
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 IMPLEMENTATION DETAILS

In this section, we outline the implementation details of our framework.

We employ a MAE-pretrained ViT-B (He et al., 2022) as the vision encoder. At each timestep, im-
ages are captured from two views: eye-on-hand and eye-on-base. Each image is processed by the
vision encoder to produce 196 latent vectors, which represent local patch information, along with a
[CLS] token that encodes the global representation of the image. Directly inputting all 197 tokens
into the transformer backbone would create a significant computational burden, particularly when
processing long histories. Moreover, many image details are redundant for accomplishing manipula-
tion tasks. To address this, we utilize the Perceiver Resampler (Alayrac et al., 2022) to condense the
image representations and extract task-relevant features. The Perceiver Resampler employs learn-
able latent vectors with a shape of (num latents, dim), where num latents is significantly smaller
than the number of image tokens; in our implementation, num latents = 6. Through Perceiver At-
tention, these latent vectors condense the input image features, along with the [CLS] token, to form
the final image tokens.

The robot state consists of the arm state and the gripper state. The arm state includes the end-effector
position and its rotation in Euler angles, resulting in a six-dimensional representation. The gripper
state is a binary value indicating whether the gripper is open or closed. We tokenize the robot state
using an MLP. Specifically, the gripper state is first converted into a one-hot encoding. The one-hot
encoding of the gripper state and the arm state are then each passed through separate linear layers.
The outputs are concatenated and passed through a final linear layer to produce the state token.

Language instructions are encoded using the CLIP ViT-B/32 text encoder (Radford et al., 2021) and
projected through a linear layer to generate the language token.

At each timestep, we append [FRS] and [INV] tokens to read out foresight and actions. Specifi-
cally, 18 [FRS] tokens are appended to extract representations for two views, while 3 [INV] tokens
are appended to predict actions across three steps, ensuring temporal action consistency and robust-
ness to idle actions.

After passing through the transformer backbone, the action and image latents generated by the [INV]
and [FRS] tokens are input to the action decoder and image decoder to predict actions and images
for conditional visual foresight and inverse dynamics prediction.

The action decoder is an MLP that decodes the action latent into a seven-dimensional action vector.
First, the action latent is processed by a linear layer followed by a ReLU activation function. Then,
it passes through a second linear layer with ReLU activation. The output is fed into two independent
decoders: the arm action decoder and the gripper action decoder. The arm action decoder maps
the high-dimensional vector to a six-dimensional output through a linear layer, applying a Tanh
activation function to constrain the arm action within the range [-1, 1]. The gripper action decoder
also employs a linear layer to map the latent vector to a one-dimensional output, applying a Sigmoid
activation function to constrain the gripper action between [0, 1]. A gripper action value of 0.5 or
higher is interpreted as 1 (closed), while a value below 0.5 is interpreted as 0 (open).

For image decoding, following (He et al., 2022), we use a vision transformer (ViT) as the image
decoder. The image decoder receives the image latent and mask tokens from the transformer back-
bone as input. Positional information is provided through fixed sine-cosine positional encodings.
The inputs are processed by multiple transformer encoder blocks. Finally, a linear layer predicts the
pixels for each patch, generating the image that represents the predicted future state.

We present relevant hyperparameters during both pretraining and finetuning in Table 5.

Our model overall contains 316M parameters, where only 65M is tunable. For all simulation results,
we use 8 4090 GPUS to pre-train and fine-tune. The pre-training for CALVIN ABC-D requires about
40 hours and for LIBERO-LONG, it requires about 30 hours. The fine-tuning for CALVIN ABC-D
requires about 24 hours and for LIBERO-LONG, it requires 6 hours.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Table 5: Training hyperparameters.

Hyperparameters Pre-training Fine-tuning

Batch size 640 (LIBERO and CALVIN) 512
2048 (Real)

Learning rate 1e-4 1e-3
Optimizer AdamW AdamW

Learning rate schedule Cosine decay Cosine decay
Training epochs 30 (LIBERO and Real) 40 (LIBERO and Real)

20 (CALVIN) 20 (CALVIN)
History length 7 (LIBERO and Real) 7 (LIBERO and Real)

10 (CALVIN) 10 (CALVIN)
Action chunk length 3 3

V
iT

-B
as

e

P
e
rc

e
iv

e
r

R
e
s
a
m

p
le

r

“Pick the apple and put it in the drawer”

C
L

IP

V
iT

-B
/3

2
M

L
P

Language Instruction

Arm State

[0.13, 0.02, 0.24, 0.05, 0.03, 0.59]

24 x GPT-2 Transformer Blocks

MLP

ViT

[] × N

Arm
Action

Gripper State

[0.0]

Gripper
Action

[INV] [FRS]

F
C

3
8
4

F
C

3
8
4

FC6 FC1

FC768

Layer

Normalization

Multi-Head

Masked Attention

Dropout

Layer

Normalization

MLP

Dropout

+

+

Transformer Block

Input

Transformer Block

Output

Figure 6: Network Architecture.

Table 6: Hyperparameters for the transformers in our policy.

Hidden size Number of layers Number of heads

image encoder 768 12 12
perceiver resampler 768 3 8

transformer backbone 384 24 12
image decoder 384 2 16

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A.2 NETWORK ARCHITECTURE

As can be seen in Figure 6, Seer consists of the following modules: image encoder, perceiver re-
sampler, robot state encoder, language encoder, transformer backbone, action decoder and image
decoder. Here we describe each module in detail:

• image encoder: It is a MAE pre-trained ViT-Base (He et al., 2022). Details can be seen in
Table 6.

• perceiver resampler: It is a module to reduce the number of image tokens efficiently. Details
can be seen in Table 6.

• robot state encoder: It consists of linear layers and some MLPs, projecting robot states into
a latent space.

• language encoder: It is a CLIP (Radford et al., 2021) ViT-B/32 text encoder.

• transformer backbone: It takes image tokens, language tokens, robot states tokens, [INV],
[FRS] as inputs. It comprises 24 layers of GPT-2 transformer blocks, with a hidden size
384 and 12 heads.

• action decoder: It involves MLPs and linear layers to decode the action latent into seven-
dimensional action vector.

• image decoder: It is a ViT-based transformer followed by a linear layer. Details can be seen
in Table 6.

A.3 BASELINE IMPLEMENTATION

In the simulation benchmark, we report the scores for Roboflamingo, Susie, GR-1, and the 3D
Diffusor Actor from their respective papers. For MTACT and OpenVLA, we reproduce the results
using the official code. For MVP and MPI, we replace the vision encoder in our policy with their
pretrained versions. Thanks to the strong design of our policy, MVP and MPI show competitive
performance, though they only approach the results of our policy without pretraining.

A.4 LIBERO-LONG EXPERIMENT DETAILS

LIBERO (Liu et al., 2024) is a novel benchmark for lifelong learning in robot manipulation, com-
prising four task suites: LIBERO-SPATIAL, LIBERO-OBJECT, LIBERO-GOAL, and LIBERO-
100. The first three task suites are designed to disentangle the transfer of declarative and proce-
dural knowledge, while LIBERO-100 consists of 100 tasks involving entangled knowledge trans-
fer. LIBERO-100 includes 100 tasks that require diverse object interactions and versatile motor
skills. LIBERO-100 is divided into 90 short-horizon tasks (LIBERO-90) and 10 long-horizon tasks
(LIBERO-LONG). We use LIBERO-90 as the pretraining dataset, while LIBERO-LONG is utilized
for the downstream finetuning and evaluation.

The policy use images from both fixed and gripper cameras to observe the environment, which were
resized to 224x224 pixels. We also incorporated the robot state to help the policy understand the
robot’s self-state, including the position and orientation of the end effector and the gripper state
indicating the width between the grippers. The action space consists of a seven-dimensional vector:
six dimensions represent arm actions, and one dimension indicates the gripper’s open/close state.
The arm action represents the 6D pose (position and orientation) of a controlled frame. This frame
is located between the fingers of robots.

A.5 CALVIN ABC-D EXPERIMENT DETAILS

CALVIN (Mees et al., 2022) is a simulated benchmark designed for learning long-horizon, language-
conditioned tasks. Its goal is to enable the development of agents capable of solving various robotic
manipulation tasks using only onboard sensors and instructions provided in natural human language.
The tasks in CALVIN are complex, involving long sequences and intricate language instructions. It
supports flexible configurations of sensor suites. Agents are evaluated in a zero-shot manner on
novel language instructions and unfamiliar environments.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

The CALVIN benchmark includes four distinct but structurally similar environments–Env A, B,
C and D. Each environment features a Franka Emika Panda robot arm equipped with a parallel
gripper, as well as a desk with a sliding door and a drawer that can be opened and closed. And
there are several objects, such as blocks and buttons, on the desk. To more effectively assess the
generalization of the learned policies, each environment features distinct textures, and objects like
the sliding door, drawer, and light button, are placed in different positions.

CALVIN offers rich observations for robot learning. We use images from both fixed and gripper-
mounted cameras, resized to 224x224 pixels, along with robot state information, which includes
end-effector position, orientation, and gripper state (open/close). The action space is a 7-dimensional
vector: six dimensions correspond to end-effector displacement (position and orientation), and one
dimension controls the gripper’s open/close state. The unstructured data includes exploratory and
sub-optimal behaviors, comprising approximately 2.4 million interaction steps and 40 million short-
horizon windows. Data from Env A, B, and C, which lacks language annotations, is used to pretrain
the policy, while data with language annotations is used for downstream task learning. Env D is
reserved for policy evaluation.

A.6 REAL WORLD EXPERIMENT DETAILS

A.6.1 DETAILED TASK SETTING

Task Progress

Flip White Bowl

Stack Cups

Pick, Place, Close

Wipe Board

Figure 7: Task Progress.

Flip White Bowl: In this task, the white bowl is randomly placed on the table within a 40cm ×
40cm square, and the coaster is randomly placed within a 15cm × 15cm square. The robot needs
to pick up the white bowl and put it on the coaster. In the generalization test, 1 to 3 bowls with
identical shapes, sizes and materials are added to disturb the policy. Success rate (SR) is recorded as
100% only when the white bowl is placed on the coaster safely. If the bowl is successfully grasped,
the score will plus one (+1). If the bowl is successfully placed on the coast, the score will also plus
one (+1). The full score in this task is 2.

Stack Cups: In this task, three cups of different sizes are randomly placed on the table within a
40cm × 40cm square. The robot needs to cover the small cup with the middle one, and cover the
middle cup with the big one. Only when all the cups are stacked precisely and in a correct order
will the SR be recorded as 100%. The score will plus one (+1) when each primitive action (pick or
place) is accomplished. The full score in this task is 4.

Pick, Place, Close: In this task, a drawer with three layers is fixed on the table. During each test,
one of three layers is open. A carrot on the coaster is randomly placed within a 20cm × 20cm
square. The orientation of the carrot is randomized. The robot needs to pick the carrot, place it into

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

a certain layer, and close the drawer. The score will plus one (+1) when successfully (1) picking the
carrot, (2) placing the carrot, and (3) closing the drawer. The full score in this task is 3.

Wipe Board: In this task, a board (30cm × 40cm) and dustpan is fixed on the table. A brush is
randomly placed within a 5cm × 5cm square. 3 to 7 chocolate balls (diameter 1cm) are divided into
1 to 3 clusters and randomly placed on the whole board. Only when all the chocolate balls are swept
into the dustpan safely will the SR be recorded as 100%. The score will plus one (+1) when (1)
grasping the brush successfully, (2) sweeping partial chocolates into the dustpan, and (3) sweeping
all chocolates into the dustpan. The full score in this task is 3.

A.6.2 ADDITIONAL HIGH-PRECISION AND CONTACT-RICH TASKS.

Task Progress

Press Button

Insertion

Objects

2cm

2cm

2cm

9cm

2.8cm

9.5cm

Figure 8: High-precision and contact-rich tasks.

Table 7: Results on additional high-precision and contact-rich tasks.

Method Demos
per Task

Press Button Insertion

SR (%) ↑ / Score ↑ SR (%) ↑ / Score ↑

MVP 100 46.7 / 17.0 26.7 / 11.0
Ours (w/o pre-train) 100 40.0 / 13.0 40.0 / 16.0

Ours 100 60.0 / 18.0 60.0 / 19.0

Press Button: In this task, the toaster is randomly placed in a 30cm × 30cm square. The robot is
required to approach the toaster, close the fingers, push the button from a top-down view, and exceed
3/4 of the scale (Figure 8). The score will plus one (+1) when (1) pushing the button successfully
with no collision, and (2) exceeding 3/4 of the scale. The full score in this task is 2.

Insertion: In this task, a 2cm × 9cm camera model is randomly placed in a 20cm × 20cm square.
The robot is required to pick the camera model and insert it into a 2.8cm × 9.5cm groove without
any collision (Figure 8). The score will plus one (+1) when (1) grasping the camera model, and (2)
inserting successfully with no collision. The full score in this task is 2.

Results: As can be seen in Table 7, being pre-trained on the DROID dataset brings obvious im-
provements, compared to the scratch version and previous state-of-the-art baselines. Notably, both
tasks require quite precise action predictions and collision-free interactions, showing our model’s
potential in high-precision and contact-rich tasks.

A.6.3 REAL-WORLD IMPLEMENTATION DETAILS

During real-world training, we set the sequence length as 7, visual foresight steps and action pre-
diction steps as 3. We use the MAE pre-trained vision encoder ViT-B and set the type of ViT-B

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

as bfloat16 to speed up inference. We find this quantization won’t produce side effects on manip-
ulation tasks. The pre-training dataset, e.g., DROID involves 76K successful trajectories, and the
downstream fine-tuning data involves 400 demos. Key hyperparameters are listed in Table 5. We use
the 9-th pre-trained checkpoint for fine-tuning and evaluate using the 17-th fine-tuned checkpoint.

For real-world baselines MVP and MPI, we simply replace the MAE pre-trained vision encoder
with the MVP pre-trained and MPI pre-trained counterpart respectively in our network. We then
fine-tune these two baselines on the downstream tasks and report performances. For OpenVLA, we
choose to fully finetune its public released checkpoint with model size 7B pre-trained on OXE. The
fine-tuning config is identical to the one trained on Bridge dataset in OpenVLA’s public codebase.
We fine-tune this large model using 8 A100 GPUs with more than 24 hours and use the checkpoint
with lowest average validation loss to evaluate.

A.6.4 DETAILED REAL-WORLD RESULTS

Table 8: Detailed results (SR (%) / Score) in Flip White Bowl.

Case Index MVP MPI OpenVLA Ours (w/o pre-train, 20 demos) Ours (20 demos) Ours (w/o pre-train, 100 demos) Ours (100 demos)

1 0.00 / 0.00 100 / 2.00 0.00 / 1.00 0.00 / 1.00 100 / 2.00 100 / 2.00 100 / 2.00
2 100 / 2.00 100 / 2.00 100 / 2.00 0.00 / 0.0 100 / 2.00 100 / 2.00 100 / 2.00
3 100 / 2.00 100 / 2.00 0.00 / 1.00 0.00 / 0.0 0.00 / 0.0 100 / 2.00 100 / 2.00
4 100 / 2.00 0.00 / 0.00 100 / 2.00 0.00 / 0.0 0.00 / 0.0 100 / 2.00 100 / 2.00
5 100 / 2.00 0.00 / 0.00 100 / 2.00 100 / 2.00 100 / 2.00 0.00 / 0.00 100 / 2.00
6 100 / 2.00 100 / 2.00 100 / 2.00 0.00 / 0.0 0.00 / 0.0 0.00 / 0.00 100 / 2.00
7 100 / 2.00 100 / 2.00 0.00 / 1.00 0.00 / 0.0 0.00 / 0.0 100 / 2.00 100 / 2.00
8 100 / 2.00 100 / 2.00 100 / 2.00 100 / 2.00 100 / 2.00 0.00 / 1.00 100 / 2.00
9 100 / 2.00 100 / 2.00 100 / 2.00 100 / 2.00 100 / 2.00 100 / 2.00 100 / 2.00

10 100 / 2.00 100 / 2.00 0.00 / 0.00 0.00 / 0.0 0.00 / 0.0 100 / 2.00 0.00 / 0.00
11 100 / 2.00 0.00 / 0.00 0.00 / 0.00 0.00 / 0.0 100 / 2.00 0.00 / 0.00 100 / 2.00
12 0.00 / 0.00 0.00 / 1.00 0.00 / 0.00 100 / 2.00 100 / 2.00 0.00 / 0.00 0.00 / 0.00
13 100 / 2.00 100 / 2.00 100 / 2.00 0.00 / 0.0 0.00 / 1.00 0.00 / 0.00 100 / 2.00
14 100 / 2.00 100 / 2.00 0.00 / 0.00 0.00 / 1.00 100 / 2.00 100 / 2.00 100 / 2.00
15 0.00 / 0.00 0.00 / 0.00 100 / 2.00 0.00 / 0.0 0.00 / 0.0 100 / 2.00 100 / 2.00

Table 9: Detailed results (SR (%) / Score) in Stack Cups.

Case Index MVP MPI OpenVLA Ours (w/o pre-train, 20 demos) Ours (20 demos) Ours (w/o pre-train, 100 demos) Ours (100 demos)

1 0.00 / 3.00 100 / 4.00 0.00 / 2.00 0.00 / 0.00 0.00 / 1.00 100 / 4.00 100 / 4.00
2 100 / 4.00 0.00 / 3.00 0.00 / 0.00 0.00 / 0.00 0.00 / 0.00 0.00 / 1.00 100 / 4.00
3 0.00 / 3.00 0.00 / 3.00 0.00 / 0.00 0.00 / 1.00 0.00 / 0.00 0.00 / 2.00 100 / 4.00
4 100 / 4.00 0.00 / 1.00 0.00 / 1.00 0.00 / 1.00 0.00 / 0.00 100 / 4.00 100 / 4.00
5 0.00 / 1.00 0.00 / 3.00 0.00 / 2.00 0.00 / 1.00 0.00 / 1.00 100 / 4.00 0.00 / 2.00
6 0.00 / 1.00 100 / 4.00 0.00 / 0.00 0.00 / 1.00 0.00 / 2.00 100 / 4.00 100 / 4.00
7 0.00 / 0.00 100 / 4.00 0.00 / 0.00 0.00 / 1.00 0.00 / 0.00 0.00 / 1.00 100 / 4.00
8 0.00 / 0.00 0.00 / 0.00 0.00 / 1.00 0.00 / 0.00 0.00 / 0.00 0.00 / 0.00 0.00 / 0.00
9 100 / 4.00 100 / 4.00 0.00 / 0.00 100 / 4.00 0.00 / 0.00 100 / 4.00 100 / 4.00

10 0.00 / 1.00 0.00 / 1.00 0.00 / 0.00 0.00 / 0.00 0.00 / 0.00 0.00 / 0.00 0.00 / 2.00
11 0.00 / 0.00 0.00 / 1.00 0.00 / 0.00 0.00 / 1.00 0.00 / 1.00 0.00 / 0.00 0.00 / 0.00
12 0.00 / 0.00 0.00 / 0.00 0.00 / 0.00 0.00 / 0.00 0.00 / 0.00 0.00 / 0.00 0.00 / 0.00
13 0.00 / 0.00 0.00 / 0.00 0.00 / 1.00 0.00 / 0.00 0.00 / 0.00 100 / 4.00 0.00 / 2.00
14 0.00 / 1.00 0.00 / 0.00 0.00 / 1.00 0.00 / 0.00 0.00 / 1.00 0.00 / 0.00 100 / 4.00
15 100 / 4.00 0.00 / 1.00 0.00 / 0.00 0.00 / 1.00 0.00 / 1.00 100 / 4.00 100 / 4.00

Table 10: Detailed results (SR (%) / Score) in Pick, Place, Close.

Case Index MVP MPI OpenVLA Ours (w/o pre-train, 20 demos) Ours (20 demos) Ours (w/o pre-train, 100 demos) Ours (100 demos)

1 100 / 3.00 100 / 3.00 0.00 / 0.00 100 / 3.00 100 / 3.00 100 / 3.00 100 / 3.00
2 100 / 3.00 100 / 3.00 100 / 3.00 0.00 / 0.00 100 / 3.00 100 / 3.00 100 / 3.00
3 100 / 3.00 100 / 3.00 0.00 / 0.00 0.00 / 2.00 100 / 3.00 0.00 / 2.00 100 / 3.00
4 0.00 / 0.00 100 / 3.00 0.00 / 0.00 0.00 / 0.00 0.00 / 0.00 0.00 / 2.00 100 / 3.00
5 0.00 / 0.00 100 / 3.00 0.00 / 2.00 100 / 3.00 100 / 3.00 100 / 3.00 100 / 3.00
6 0.00 / 1.00 0.00 / 0.00 0.00 / 1.00 0.00 / 1.00 0.00 / 1.00 0.00 / 2.00 100 / 3.00
7 100 / 3.00 100 / 3.00 0.00 / 0.00 0.00 / 0.00 100 / 3.00 100 / 3.00 100 / 3.00
8 100 / 3.00 100 / 3.00 0.00 / 0.00 100 / 3.00 100 / 3.00 100 / 3.00 100 / 3.00
9 0.00 / 1.00 0.00 / 0.00 100 / 3.00 0.00 / 0.00 0.00 / 0.00 0.00 / 1.00 0.00 / 2.00

10 100 / 3.00 100 / 3.00 0.00 / 0.00 0.00 / 0.00 0.00 / 2.00 100 / 3.00 100 / 3.00
11 100 / 3.00 0.00 / 0.00 0.00 / 1.00 0.00 / 0.00 0.00 / 1.00 100 / 3.00 100 / 3.00
12 0.00 / 1.00 0.00 / 1.00 0.00 / 1.00 0.00 / 1.00 0.00 / 0.00 100 / 3.00 0.00 / 1.00
13 100 / 3.00 100 / 3.00 0.00 / 0.00 100 / 3.00 100 / 3.00 100 / 3.00 100 / 3.00
14 100 / 3.00 100 / 3.00 0.00 / 2.00 0.00 / 0.00 0.00 / 0.00 100 / 3.00 100 / 3.00
15 0.00 / 1.00 0.00 / 1.00 0.00 / 0.00 0.00 / 0.00 100 / 3.00 100 / 3.00 100 / 3.00

To probe into how pre-training helps visual robot manipulation, we compare tasks success rates and
score of MVP, MPI, OpenVLA and ours. Results are shown in Table 8, Table 9, Table 10 and Table
11. Under the same amount of fine-tuning data, our method achieves the best performance. Even
only relying on 20% of fine-tuning data, our method still outperforms the scratch one.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table 11: Detailed results (SR (%) / Score) in Wipe Board.

Case Index MVP MPI OpenVLA Ours (w/o pre-train, 20 demos) Ours (20 demos) Ours (w/o pre-train, 100 demos) Ours (100 demos)

1 100 / 3.00 100 / 3.00 0.00 / 0.00 0.00 / 0.00 0.00 / 2.00 100 / 3.00 100 / 3.00
2 100 / 3.00 100 / 3.00 0.00 / 0.00 0.00 / 2.00 100 / 3.00 0.00 / 2.00 100 / 3.00
3 100 / 3.00 100 / 3.00 0.00 / 1.00 100 / 3.00 100 / 3.00 0.00 / 0.00 100 / 3.00
4 100 / 3.00 0.00 / 2.00 0.00 / 0.00 100 / 3.00 0.00 / 2.00 100 / 3.00 100 / 3.00
5 0.00 / 2.00 0.00 / 2.00 0.00 / 1.00 0.00 / 2.00 100 / 3.00 100 / 3.00 100 / 3.00
6 0.00 / 2.00 0.00 / 2.00 0.00 / 0.00 0.00 / 2.00 0.00 / 2.00 0.00 / 2.00 0.00 / 2.00
7 0.00 / 2.00 0.00 / 2.00 0.00 / 0.00 0.00 / 1.00 0.00 / 1.00 0.00 / 2.00 100 / 3.00
8 0.00 / 2.00 0.00 / 2.00 0.00 / 0.00 0.00 / 2.00 0.00 / 2.00 100 / 3.00 0.00 / 2.00
9 100 / 3.00 100 / 3.00 0.00 / 0.00 100 / 3.00 100 / 3.00 100 / 3.00 100 / 3.00

10 0.00 / 2.00 0.00 / 2.00 0.00 / 0.00 100 / 3.00 0.00 / 2.00 0.00 / 2.00 100 / 3.00
11 100 / 3.00 0.00 / 2.00 0.00 / 0.00 0.00 / 2.00 0.00 / 2.00 100 / 3.00 100 / 3.00
12 100 / 3.00 0.00 / 2.00 0.00 / 0.00 0.00 / 0.00 0.00 / 2.00 100 / 3.00 0.00 / 2.00
13 0.00 / 2.00 100 / 3.00 0.00 / 0.00 100 / 3.00 100 / 3.00 100 / 3.00 100 / 3.00
14 0.00 / 2.00 0.00 / 2.00 0.00 / 2.00 0.00 / 2.00 0.00 / 2.00 0.00 / 2.00 0.00 / 2.00
15 100 / 3.00 0.00 / 2.00 0.00 / 0.00 0.00 / 0.00 0.00 / 2.00 100 / 3.00 100 / 3.00

A.7 FORESIGHT VISUALIZATION

Figure 9 and Figure 10 presents both the predicted and ground truth future images in real world and
simulated environment tasks. To improve training efficiency, we opt for a lightweight ViT-based
image decoder instead of a diffusion-based generative model. While the generated images are not
of the highest quality and applying normalization on the image label will further reduce the image
quality (He et al., 2022), we argue that for manipulation tasks, the image quality is not critical. What
matters is that the images sufficiently capture environmental changes and provide adequate guidance
for action prediction.

Pr
ed

ic
te
d

G
ro
un

d
Tr
ut
h

Pr
ed

ic
te
d

G
ro
un

d
Tr
ut
h

Figure 9: Visualization of predicted images in real world tasks.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Pr
ed

ic
te
d

G
ro
un

d
Tr
ut
h

Pr
ed

ic
te
d

G
ro
un

d
Tr
ut
h

Figure 10: Visualization of predicted images in simulation tasks.

21

