
Appendix
A Further wavelet details

A.1 2D wavelet transform

The discrete wavelet transform can be extended to two dimensions, using a separable (row-column)
implementation of 1D wavelet transform along each axis. In 2D, the family of wavelets is character-
ized by the following three wavelets

 1(x1, x2) = �(x1) (x2),  
2(x1, x2) =  (x1)�(x2),  

3(x1, x2) =  (x1) (x2),

named LH, HL, HH wavelets respectively. Together with the scaling function e�(x) = �(x1)�(x2),
the 2D discrete wavelet transform gives four components at each iteration, contrary to the 1D case,
by applying the decomposition formula (5) to the separable wavelets and scaling functions

8
>><

>>:

aj+1[p] = aj ? h̄h̄[2p];
d1j+1[p] = aj ? h̄ḡ[2p];
d2j+1[p] = aj ? ḡh̄[2p];
d3j+1[p] = aj ? ḡḡ[2p],

for p = (p1, p2), where for 2D discrete filters we denote hh = h[n1]h[n2]. In particular, the
decomposition yields three detail coefficients where the highpass filter h is applied to either of the
two-dimensional directions or both. These coefficients are intended to represent the signal in different
orientations, i.e., vertical, horizontal, and diagonal. Similarly to (6), the approximation coefficient
aj at scale 2j can also be recovered from the approximation coefficient aj+1 and detail coefficients
dkj+1, k = 1, 2, 3, at scale 2j+1 with formula

aj [p] = [aj+1]"2 ? hh[p] + [d1j+1]"2 ? hg[p] + [d2j+1]"2 ? gh[p] + [d3j+1]"2 ? g[p],

where [a]"2 denotes upsampling of the image a by a factor 2.

A.2 Conditions for orthonormal wavelet basis

This section provides further details on constructing a valid wavelet  such that the family
{ j,n}(j,n)2Z2 of wavelets forms an orthonormal basis of L2(R). To do so, we introduce mul-
tiresolution analysis [33, 34] which constructs an orthonormal wavelet basis through approximations
of signals at various resolutions. The key idea is that one builds a sequence of approximations for a
signal with increasing resolutions while the difference between two consecutive approximations can
be captured by the wavelet decomposition at a given scale.

To begin with, let � be a scaling function in L2(R). To motivate the idea of multiresolution analysis,
we assume that � is the Haar scaling function, defined as

�(t) =

⇢
1 if 0  t < 1
0 otherwise

.

Let Vj denote the space spanned by {�j,n}n2Z, where �j,n(t) = 2�j/2�(2�jt� n). Then Vj is the
set of piecewise constant functions over [2jn, 2j(n+1)) for n 2 Z. The approximations of a signal x
at scale 2j is defined by the orthogonal projection of x on Vj , which is the closest piecewise constant
function on intervals of size 2j . For two consecutive approximation spaces Vj and Vj+1, the relation
Vj+1 ⇢ Vj holds because any function that is constant over [2j+1n, 2j+1(n + 1)) is also constant
over [2jn, 2j(n+1)). Moreover, it is easy to see that limj!1 Vj = {0} and limj!�1 Vj = L2(R).
More generally, the sequence {Vj}j2Z of subspaces with {0} ⇢ . . . ⇢ V1 ⇢ V0 ⇢ V�1 ⇢ . . . ⇢
L2(R) is called a multiresolution approximation if it satisfies certain properties (see [32, Definition
7.1]). The piecewise constant approximations induced by the Haar scaling function is a special case
that verifies the properties of a multiresolution approximation. The multiresolution approximation is
entirely characterized by the scaling function � since the family {�j,n}n2Z forms an orthonormal
basis of Vj for all j 2 Z. Remarkably, the following theorem due to [33, 34] further shows that a
scaling function can be entirely determined by a discrete filter h that is defined on the set of discrete
values:
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Theorem 1 (Theorem 7.2 [32]). For a discrete filter h[n], if the Fourier series bh(w) is 2⇡ periodic
and continuously differentiable in a neighborhood of w = 0, if it satisfies

bh(0) =
X

n

h[n] =
p
2 and |bh(w)|2 + |bh(w + ⇡)|2 = 2 for all w,

and if infw2[�⇡/2,⇡/2] |
bh(w)| > 0, then

b�(w) =
1Y

p=1

bh(2�pw)
p
2

,

is the Fourier transform of a scaling function � 2 L2(R). Namely, the sequence {Vj}j2Z of subspaces
induced by � satisfies the properties of a multiresolution approximation.

Moreover, it can be shown that any scaling function � determines the lowpass filter h via h[n] =
h

1p
2
�(t/2),�(t� n)i (see Eq. 4). Hence Theorem 1 provides equivalence between the scaling

function and the discrete lowpass filter. The next theorem states a necessary condition on the lowpass
filter:
Theorem 2 (Theorem 3 [43]). If � is a valid scaling function, then

X

n

h[n]h[n� 2k] =

⇢
1 if k = 0
0 otherwise

.

Theorem 1 and Theorem 2 characterize the sufficient and necessary conditions on the lowpass filter
to build a valid scaling function.

Next, the multiresolution approximation requires Vj ⇢ Vj�1 for all j 2 Z and the details that appear
at the scale 2j�1 but disappear at the coarser scale 2j can be characterized by the wavelet coefficients.
Indeed, if Wj denotes the orthogonal complement of Vj in Vj�1, i.e., Vj�1 = Vj � Wj , one can
construct a family of wavelets { j,n}n2Z that forms an orthonormal basis of Wj :
Theorem 3 (Theorem 7.3 [32]). Let � be a scaling function and h the corresponding filter. Let  be
the function having a Fourier transform

b (w) = 1
p
2
bg
⇣w
2

⌘
b�
⇣w
2

⌘
,

with
bg(w) = e�iwbh⇤(w + ⇡).

Then for any scale 2j , { j,n}n2Z is an orthonormal basis of Wj and for all scales, { j,n}(j,n)2Z2 is
an orthonormal basis of L2(R).

In the time domain, the equation bg(w) = e�iwbh⇤(w + ⇡) can be converted to

g[n] = (�1)nh[N � 1� n], (12)

where N is the support size of h. Moreover, it follows from
P

n h[n] =
p
2 (Theorem 1) andP

n h[n]h[n � 2k] = 1k=0 (Theorem 2) that
P

n h[2n] =
P

n h[2n + 1] holds [43, Theorem 2].
Using this identity, it is easy to check that the highpass filter must have zero-mean, i.e.,

X

n

g[n] = 0. (13)

Then Eq. 12 and Eq. 13 provides the sufficient and necessary conditions on the highpass filter to build
a valid wavelet  .

B Synthetic data details

In this section, we show additional results for the experiments with synthetic data in Sec 4.1. For this
task, we generate data from a linear model yi = h xi,�i+ ✏i, i = 1, . . . , n, where:
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• The inputs xi 2 Rn⇥d are generated with i.i.d. N (0, 1) entries, where the number of input
features is d = 64;

•  is given a wavelet transform operator with DB 5 wavelets;
• The noise ✏i 2 Rn is generated with i.i.d. N (0, 0.12) entries;
• The true coefficient � is given �i = 2 for 3 selected locations at a particular scale, and
�i = 0 otherwise.

The data is randomly split into a training set of 50, 000 data points and a test set of 5, 000 data points.
Then a 3-layer fully connected neural network with 32 hidden neurons each is trained on the training
set with a learning rate of 0.01 for 20 epochs, achieving an R2 score > 0.99 on the test set.

To distill the groundtruth wavelet (DB5) from this DNN, we solve the minimization problem given
in Eq. 8 for varying hyperparameters. Here we use a warm start strategy in which we solve the
problem Eq. 8 for one pair of values for hyperparameters � and � and use this solution to initialize
the AWD filter at the next values of hyperparameters. In the initial stage of training, the AWD filter
is initialized to the known lowpass filters corresponding to the DB 5 wavelet, Sym 5 wavelet, and
Coif 2 wavelet, respectively (for DB 5, we add a noise to the lowpass filter). For each pair of the
hyperparameters, the AWD filters were trained for 50 epochs with Adam optimizer with a learning
rate of 0.001. All experiments were run on an AWS instance of p3.16xlarge for a few days.

B.1 Additional results on synthetic data

Here we show the learned wavelets as the interpretation penalty � and the sparsity penalty � vary
across a sequential grid of values spaced evenly on a log scale. Fig B1 shows the results when the
AWD filter in the initial stage is initialized to the lowpass filter corresponding to the DB 5 wavelet +
noise; Fig B2 shows the results when the AWD filter in the initial stage is initialized to the lowpass
filter corresponding to the Sym 5 wavelet; and Fig B3 shows the results when the AWD filter in the
initial stage is initialized to the lowpass filter corresponding to the Coif 2 wavelet. We can see that as
long as the interpretation penalty is not too small or large, the wavelets distilled by AWD accurately
recovers the groundtruth (DB 5) wavelet.

Figure B1: Varying sparsity and interpretation penalty yields different valid wavelets. In the initial
stage, the AWD filter is initialized to the lowpass filter corresponding to DB 5 + noise.

Figure B2: Varying sparsity and interpretation penalty yields different valid wavelets. In the initial
stage, the AWD filter is initialized to the lowpass filter corresponding to Sym 5.
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Figure B3: Varying sparsity and interpretation penalty yields different valid wavelets. In the initial
stage, the AWD filter is initialized to the lowpass filter corresponding to Coif 2.

Fig B4 calculates the distance between the learned wavelets and the groundtruth (DB5) wavelet,
defined as in Sec 4.1, as the interpretation penalty varies. When initialized at DB 5+noise, the
learned wavelets get very close to the groundtruth wavelet for a wide range of � values, regardless
of different sparsity penalty. On the other hand, when initialized at Sym 5, AWD can accurately
recover the groundtruth wavelet only at the large values of �; whereas for Coif 2, AWD can recover
the groundtruth wavelet only at the small values of �.

Figure B4: The distance between the learned wavelets and the groundtruth wavelet, defined as
in Sec 4.1, is plotted against log(�) for different values of �.

C Molecular partner-prediction details

This section gives an overview of the preprocessing for the clathrin-mediated endocytosis problem in
Appendix C.2. For a detailed overview of the data, see the original study [50]. In order to convert
the raw fluorescence images to time-series traces, we use tracking code from previous work [52].
The tracking fits a Gaussian curve to the images (with standard deviation given by the imaging
parameters). When the fit to the first channel (i.e. clathrin) is significant,8 the track is recorded and
a fit is forced to the second channel (i.e. auxilin). The amplitudes of each track over time are then
extracted. Fig C1 shows some examples of extracted clathrin traces.

The architecture of the LSTM used in this work has one recurrent layer, which takes an input of size
40 and has a hidden size of 40, followed by a single linear layer.

8Here, significant is defined to be p-value less than 0.05, but the results are not sensitive to this precise
threshold.
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Figure C1: Fitted clathrin amplitudes for a few example events.

To train the AWD wavelet, the same warm start strategy was employed as in Appendix B. The AWD
filters were trained for 100 epochs with Adam optimizer with a learning rate of 0.001. The experiment
was run multiple times with respect to the randomness of mini-batches in the training procedure. All
experiments were run on an AWS instance of p3.16xlarge for a few days.

C.1 Distilled scaling functions and wavelets

Here we show the best wavelets selected by cross-validation and the corresponding scaling functions
for 5 different runs of the experiments. The results are stable across multiple runs, all capturing
information about how rapid changes in the clathrin trace is useful for predicting the auxilin response.

Figure C2: Optimal scaling and wavelet functions extracted by AWD across five random seeds.

C.2 Varying sparsity and interpretation penalty

Fig C3 shows the learned wavelets distilled by AWD as the interpretation penalty � and the sparsity
penalty � vary. Unlike Fig 4 where the lowpass filter is initialized to the DB 5 wavelet in the initial
stage of training, here the lowpass filter is initialized to that corresponding to the Sym 5 wavelet. For
large values of �, the learned wavelets captures qualitatively the same biological features as those
shown in Fig 4.
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Figure C3: Varying sparsity and interpretation penalty yields different valid wavelets. In the initial
stage of training, the lowpass filter is initialized to that corresponding to the Symlet 5 wavelet.

C.3 Interpreting a single prediction
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Figure C4: Interpreting a single prediction made by the wavelet model. The model takes the fitted
clathrin amplitude shown in (A) and predicts that the event is successful. (B, C, D) show the
three most important features for making this prediction. Each blue curve represents the input
reconstruction for a single wavelet at a single scale. The curves in (B) and (C) seem to capture
meaningful components of the clathrin signal, as they find a gradual rise in the signal, a large peak in
the signal, and finally a steep drop in the signal at the end. The model is simply a linear combination
of wavelet coefficients: each blue curve yields a coefficient which is then multiplied by a learned
weight. The final prediction of successful or abortive is then made by thresholding the sum of these
products. In this case, the first 2 coefficients dominate the prediction, and contributions for all
remaining coefficients (some of which are omitted) are considerably less. For abortive predictions,
the wavelet coefficients are usually much smaller (or negative).

D Cosmological simulation details

For this task, we use the publicly available MassiveNuS simulation suite [62], composed of 101
different N -body simulations spanning a range of cosmologies varying three parameters: the total
neutrino mass ⌃m⌫ , the normalization of the primordial power spectrum As, and the total matter
density ⌦m. These simulations are run at a single resolution of 10243 particles for a 512 Mpc/h
box size, and then ray-traced to obtain lensing convergence maps at source redshifts ranging from
zs = 1.0 to zs = 1100. To build our dataset, we select 10 different cosmologies, listed in Table D1,
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each of which provides 10, 000 mass maps at source redshift zs = 1. We rebin these maps to size
256⇥ 256 with a pixel resolution of 0.8 arcmin.

Table D1: Parameter values used in cosmology simulations.

m⌫ ⌦m 109As

0.0 0.3 2.1
0.06271 0.3815 2.2004
0.06522 0.2821 1.8826
0.06773 0.4159 1.6231
0.07024 0.2023 2.3075
0.07275 0.3283 2.2883
0.07526 0.3355 1.5659
0.07778 0.2597 2.4333
0.0803 0.2783 2.3824

0.08282 0.2758 1.8292

For training the AWD wavelet, we use the same warm start strategy as in Appendix B while the initial
lowpass filter is initialized to the lowpass filter corresponding to the DB 5 wavelet. The AWD filters
were trained for 50 epochs with Adam optimizer with a learning rate of 0.001. All experiments were
run on an AWS instance of p3.16xlarge for a few days.

D.1 Peak counting algorithm

Here we describe the peak counting algorithm developed in [59] to compare the performance of
various filters. In weak lensing, peaks are defined as local maxima on the lensing convergence maps.
In the original peak counting algorithm, a histogram is made for each convergence map based on
counting the raw pixel (height) values of the peaks on the maps (see Fig D1). At training time, the
mean histograms and the covariance matrices are then created for each setting of the cosmological
parameters ⇠ = (m⌫ ,⌦m, 109As); and at test time, individual histograms are compared to the mean
histograms via the distance

dh,⇠ = (h� µ⇠)
>⌃�1

⇠ (h� µ⇠),

and the parameters ⇠ with the lowest distance dh,⇠ is selected as prediction values. Here h represents
the histogram for a given map, and µ⇠,⌃⇠, respectively, represent the mean histogram and the
covariance matrix of the histograms for a cosmology with parameters ⇠.

In [59], the peak counting algorithm is generalized to exploit more information around the peaks
compared with the height of the peaks. Inspired by the first layer of the trained CNN for parameter
estimation, they propose to use peak steepness based on the isotropic Laplace filter,

L = �
10

3

 
�0.05 �0.2 �0.05
�0.2 1 �0.2
�0.05 �0.2 �0.05

!
,

which computes the difference of the peaks and the surrounding pixel values, or the Roberts cross
kernels,

Rx =

✓
0 1
�1 0

◆
, Ry =

✓
1 0
0 �1

◆
,

which compute the gradient at the peaks. For the Laplace filter, the peak steepness values are
calculated via convolving the filter with the input images at the position of the peaks. For the Roberts
cross kernels, the two filters Rx and Ry are applied to the 4 adjacent 2⇥ 2 pixel blocks around the
peaks and the magnitudes are calculated via Gi =

q
G2

x,i +G2
y,i, i = 1, . . . , 4, where Gx,i and Gy,i

are the sub-images after convolve Rx and Ry with the i-th adjacent pixel blocks. Then the sum of the
4 magnitudes

P4
i=1 Gi is used to get the peak steepness values.

Here we further use the wavelet filters distilled by AWD as peak-finding filters in the peak counting
algorithm. To match the size of the distilled AWD filters with that of the Laplace filter or Roberts cross
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kernels, we extract 3⇥3 subfilters from the wavelet filters where a majority of the mass is concentrated
on. This results in 4 different 3⇥ 3 filters, corresponding to three wavelet filters (LH,HL,HH) and
one approximation filter (LL), which are then used as peak-finding filters to calculate the histograms
of the peak steepness values. Fig D1 shows the distributions of peak steepness values using various
filters mentioned above.

Figure D1: Peak steepness distributions using various filters.

To run the peak-counting algorithm with various filters, we need to select the number, width, and
range of bins. For the Laplace filter and Roberts cross kernels, we use the same settings as [59] which
runs bins from 0 to 0.22 in 0.01 wide. In the case of the wavelet filters, we keep the same number
of bins while the range is chosen via the algorithm’s performance on a held-out validation set. The
resulting bin is then used to evaluate the prediction performance on the test set.

D.2 Wavelet activation maps

As part of our interpretability analysis, we now show images that highlight important features for
predicting ⌦m (total fraction of matter in the universe) in Fig D2. To create the images, for each map
we calculate feature attributions on the wavelet domain extracted by AWD using TRIM (here we
use IG [37] to get attributions). Then only the wavelet coefficients with top 600 attributions (out of
73, 839) are retained to transform back to the image domain using inverse wavelet transform. We can
see that the activation maps highlight localized regions in the original maps that correspond to the
high intensity peaks and voids. This is consistent with the known cosmology theory that these peaks
contain high constraining power to predict cosmological parameters of the universe.

In the rightmost column of Fig D2, we also generate similar activation maps using the feature
attributions in the pixel domain, where only the pixels with top 600 attributions (out of 65, 536)
are used. Similar to the wavelet activation maps, the activation maps in the pixel domain highlight
isolated locations corresponding to the high intensity peaks. However, they fail to capture void (dark)
regions at different scales and the maps only highlight the discrete number of pixels in the peaks and
void regions—intuitively pixels in adjacent locations are competing with each other and the activation
maps in the feature space will only select one of them as important. Indeed, we found that more
than 10, 000 pixels are needed in the pixel domain to produce activation maps of similar quality as in
the wavelet domain. Hence, AWD can provide qualitatively similar activation maps using far fewer
features than the input domain.
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Figure D2: Sample images and activation maps using Integrated Gradients (IG). Left: 5 different
weak gravitational lensing convergence maps selected randomly. Middle: wavelet activation maps
for individual images made by the AWD model. Right: activation maps for individual images in the
pixel domain.

Fig D3 below displays activation maps using the saliency TRIM attributions. Unlike the activation
maps using IG, here we use wavelet coefficients / pixels with top 10, 000 attributions to generate
activation maps. While the activation maps using saliency similarly highlight localized regions
corresponding to the high intensity peaks and voids, the results are noisier and more number of
features are required compared to the activation maps using IG.

Figure D3: Sample images and activation maps using Saliency interpretations. Left: 5 different weak
gravitational lensing convergence maps selected randomly. Middle: wavelet activation maps for
individual images made by the AWD model. Right: activation maps for individual images in the pixel
domain.
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E MNIST

Figure E1: Varying sparsity (left) and interpretation (top) penalty yields dramatically different valid
wavelets on the MNIST dataset. Increasing the sparsity penalty leads the wavelet to approach the
well-known Haar wavelet function. Note: interpretation penalty is calculated only over the class “6”.
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