An overview of hyper-parameters.

Parameter Setting
Replay buffer capacity 106

Mini-batch size 256
Frame stack 3
Seed frames 4000
Exploration steps 2000
Action repeat 1
Discount factor 0.99
Optimizer Adam
Learning rate 10−4

Soft-update rate 0.01
n-step returns 3
Exploration std. dev. 0.2
Exploration std. dev. clip 0.3
Hidden dim. for actor–critic 1024
Latent dim. for multimodal representation 128

18




