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Figure 1. H2R is a data augmentation technique designed to enhance robot pre-training by converting first-person human hand operation
videos into robot-centric visual data. By bridging the visual domain gap, H2R improves pre-trained visual encoders for downstream robot
policies (imitation/reinforcement learning), validated across simulation benchmarks and real-world robotic tasks.

Abstract

Large-scale pre-training using videos has proven effec-001
tive for robot learning, as it enables the model to acquire002
task knowledge from first-person human operation data that003
reveals how humans perform tasks and interact with their004
environment. However, the models pre-trained on such data005
can be suboptimal for robot learning due to the signifi-006
cant visual gap between human hands and those of differ-007
ent robots. To remedy this, we propose H2R, a simple data008
augmentation technique for robot pre-training from videos,009
which extracts the human hands from first-person videos010
and replaces them with those of different robots to generate011
new video data for pre-training. Specifically, we start by012
detecting the 3D position and key points of human hands,013
which serves as the basis for generating robots in the sim-014
ulation environment that exhibit similar motion postures.015
Then, we calibrate the intrinsic parameters of the simula-016
tor camera to match the camera in the original video and017
render the images of generated robots. Finally, we over-018
lay these images onto the original video to replace human019
hands. Such a procedure bridges the visual gap between020
the human hand and the robotic arm and produces an aug-021

mented dataset for pre-training. We conduct extensive ex- 022
periments on a variety of robotic tasks, ranging from stan- 023
dard simulation benchmarks to robotic real-world tasks, 024
with varying pre-training strategies, video datasets, and 025
policy learning methods. The experimental results show 026
that H2R can improve the representation capability of vi- 027
sual encoders pre-trained by various methods. In imitation 028
learning, H2R consistently enhances the average success 029
rate across different pre-training methods, with improve- 030
ments ranging from 0.9% to 10.2%. The effect of this im- 031
provement is highly stable. In reinforcement learning, most 032
pre-training methods show improvements. Our real-world 033
evaluations across diverse manipulation tasks demonstrate 034
that H2R-enhanced visual representations consistently out- 035
perform baseline models, achieving success rate improve- 036
ments ranging from 6.7% to 15% across all model-task con- 037
figurations. 038

1. Introduction 039

Pre-training of generalizable robotic features for object ma- 040
nipulation and motion navigation constitutes a crucial ob- 041
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jective within the realm of robotics. Inspired by the remark-042
able accomplishments of large scale pre-training in com-043
puter vision [18, 28, 34, 46, 68] and natural language pro-044
cessing [1, 12, 41, 47, 65], many efforts have been devoted045
to harness large-scale data to construct generalizable rep-046
resentations in the robotics field [2, 3, 8]. Nevertheless,047
when it comes to robot manipulation, the process of col-048
lecting demonstrations is not only labor-intensive but also049
highly costly [3, 15, 16, 19, 29, 32, 33, 35, 37]; at the same050
time, there exist many large-scale egocentric video datasets051
showing how human perform manipulation and navigation,052
which can serve as a can serve as a cheap alternative of053
demonstrations for the pre-training of generalizable visual054
features for robotics.055

Recent works [46, 63, 69] analyze such egocentric hu-056
man video datasets such as Ego4D [23], SSV2 [20], and057
Epic Kitchens [9] with the aim of gleaning prior knowl-058
edge about object manipulation and enabling the acquisi-059
tion of general and robust feature representations. How-060
ever, the gap in visual representations between the human061
arm and the robotic arm remain largely unaddressed in prior062
work and can hinder the transferability of models trained on063
egocentric datasets to robotic systems. Specifically, when064
utilizing the robot expert data to fine-tune the pre-trained065
robotic representations for downstream robotic tasks, the066
model has to learn to bridge the visual gap between the first067
person human hand and the robots in addition to acquiring068
nuanced task-specific skills demonstrated in the robot ex-069
pert data. This would result in increased complexity during070
the fine-tuning process and suboptimal performance.071

To mitigate this issue, we propose H2R (as shown in072
Figure 1), a simple data augmentation method that con-073
verts videos of Human hand operations into that of Robotic074
arm manipulation. H2R consists of two major procedures:075
the first part is to generate the robotic arm’s movements to076
imitate the human hand movements in a video, followed077
by the second stage that overlays the robotic arm’s move-078
ments onto the human hand’s movements in the video.079
Specifically, in the first part, we employ state-of-the-art 3D080
hand reconstruction model HaMeR [50] to accurately detect081
the position and posture of the human hand in egocentric082
videos. Then, we simulate the same robot state in simula-083
tors to obtain the mask of robot hands. While in the second084
stage, we use the Segment Anything Model [36] to auto-085
matically separate human hand from background, and use086
the inpainting model LaMa [58] to fill the removed hand087
mask. After that, we align the camera intrinsic parameters088
of the images detected in HaMeR with those in the sim-089
ulator, and then achieve pixel-level matching between the090
robotic arm images in the simulators and the human hand091
images in the egocentric video. Finally, we overlay the092
robotic arm images captured by the simulator’s camera onto093
the areas where the human hands are removed. Through094

such a process, H2R explicitly reduces the gap between hu- 095
man and robot hands by creating realistic robotic arm move- 096
ments that visually mimic human hand actions. It allows 097
the model to learn the task-specific actions demonstrated by 098
the human hand, but with robotic arm visual representations 099
that are more suitable for robotic systems. 100

For pre-training, we used the SSV2 dataset with 62,500 101
videos, from which 16 keyframes were randomly sampled 102
per video for MAE [28] and R3M [46]. Additionally, we ex- 103
tracted 117,624 action clips from 2,486 videos in the Ego4D 104
dataset for MPI [68]. Specific settings are detailed in the ex- 105
perimental section. 106

We demonstrate the effectiveness of H2R by integrating 107
it into a holistic policy learning framework. We trained stan- 108
dard MAE [28], R3M [46], and MPI [68] vision encoders on 109
egocentric videos obtained by the proposed H2R. We then 110
freeze the encoder model as a feature extractor and train 111
both an Reinforcement Learning (RL) policy by employ- 112
ing mainstream RL learning methods such as PPO [56] and 113
Imitation Learning (IL) policy with behavior clone and Dif- 114
fusion Policy [6]. Finally, for the RL policies, we evaluate 115
them on MVP [51], a closed-loop benchmark, and compare 116
with results where the encoders are trained on the original 117
egocentric video data. We observe a significant improve- 118
ment of the training stability, which brings more effective- 119
ness in the context of RL policy learning seeing the unstable 120
nature of the bare RL training. For the IL policies, the BC 121
policies are trained and tested on Robomimic [45], while the 122
Diffusion Policy models are trained and tested on their own 123
baseline. Both of the BC and Diffusion policies showed a 124
significant improvement on the success rate and stability on 125
the downstream tasks. 126

Through extensive real-world experiments, we validate 127
the effectiveness of H2R in real-world robotic manipulation 128
tasks. We employ Diffusion Policy [6] (DP) and Equivari- 129
ant Diffusion Policy [64] (eq-dp) as policy frameworks for 130
downstream training, integrating pre-trained visual repre- 131
sentation models MAE and R3M into the policy networks. 132
The results demonstrate that H2R significantly enhances the 133
performance of both MAE and R3M-based policies. 134

Our paper provides three contributions: 135

• We propose a data-centric pipeline, H2R, to mitigate the 136
gap between human and robot hands when utilizing large- 137
scale egocentric video datasets to pre-train generalizable 138
visual features for robots. 139

• We apply H2R to SSV2 and Ego4D datasets and train 140
a visual encoder that is more suitable for robotic tasks. 141
Built upon this, we yield a robust robotic manipulation 142
policy through RL and IL training on robot expert data. 143

• We demonstrate the effectiveness of H2R through exten- 144
sive experiments on closed-loop benchmarks. 145
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Figure 2. H2R Pipeline. H2R involves replacing human hands with robot arms by first using the HaMeR model to detect hand poses and
camera parameters. The human hand is then removed using the SAM, and the inpainting model LaMa fills in the gap. A robot hand is
constructed based on the detected pose and keypoints, with the camera perspective adjusted to match the original image. Finally, the robot
hand is overlaid onto the image, ensuring accurate alignment with the human hand.

2. Related Work146

2.1. Robot Policy Learning147

Training robot policies [6, 8, 40, 43, 63, 64] in a data-driven148
manner have been adopted by the robotics community as149
well as the machine learning community. This serves as150
a paradigm to automatically yield models for performing151
robotic tasks including grasping, manipulation, locomotion,152
navigation, and other complex tasks. [39, 59]. Currently,153
policy learning methods can be classified into two types:154
imitation learning (IL)-based [6, 45, 67, 70] and reinforce-155
ment learning (RL)-based [24, 56].156

IL-based methods [6, 45, 67, 70] train robot policies157
based on successful demonstration of task execution within158
the dataset. Supervised by behavior cloning [17, 60] ob-159
jective along with other auxiliary objectives, the policy pre-160
dicts a sequence of future actions based on current and past161
observations. To deal with the non-markovian transition of162
robot configuration under scenario such as stationary pro-163
cess, ACT [70] employes a temporal fusion of sequence pre-164
dicted at multiple time steps and thus mitigates the related165
confounder problem. To deal with the multi-modality na-166
ture of robot motion, diffusion models are adopted [6, 67].167
For IL-based methods, data diversity contributes largely to168
the generalizability of model.169

On the other hand, RL-based methods [66] resort for the170
RL paradigm of learning an optimal policy by defining a171
reward function. These methods formulate robotic manip-172
ulation tasks as MDP processes and apply RL algorithms173
such as PPO [56], SAC [24], and more. Typically, RL for174
robotics tasks are realized by researchers via RL training in175
simulator, sim2real transfer, and policy deploying on real176
robots such as legged robots or aerial drones for locomo-177

tion [30, 38, 71], robot arms and dexterous hands for ma- 178
nipulation [62, 66], mobile robots for navigation [7]. 179

For both IL and RL-based methods, a strong feature 180
extractor backbone serves as a cornerstone for learning 181
a robust policy. Therefore, Well-conceived data-centric 182
pipeline is crucial and contributes to the backbone training. 183

2.2. Visual Encoder Pretraining for Robotics 184

Researchers investigated visual representation [48] under 185
various perspectives such as model architecture [13, 25], 186
training objective [26, 27], dataset [11, 42, 55, 57], and 187
more. PVR-Control [49] demonstrates the effectiveness of 188
visual representation which surpasses the state representa- 189
tion under the investigated scenarios. RPT [53] explores 190
tokenized representation of transformer and trains the cor- 191
responding encoder through masked token-prediction. 192

Unsupervised training methods such as Masked Auto- 193
Encoder (MAE) [27] and contrastive learning [4, 5] are 194
employed by researchsers [46, 51] for training video 195
encoder and enhancing generalizability. Specifically, 196
MVP [51] introduced video representation for downstream 197
RL tasks while R3M [46] combines time-contrastive learn- 198
ing and video-language alignment. To effectively perform 199
language-guided robotic tasks, researchers of Voltron [34] 200
utilize MAE [27] and contrastive learning [4, 5] for low- 201
level control and high-level planning, respectively. 202

2.3. Data Quality to Learning Method 203

Yielding a universal visual representation through a data- 204
centric fashion is crucial for the visual encoder along with 205
the policy to generalize to in-domain and even out-of- 206
domain scenarios [66]. Data-centric analysis indicates the 207
importance of data regarding to the pretraining of visual 208
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Figure 3. Human-Robot retarget. We adopt the HaMeR model
to extract hand keypoints and obtain camera parameters, corre-
sponding coordinate systems are constructed, and this information
is used to adjust the robot hand’s pose and camera perspective, en-
abling precise hand pose retargeting.

representation such as data distribution and inclusion of out-209
of-domain data [10], task and domain adaptation [44], etc.210
Mirage [52] realizes domain transfer of policy between dif-211
ferent robots through a pre-processing process within the212
image space of training data. Our paradigm differs from213
Mirage from the perspective that we further investigate a214
more generalized form for robotic representation learning215
in a data-centric way which results in a more robust policy216
training.217

3. H2R: Human-to-Robot Data Augmentation218

In this section, we describe H2R, a data augmentation219
pipeline for robot pre-training from videos, our key insight220
is to remove the hands in every frame and replace them with221
robotic arms. Figure 2 shows H2R pipeline.222

Our proposal is to replace the human hands in every223
frame with that of a robot, generating an augmented dataset224
Daug . This approach aims to mitigate the visual gap be-225
tween human hands and robots, facilitating the transfer of226
knowledge for easier adaptation of models trained on ego-227
centric data to robotic tasks. In particular, we hope that228
the vision encoder trained on the augmented dataset Daug229
would outperform that trained on the original dataset D in230
downstream robotic tasks.231

3.1. Pipeline of H2R232

3D Hand Pose Estimation. In order to overlay the human233
hands in the image with different robots, we firstly need234
an efficient and accurate model to detect the hand informa-235
tion. Recent HaMeR [50], a state-of-the-art 3D hand detec-236
tion and reconstruction model. we detect the position of the237
hand and its key points, and the internal and external pa-238
rameters of the rendering camera of the RGB image. Such239
position information of the identified hand is then used to240
remove the hands from the image.241
Human Arm and Hand Remove. We leverage the Seg-242
ment Anything Model (SAM) [36] to automatically separate243
the human hand from the background using hand pose infor-244

mation detected by HaMeR. Even though there is only hand 245
information provided but no arm information Thus,SAM 246
could detect both hand and arm as a single object and sep- 247
arate it from background, showing good robustness under 248
the varying conditions of clothing and occlusion. Finally, 249
a state-of-the-art inpainting model LaMa [58] is used to fill 250
the removed hand mask. After this step, we obtain the RBG 251
images with the human hand removed for the later stage of 252
adding robot hands. 253
Robotic Arm and End Effector Construction. The final 254
step involves constructing the robot arm and end effector, 255
then overlaying it onto the generated images from the pre- 256
vious stage (as shown in Figure 3). For the robotic arm 257
reconstruction, Since HaMeR does not provide information 258
about the arm keypoints, we initially set the target robot to 259
a neutral pose and then adjust the missing joint point in- 260
formation. For the robotic end effector reconstruction For 261
the dexterous hand, the angles of each joint are determined 262
by the angles formed by the corresponding three keypoints, 263
while for the gripper, the degree of opening and closing is 264
determined by the distance between the corresponding fin- 265
gers. 266
Simulator Camera Position Alignment. The visual bias 267
introduced by the camera perspective is significantly larger 268
than the action retargeting itself; thus, we leverage the hand 269
keypoints and camera parameters from HaMeR to adjust the 270
camera pose in the simulator. Specifically, the two coordi- 271
nate systems CH and CS can be uniquely determined by the 272
human hand and the robot arm, and the camera’s position in 273
CH can be used in CS to ensure the same perspective of the 274
camera. We build the coordinate system W IH based on the 275
hand keypoints: 276

W IH = {wiH,x,
w iH,y,

w iH,z} (1) 277

Where wiH,x,
w iH,y,

w iH,z are unit vectors along the x- 278
axes, y-axes and z-axes of the human hand coorinate sys- 279
tem. With the keypoints get in HaMeR, we build the three 280
axis of coordinates with the following functions: 281

wiH,x =w i0,9
wiH,y =w i0,9 ×w i0,13
wiH,z =w iH,x ×w iH,y

(2) 282

Wherewi0,9, i0,13 are unit vectors along middle finger 283
and ring finger. Similarly, To construct the mapping from 284
hand pose to robot arms, we need to get another coordinate 285
system W IS in the simulator: 286

W IS = {wiS,x,w iS,y,
w iS,z} (3) 287

The method of determaining the axis of coordinates is the 288
same: 289

wiS,x =w i0,2
wiS,y =w i0,2 ×w i0,3
wis,z =w iS,x ×w iS,y

(4) 290
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Where i0,2, i0,3 are unit vectors along robot fingers that291
correspond to human middle and ring fingers. We build the292
following two coordinate transformation matrix to construct293
the mapping:294

W
H R =

(
W IH key0

O 1

)
W
S R =

(
W IS ee pos
O 1

) (5)295

Where key0, ee pos are the positions of human wrist296
and robot wrist. After obtaining the two coordinate sys-297
tems, we need to determine the position of the camera in298
the simulator (W camsim) and the position of the camera in299
the real world (HcamReal), thus we can ensure we get the300
same pose of the human hand and robot arms301

HcamReal =
W
H R−1 ×W camReal

Scamsim =H camReal

W camsim =W
S R×W

H R−1 ×W camReal

(6)302

Robot Hand Rendering and Copy-paste. After setting the303
action, the segmentation mask of the robot arm is obtained304
by shooting with the camera. The result of the HaMeR305
model contains the pixel coordinates of the key points of306
the human hand. By calculating the pixel coordinates of the307
corresponding links in the robot hand, the robot hand can be308
copy-pasted to the original image based on the correspond-309
ing relationship, ensuring that it is pixel-level aligned with310
the original human hand in the image (see Figure 4).311

Figure 4. Robot hand rendering and copy-paste.The HaMeR
model provides hand keypoints and camera parameters, which are
used to align the simulator’s camera pose with the original view.
The robot arm is then rendered in the simulator, and by matching
the pixel coordinates of the arm’s links, it is overlaid onto the orig-
inal image with pixel-level alignment to the human hand.

3.2. Model Training 312

Encoder Pre-training. We adopt the MAE [28, 63], 313
R3M [46], and MPI [68] frameworks for pre-training, each 314
employing a Vision Transformer (ViT) Base [14] model as 315
the visual encoder. The SSv2 dataset [21] is used for MAE 316
and R3M training, whereas the Ego4D dataset [22] is em- 317
ployed for MPI training. For the MAE and R3M pretrain- 318
ing methods, in addition to pre-training on the H2R data 319
and raw data, we also applied a simple CutMix baseline to 320
demonstrate the effectiveness of using the robotic arm to 321
cover the human hand, which overlays a fixed set of spe- 322
cific images of robotic arms with grippers onto the original 323
images, ensuring that the overlaid images cover the human 324
hands as much as possible, without exceeding the detected 325
bounding box. Our H2R is different from such baseline by 326
employing robot hand construction to better match the pose 327
of the hand and arm in the images. Based on the type of 328
robotic arm used in CutMix, we categorize the augmented 329
set into three types: CutMix1 represents the UR5 robotic 330
arm, CutMix2 refers to the Franka robotic arm, and Cut- 331
Mix3 combines both the UR5 and Franka robotic arms. 332

Policy Training. Finally, we employ several existing policy 333
training methods to fine-tune the pre-trained model for eval- 334
uations on downstream robotic tasks. We reuse their orig- 335
inal implementations to ensure that any performance im- 336
provements are solely attributable to our data augmentation 337
approach. For RL models, we evaluate downstream tasks 338
using the PixMC [63] benchmark and employ PPO [56] for 339
policy learning. Additionally, we utilize Robomimic [45] 340
and Diffusion Policy [6] for evaluating IL models. The 341
Robomimic baseline is primarily used for BC policies, and 342
we test three tasks with the Robomimic datasets. For the 343
Diffusion Policy, we specifically evaluate the push task to 344
assess the robustness of our method across different ap- 345
proaches. 346

Figure 5. RL-driven policy training pipeline. We propose a
training pipeline for RL-driven policy learning, designed to evalu-
ate performance across various simulation benchmarks.
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Figure 6. Simulation benchmark. We choose 4 tasks from the PixMC and 3 tasks from the Robomimic, covering a range of robotic
manipulation skills. We also include the PushT task, designed for the Diffusion Policy framework, as an additional benchmark to evaluate
performance in a different task setup.

4. Simulation Experiment347

4.1. Experiment Setup348

Simulation Benchmark. For evaluations in simulation, we349
select a total of 8 simulation benchmarks across different350
environments, which are PixMC [63], Robomimic [45], and351
Diffusion Policy [6]. In particular, for PixMC, we select352
FrankaReach, FrankaCabinet, FrankaPick, and Kuka-353
Cabinet to assess the robot’s ability to interact with ob-354
jects. For Robomimic, we include tasks such as Move-355
Can, Square, and Lift, where the robot performs actions356
like moving or lifting objects. We also use the PushT task,357
designed for the Diffusion Policy framework, which evalu-358
ates a robot’s ability to push an object to a target location.359
These simulation tasks, visualized in Figure 6, span a range360
of manipulation skills, providing a comprehensive evalua-361
tion of robot performance. For each pre-training method362
(MAE [28, 63], R3M [46], MPI [68]), we evaluate the per-363
formance of pre-trained encoders with H2R in reinforce-364
ment learning and imitation learning. For the PixMC, most365
tasks involve motion control of robotic arms, we primar-366
ily use reinforcement learning (RL) methods to validate the367
effectiveness of H2R. However, for more complex simula-368
tion tasks, such as Robomimic benchmark, experimental re-369
sults tend to be more sensitive to the reward mechanisms in370
reinforcement learning. Therefore, to avoid the impact of371
reward on task success rates, we adopt imitation learning372
methods (IL) combined with a pre-trained visual encoder373
for testing. This approach will evaluate the effectiveness of374
H2R in bridging the gap between human hand and robotic375
arm visual perception.376
Pre-training Dataset. We select SSV2 (Something-377
Something V2) [21] and Ego4D [22] as the primary datasets378
for our experiments. SSV2 contains 220,847 video clips379
of human actions with everyday objects, designed to help380
models understand fine-grained hand gestures. Ego4D is a381
large-scale egocentric dataset with 3,670 hours of video col-382
lected from 923 participants worldwide, aimed at advancing383
first-person visual perception. We use the SSV2 dataset in384
the MAE and R3M methods, and the Ego4D dataset in the385
MPI method. For MAE and R3M, we select 62,500 videos386
from the SSV2 dataset and randomly sample 16 keyframes387
from each video. For MPI, we extract 117,624 action clips388

from 2,486 videos in the Ego4D dataset, each clip consist- 389
ing of three frames (start, middle, and end). 390
Evaluation Metric. We repeat each experiment three times 391
with different seeds and report the averaged results. For 392
tasks in PixMC, we train the models using reinforcement 393
learning for 2,000 steps and report the final success rate. 394
For tasks in Robomimic, we train for 200 steps and report- 395
ing the mean success rate. For tasks in RLBench, rlbench 396
For the PushT task, we train the Diffusion Policy model for 397
200 epoches and report the success rate in the simulation en- 398
vironment. The training hyperparameters used in this work 399
are identical to those described in the original paper. 400

4.2. Results. 401

Reinforcement Learning. From Table 1, we observe that 402
the improvement brought by H2R in reinforcement learning 403
shows more variation depending on the task. Some tasks see 404
an improvement, while others experience a decline. How- 405
ever, on average, across all tasks, there is still an overall 406
improvement. Additionally, the performance with CutMix 407
data is particularly better with R3M, while the use of H2R 408
data yields excellent results with MAE. For example, when 409
using the MAE pretraining method, the use of our H2R 410
data results in a 29.7% improvement in the average suc- 411
cess rate of the tasks. On the other hand, encoders trained 412
with CutMix data show improvements ranging from 18.0% 413
to 21.4%. When using the R3M pretraining method, the im- 414
provement in average success rate with H2R data is smaller, 415
but the performance boost with CutMix data is more pro- 416
nounced. Finally, when using the MPI pretraining method, 417
the use of H2R data results in a modest reduction in the av- 418
erage success rate. 419
Imitation Learning. From Table 2, we observe that the en- 420
coder trained on H2R data shows consistent improvements 421
across various tasks compared to the encoder trained on the 422
original data, with the average success rate improvement on 423
all tasks ranging from 0.9% to 10.2%. Especially for the 424
more challenging MoveCan task, it can improve the suc- 425
cess rate by 25.5%. Additionally, while encoders trained 426
on the relatively simple CutMix data show improvement on 427
tasks in Robomimic, their performance in the PushT task 428
remains slightly worse than the encoders trained on original 429
data. These results demonstrate the effectiveness of using 430
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FrankaReach FrankaCabinet FrankaPick KukaCabinet Average

MAE 97.5 88 0 90 46.9
MAE+CutMix1 93.5 (-4.0%) 90.5 (+2.5%) 0.0 (0.0%) 80.5 (-9.5%) 66.1 (+19.2%)
MAE+CutMix2 96.5 (-1.0%) 100.0 (+12.0%) 0.0 (0.0%) 63.0 (-27.0%) 64.9 (+18.0%)
MAE+CutMix3 98.5 (+1.0%) 90.5 (+2.5%) 0.0 (0.0%) 84.0 (-6.0%) 68.3 (+21.4%)

MAE+H2R 96.0 (-1.5%) 92.0 (+4.0%) 31.5 (+31.5%) 87.0 (-3.0%) 76.6 (+29.7%)

R3M 63 0 0 0 15.8
R3M+CutMix1 95.5 (+32.5%) 99.5 (+99.5%) 0.0 (0.0%) 1.0 (+1.0%) 49.0 (+33.2%)
R3M+CutMix2 98.5 (+35.5%) 97.5 (+97.5%) 0.0 (0.0%) 0.0 (0.0%) 49.0 (+33.2%)
R3M+CutMix3 97.5 (+34.5%) 85.5 (+85.5%) 0.0 (0.0%) 0.0 (0.0%) 45.8 (+30.0%)

R3M+H2R 8.5 (-54.5%) 0.0 (0.0%) 0.0 (0.0%) 81.0 (+81.0%) 17.9 (+2.1%)

MPI 83.5 0 0 58 35.4
MPI+H2R 88.0 (+4.5%) 20.0 (+20.0%) 0.0 (0.0%) 0.0 (-58.0%) 27 (-8.4%)

Table 1. Reinforcement learning experiment result. We report the success rate (%) over RL-based tasks for MAE, R3M, and MPI.

MoveCan Square Lift Average PushT

MAE 54 25.5 94.5 58 59.2
MAE+CutMix1 72.0 (+18.0%) 30.0 (+4.5%) 95.0 (+0.5%) 65.7 (+7.7%) 37.5 (-21.7%)
MAE+CutMix2 58.0 (+4.0%) 36.0 (+10.5%) 90.0 (-4.5%) 61.3 (+3.3%) 40.0 (-19.2%)
MAE+CutMix3 78.0 (+24.0%) 32.0 (+9.3%) 92.0 (-2.5%) 67.3 (+2.7%) 42.0 (-17.2%)

MAE+H2R 79.5 (+25.5%) 29.5 (+4.0%) 95.5 (+1.0%) 68.2 (+10.2%) 64.5 (+5.3%)

R3M 59.5 20.5 85 55 15
R3M+CutMix1 69.5 (+10.0%) 30.0 (+9.5%) 91.0 (+6.0%) 63.5 (+8.5%) 19.0 (+4.0%)
R3M+CutMix2 66.0 (+6.5%) 26.0 (+5.5%) 83.0 (-2.0%) 58.3 (+3.3%) 17.0 (+2.0%)
R3M+CutMix3 68.0 (+8.5%) 26.0 (+5.5%) 84.0 (-1.0%) 59.3 (+4.3%) 14.0 (-1.0%)

R3M+H2R 61.5 (+2.0%) 37.5 (+17.0%) 85.0 (0.0%) 61.3 (+6.3%) 22.0 (+7.0%)

MPI 58 21 96 58.3 62.7
MPI+H2R 62.5 (+4.5%) 24.5 (+3.5%) 94.5 (-1.5%) 60.5 (+2.2%) 63.8 (+0.9%)

Table 2. Imitation learning experiment result. We report the success rate (%) over IL-based tasks for MAE, R3M, and MPI.

the robotic arm to cover the human hand in video data, as431
well as the effectiveness of H2R in imitation learning.432

5. Real World Experiment433

5.1. Experiment Setup434

Real-world Tasks. To validate the effectiveness of H2R in435
downstream manipulation tasks, we implement three real-436
world manipulation tasks using a UR5 [61] robotic arm with437
a Robotiq [54] Gripper integration. The single RealSense438
L515 [31] camera is used to obtain visual observations in439
the real world. Realsense L515 is set above and behind the440
robotic arm, which provides a similar viewpoint to the hu-441
man video data used in the pretrained visual model. Our442
real-world setup are shown in Figure 7. We provide detailed443
descriptions of the three implemented manipulation tasks as444
follows.445

1. Pick and Place: Grasp a cube and place it into a bowl. 446
2. Stack Cubes: Stack a blue cube atop a yellow cube. 447
3. Pick from Box: Retrieve a cube from a box, place it into 448

a bowl, and then close the box lid. 449

All the tasks are visualized in Appendix. Pick and Place 450
task is the simplest of three tasks but still requires precise 451
cube recognition, grasping, and placement within a desig- 452
nated bowl area. By contrast, Stack Cubes task demands 453
higher positional accuracy during placement, 454

requiring precise identification of the yellow cube’s loca- 455
tion for successful stacking. Pick from Box task combines 456
grasping with articulated object manipulation, necessitating 457
longer-horizon planning and higher precision. For instance, 458
the robot must avoid the lid while retrieving the cube and se- 459
lect optimal contact points to close the lid post-placement, 460
challenging its ability to learn from high-dimensional visual 461
inputs. 462
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Policy Model Tasks MAE MAE+H2R R3M R3M+H2R

Diffusion Policy

Pick and Place 45 65(+20%) 40 50(+10%)
Stack Cubes 50 55(+5%) 55 70(+15%)

Pick from Box 55 50(-5%) 45 65(+20%)
Average 50 56.7(+6.7%) 46.7 61.7(+15%)

Equivariant Diffusion Policy

Pick and Place 55 70(+15%) 60 70(+10%)
Stack Cubes 50 50(0%) 65 75(+10%)

Pick from Box 55 75(+25%) 50 70(+20%)
Average 53.3 65(+11.7%) 58.3 75(+13.3%)

Table 3. Real-World success rate.We report the success rate (%) over real-world tasks for MAE, R3M. Percentage changes due to H2R
are shown in parentheses, with blue indicating improvement and red indicating degradation.

Figure 7. Real-world experiment scene.

Policy Training Process Details. For dataset collection, we463
collect expert demonstrations through human teleoperation,464
comprising 30 demonstrations per task. For downstream465
policy training, we select the Diffusion Policy(DP) [6] and466
Equivariant Diffusion Policy(eq-dp) [64] as policy frame-467
works. We apply upstream pre-trained MAE and R3M468
visual representation models to downstream policy learn-469
ing, selecting four configurations for comparison: MAE,470
MAE+H2R, R3M, and R3M+H2R. Pretrained models are471
incorporated as frozen vision encoders in the policy network472
to evaluate their effectiveness. We use a single RGB cam-473
era image as the high-dimensional observation space and474
the robot proprioception as the low-dimensional observa-475
tion space. Both are combined as input observations to the476
policy network. Policy is trained for 300 epochs using the477
collected data for each task.478

5.2. Experiment Results479

We evaluate the success rates of each model-task combi-480
nation in real-world deployments. The results, as shown481
in Table 3, demonstrate that H2R significantly enhance482
the performance of visual encoders across diverse robotic483
tasks. H2R augmentation improves MAE-based policies484
in 6 out of 7 task configurations, with the largest gains in485
Pick from Box (+25% for Equivariant Diffusion) and Pick486

and Place (+20% for Diffusion Policy). Across all tasks, 487
H2R augmentation consistently enhanced R3M-based poli- 488
cies, with the most notable improvements observed in ge- 489
ometrically complex scenarios such as Pick from Box, 490
where R3M+H2R paired with Equivariant Diffusion Pol- 491
icy achieved a 20% success rate increase. These results 492
highlight the potential of our approach to enhance visual 493
encoders for real-world robotic applications, even in com- 494
plex and dynamic environments. 495

6. Conclusion 496

We proposed H2R, a data augmentation technique that 497
bridges the visual gap between human hand demonstrations 498
and robotic arm manipulations by replacing human hands 499
in first-person videos with robotic arm movements. Using 500
3D hand reconstruction and image inpainting models, H2R 501
generates synthetic robotic arm manipilation sequences, 502
making them more suitable for robot pre-training. Exper- 503
iments across simulation benchmarks and real-world tasks 504
demonstrate consistent improvements in success rates for 505
encoders trained with various pre-training methods(MAE, 506
R3M, MPI), highlighting its effectiveness and generaliz- 507
ability. H2R enables efficient transfer of task knowledge 508
from human demonstrations to robotic systems, reducing 509
reliance on costly robot-specific data collection. 510
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ski, Joanna Materzyńska, Susanne Westphal, Heuna Kim, 734
Valentin Haenel, Ingo Fruend, Peter Yianilos, Moritz 735
Mueller-Freitag, Florian Hoppe, Christian Thurau, Ingo Bax, 736
and Roland Memisevic. The ”something something” video 737
database for learning and evaluating visual common sense, 738
2017. 5, 6 739

[22] Kristen Grauman, Andrew Westbury, Eugene Byrne, 740
Zachary Chavis, Antonino Furnari, Rohit Girdhar, Jackson 741

10



CVPR
#00076

CVPR
#00076

CVPR 2025 Submission #00076. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Hamburger, Hao Jiang, Miao Liu, Xingyu Liu, Miguel Mar-742
tin, Tushar Nagarajan, Ilija Radosavovic, Santhosh Kumar743
Ramakrishnan, Fiona Ryan, Jayant Sharma, Michael Wray,744
Mengmeng Xu, Eric Zhongcong Xu, Chen Zhao, Siddhant745
Bansal, Dhruv Batra, Vincent Cartillier, Sean Crane, Tien746
Do, Morrie Doulaty, Akshay Erapalli, Christoph Feichten-747
hofer, Adriano Fragomeni, Qichen Fu, Abrham Gebrese-748
lasie, Cristina Gonzalez, James Hillis, Xuhua Huang, Yifei749
Huang, Wenqi Jia, Weslie Khoo, Jachym Kolar, Satwik Kot-750
tur, Anurag Kumar, Federico Landini, Chao Li, Yanghao751
Li, Zhenqiang Li, Karttikeya Mangalam, Raghava Modhugu,752
Jonathan Munro, Tullie Murrell, Takumi Nishiyasu, Will753
Price, Paola Ruiz Puentes, Merey Ramazanova, Leda Sari,754
Kiran Somasundaram, Audrey Southerland, Yusuke Sugano,755
Ruijie Tao, Minh Vo, Yuchen Wang, Xindi Wu, Takuma756
Yagi, Ziwei Zhao, Yunyi Zhu, Pablo Arbelaez, David Cran-757
dall, Dima Damen, Giovanni Maria Farinella, Christian Fue-758
gen, Bernard Ghanem, Vamsi Krishna Ithapu, C. V. Jawahar,759
Hanbyul Joo, Kris Kitani, Haizhou Li, Richard Newcombe,760
Aude Oliva, Hyun Soo Park, James M. Rehg, Yoichi Sato,761
Jianbo Shi, Mike Zheng Shou, Antonio Torralba, Lorenzo762
Torresani, Mingfei Yan, and Jitendra Malik. Ego4d: Around763
the world in 3,000 hours of egocentric video, 2022. 5, 6764

[23] Kristen Grauman, Andrew Westbury, Eugene Byrne,765
Zachary Chavis, Antonino Furnari, Rohit Girdhar, Jackson766
Hamburger, Hao Jiang, Miao Liu, Xingyu Liu, et al. Ego4d:767
Around the world in 3,000 hours of egocentric video. In Pro-768
ceedings of the IEEE/CVF Conference on Computer Vision769
and Pattern Recognition, pages 18995–19012, 2022. 2770

[24] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and771
Sergey Levine. Soft actor-critic: Off-policy maximum772
entropy deep reinforcement learning with a stochastic773
actor, 2018. cite arxiv:1801.01290Comment: ICML774
2018 Videos: sites.google.com/view/soft-actor-critic Code:775
github.com/haarnoja/sac. 3776

[25] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.777
Deep residual learning for image recognition. In Proceed-778
ings of the IEEE Conference on Computer Vision and Pattern779
Recognition (CVPR), 2016. 3780

[26] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross781
Girshick. Momentum contrast for unsupervised visual repre-782
sentation learning. In Proceedings of the IEEE/CVF Confer-783
ence on Computer Vision and Pattern Recognition (CVPR),784
2020. 3785

[27] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr786
Dollár, and Ross Girshick. Masked autoencoders are scalable787
vision learners. In Proceedings of the IEEE/CVF Conference788
on Computer Vision and Pattern Recognition (CVPR), pages789
16000–16009, 2022. 3790

[28] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr791
Dollár, and Ross Girshick. Masked autoencoders are scalable792
vision learners. In Proceedings of the IEEE/CVF conference793
on computer vision and pattern recognition, pages 16000–794
16009, 2022. 2, 5, 6795

[29] Alexander Herzog, Kanishka Rao, Karol Hausman, Yao796
Lu, Paul Wohlhart, Mengyuan Yan, Jessica Lin, Montser-797
rat Gonzalez Arenas, Ted Xiao, Daniel Kappler, Daniel798
Ho, Jarek Rettinghouse, Yevgen Chebotar, Kuang-Huei799

Lee, Keerthana Gopalakrishnan, Ryan Julian, Adrian Li, 800
Chuyuan Kelly Fu, Bob Wei, Sangeetha Ramesh, Khem 801
Holden, Kim Kleiven, David Rendleman, Sean Kirmani, Jeff 802
Bingham, Jon Weisz, Ying Xu, Wenlong Lu, Matthew Ben- 803
nice, Cody Fong, David Do, Jessica Lam, Yunfei Bai, Benjie 804
Holson, Michael Quinlan, Noah Brown, Mrinal Kalakrish- 805
nan, Julian Ibarz, Peter Pastor, and Sergey Levine. Deep rl at 806
scale: Sorting waste in office buildings with a fleet of mobile 807
manipulators, 2023. 2 808

[30] Kevin Huang, Rwik Rana, Alexander Spitzer, Guanya Shi, 809
and Byron Boots. DATT: Deep adaptive trajectory tracking 810
for quadrotor control. In 7th Annual Conference on Robot 811
Learning, 2023. 3 812

[31] Intel Corporation. Intel®realsense™lidar camera l515. 813
https://www.intelrealsense.com/lidar- 814
camera-l515/, 2025. Accessed: 2025-02-01. 7 815

[32] Eric Jang, Alex Irpan, Mohi Khansari, Daniel Kappler, Fred- 816
erik Ebert, Corey Lynch, Sergey Levine, and Chelsea Finn. 817
Bc-z: Zero-shot task generalization with robotic imitation 818
learning, 2022. 2 819

[33] Dmitry Kalashnikov, Jacob Varley, Yevgen Chebotar, Ben- 820
jamin Swanson, Rico Jonschkowski, Chelsea Finn, Sergey 821
Levine, and Karol Hausman. Mt-opt: Continuous multi-task 822
robotic reinforcement learning at scale, 2021. 2 823

[34] Siddharth Karamcheti, Suraj Nair, Annie S. Chen, Thomas 824
Kollar, Chelsea Finn, Dorsa Sadigh, and Percy Liang. 825
Language-driven representation learning for robotics. In 826
Robotics: Science and Systems (RSS), 2023. 2, 3 827

[35] Alexander Khazatsky, Karl Pertsch, Suraj Nair, Ashwin Bal- 828
akrishna, Sudeep Dasari, Siddharth Karamcheti, Soroush 829
Nasiriany, Mohan Kumar Srirama, Lawrence Yunliang 830
Chen, Kirsty Ellis, Peter David Fagan, Joey Hejna, Masha 831
Itkina, Marion Lepert, Yecheng Jason Ma, Patrick Tree 832
Miller, Jimmy Wu, Suneel Belkhale, Shivin Dass, Huy Ha, 833
Arhan Jain, Abraham Lee, Youngwoon Lee, Marius Mem- 834
mel, Sungjae Park, Ilija Radosavovic, Kaiyuan Wang, Al- 835
bert Zhan, Kevin Black, Cheng Chi, Kyle Beltran Hatch, 836
Shan Lin, Jingpei Lu, Jean Mercat, Abdul Rehman, Pan- 837
nag R Sanketi, Archit Sharma, Cody Simpson, Quan Vuong, 838
Homer Rich Walke, Blake Wulfe, Ted Xiao, Jonathan Hee- 839
won Yang, Arefeh Yavary, Tony Z. Zhao, Christopher Agia, 840
Rohan Baijal, Mateo Guaman Castro, Daphne Chen, Qi- 841
uyu Chen, Trinity Chung, Jaimyn Drake, Ethan Paul Fos- 842
ter, Jensen Gao, David Antonio Herrera, Minho Heo, Kyle 843
Hsu, Jiaheng Hu, Donovon Jackson, Charlotte Le, Yun- 844
shuang Li, Kevin Lin, Roy Lin, Zehan Ma, Abhiram Mad- 845
dukuri, Suvir Mirchandani, Daniel Morton, Tony Nguyen, 846
Abigail O’Neill, Rosario Scalise, Derick Seale, Victor Son, 847
Stephen Tian, Emi Tran, Andrew E. Wang, Yilin Wu, An- 848
nie Xie, Jingyun Yang, Patrick Yin, Yunchu Zhang, Os- 849
bert Bastani, Glen Berseth, Jeannette Bohg, Ken Gold- 850
berg, Abhinav Gupta, Abhishek Gupta, Dinesh Jayaraman, 851
Joseph J Lim, Jitendra Malik, Roberto Martı́n-Martı́n, Sub- 852
ramanian Ramamoorthy, Dorsa Sadigh, Shuran Song, Jia- 853
jun Wu, Michael C. Yip, Yuke Zhu, Thomas Kollar, Sergey 854
Levine, and Chelsea Finn. Droid: A large-scale in-the-wild 855
robot manipulation dataset, 2024. 2 856

[36] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, 857

11

https://www.intelrealsense.com/lidar-camera-l515/
https://www.intelrealsense.com/lidar-camera-l515/
https://www.intelrealsense.com/lidar-camera-l515/


CVPR
#00076

CVPR
#00076

CVPR 2025 Submission #00076. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer White-858
head, Alexander C. Berg, Wan-Yen Lo, Piotr Dollár, and859
Ross Girshick. Segment anything, 2023. 2, 4860

[37] Alex X. Lee, Coline Devin, Yuxiang Zhou, Thomas Lampe,861
Konstantinos Bousmalis, Jost Tobias Springenberg, Arunk-862
umar Byravan, Abbas Abdolmaleki, Nimrod Gileadi, David863
Khosid, Claudio Fantacci, Jose Enrique Chen, Akhil Raju,864
Rae Jeong, Michael Neunert, Antoine Laurens, Stefano Sal-865
iceti, Federico Casarini, Martin Riedmiller, Raia Hadsell,866
and Francesco Nori. Beyond pick-and-place: Tackling867
robotic stacking of diverse shapes, 2021. 2868

[38] Joonho Lee, Jemin Hwangbo, Lorenz Wellhausen, Vladlen869
Koltun, and Marco Hutter. Learning quadrupedal locomotion870
over challenging terrain. Science Robotics, 5(47):eabc5986,871
2020. 3872

[39] Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter873
Abbeel. End-to-end training of deep visuomotor policies,874
2016. 3875

[40] Sergey Levine, Peter Pastor, Alex Krizhevsky, Julian Ibarz,876
and Deirdre Quillen. Learning hand-eye coordination for877
robotic grasping with deep learning and large-scale data col-878
lection. The International Journal of Robotics Research, 37879
(4-5):421–436, 2018. 3880

[41] Jeffrey Li, Alex Fang, Georgios Smyrnis, Maor Ivgi, Matt881
Jordan, Samir Gadre, Hritik Bansal, Etash Guha, Sedrick882
Keh, Kushal Arora, Saurabh Garg, Rui Xin, Niklas Muen-883
nighoff, Reinhard Heckel, Jean Mercat, Mayee Chen, Suchin884
Gururangan, Mitchell Wortsman, Alon Albalak, Yonatan885
Bitton, Marianna Nezhurina, Amro Abbas, Cheng-Yu Hsieh,886
Dhruba Ghosh, Josh Gardner, Maciej Kilian, Hanlin Zhang,887
Rulin Shao, Sarah Pratt, Sunny Sanyal, Gabriel Ilharco,888
Giannis Daras, Kalyani Marathe, Aaron Gokaslan, Jieyu889
Zhang, Khyathi Chandu, Thao Nguyen, Igor Vasiljevic,890
Sham Kakade, Shuran Song, Sujay Sanghavi, Fartash891
Faghri, Sewoong Oh, Luke Zettlemoyer, Kyle Lo, Alaaeldin892
El-Nouby, Hadi Pouransari, Alexander Toshev, Stephanie893
Wang, Dirk Groeneveld, Luca Soldaini, Pang Wei Koh, Je-894
nia Jitsev, Thomas Kollar, Alexandros G. Dimakis, Yair Car-895
mon, Achal Dave, Ludwig Schmidt, and Vaishaal Shankar.896
Datacomp-lm: In search of the next generation of training897
sets for language models. arXiv preprint arXiv:2406.11794,898
2024. 2899

[42] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,900
Pietro Perona, Deva Ramanan, Piotr Dollár, and C. Lawrence901
Zitnick. Microsoft coco: Common objects in context. In902
Computer Vision – ECCV 2014, pages 740–755, Cham,903
2014. Springer International Publishing. 3904

[43] Jianlan Luo, Charles Xu, Jeffrey Wu, and Sergey Levine.905
Precise and dexterous robotic manipulation via human-in-906
the-loop reinforcement learning, 2024. 3907

[44] Arjun Majumdar, Karmesh Yadav, Sergio Arnaud, Jason908
Ma, Claire Chen, Sneha Silwal, Aryan Jain, Vincent-Pierre909
Berges, Tingfan Wu, Jay Vakil, Pieter Abbeel, Jitendra Ma-910
lik, Dhruv Batra, Yixin Lin, Oleksandr Maksymets, Aravind911
Rajeswaran, and Franziska Meier. Where are we in the912
search for an artificial visual cortex for embodied intelli-913
gence? In Advances in Neural Information Processing Sys-914
tems, pages 655–677. Curran Associates, Inc., 2023. 4915

[45] Ajay Mandlekar, Danfei Xu, Josiah Wong, Soroush Nasiri- 916
any, Chen Wang, Rohun Kulkarni, Li Fei-Fei, Silvio 917
Savarese, Yuke Zhu, and Roberto Martı́n-Martı́n. What mat- 918
ters in learning from offline human demonstrations for robot 919
manipulation, 2021. 2, 3, 5, 6 920

[46] Suraj Nair, Aravind Rajeswaran, Vikash Kumar, Chelsea 921
Finn, and Abhinav Gupta. R3m: A universal visual 922
representation for robot manipulation. arXiv preprint 923
arXiv:2203.12601, 2022. 2, 3, 5, 6 924

[47] OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, 925
Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo 926
Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anad- 927
kat, Red Avila, Igor Babuschkin, Suchir Balaji, Valerie Bal- 928
com, Paul Baltescu, Haiming Bao, Mohammad Bavarian, 929
Jeff Belgum, Irwan Bello, Jake Berdine, Gabriel Bernadett- 930
Shapiro, Christopher Berner, Lenny Bogdonoff, Oleg Boiko, 931
Madelaine Boyd, Anna-Luisa Brakman, Greg Brockman, 932
Tim Brooks, Miles Brundage, Kevin Button, Trevor Cai, 933
Rosie Campbell, Andrew Cann, Brittany Carey, Chelsea 934
Carlson, Rory Carmichael, Brooke Chan, Che Chang, Fo- 935
tis Chantzis, Derek Chen, Sully Chen, Ruby Chen, Ja- 936
son Chen, Mark Chen, Ben Chess, Chester Cho, Casey 937
Chu, Hyung Won Chung, Dave Cummings, Jeremiah Cur- 938
rier, Yunxing Dai, Cory Decareaux, Thomas Degry, Noah 939
Deutsch, Damien Deville, Arka Dhar, David Dohan, Steve 940
Dowling, Sheila Dunning, Adrien Ecoffet, Atty Eleti, 941
Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix, 942
Simón Posada Fishman, Juston Forte, Isabella Fulford, Leo 943
Gao, Elie Georges, Christian Gibson, Vik Goel, Tarun Gogi- 944
neni, Gabriel Goh, Rapha Gontijo-Lopes, Jonathan Gordon, 945
Morgan Grafstein, Scott Gray, Ryan Greene, Joshua Gross, 946
Shixiang Shane Gu, Yufei Guo, Chris Hallacy, Jesse Han, 947
Jeff Harris, Yuchen He, Mike Heaton, Johannes Heidecke, 948
Chris Hesse, Alan Hickey, Wade Hickey, Peter Hoeschele, 949
Brandon Houghton, Kenny Hsu, Shengli Hu, Xin Hu, Joost 950
Huizinga, Shantanu Jain, Shawn Jain, Joanne Jang, Angela 951
Jiang, Roger Jiang, Haozhun Jin, Denny Jin, Shino Jomoto, 952
Billie Jonn, Heewoo Jun, Tomer Kaftan, Łukasz Kaiser, 953
Ali Kamali, Ingmar Kanitscheider, Nitish Shirish Keskar, 954
Tabarak Khan, Logan Kilpatrick, Jong Wook Kim, Christina 955
Kim, Yongjik Kim, Jan Hendrik Kirchner, Jamie Kiros, 956
Matt Knight, Daniel Kokotajlo, Łukasz Kondraciuk, An- 957
drew Kondrich, Aris Konstantinidis, Kyle Kosic, Gretchen 958
Krueger, Vishal Kuo, Michael Lampe, Ikai Lan, Teddy Lee, 959
Jan Leike, Jade Leung, Daniel Levy, Chak Ming Li, Rachel 960
Lim, Molly Lin, Stephanie Lin, Mateusz Litwin, Theresa 961
Lopez, Ryan Lowe, Patricia Lue, Anna Makanju, Kim Mal- 962
facini, Sam Manning, Todor Markov, Yaniv Markovski, 963
Bianca Martin, Katie Mayer, Andrew Mayne, Bob Mc- 964
Grew, Scott Mayer McKinney, Christine McLeavey, Paul 965
McMillan, Jake McNeil, David Medina, Aalok Mehta, Jacob 966
Menick, Luke Metz, Andrey Mishchenko, Pamela Mishkin, 967
Vinnie Monaco, Evan Morikawa, Daniel Mossing, Tong Mu, 968
Mira Murati, Oleg Murk, David Mély, Ashvin Nair, Rei- 969
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Appendix1104

CLIP-based Evaluation of Augmentation Effectiveness.1105
To quantitatively assess the effectiveness of H2R in bridg-1106
ing the visual gap between human and robot hands, we em-1107
ploy CLIP to measure the similarity between images and1108
action descriptions before and after augmentation. Specifi-1109
cally, we generate two text prompts for an image:1110

• Human-centric prompt: “A human is [action].”1111
• Robot-centric prompt: “A robot is [action].”1112

where [action] describes the task being performed (e.g.,1113
“picking up a cube”) in the image. We compute CLIP1114
similarity scores between the image and their respective1115
prompts, where higher robot-prompt scores indicate better1116
visual alignment with robotic manipulation.1117

Img1 Img2 Img3 Img4 Img5 Img6

ori 31.4 23.7 31.2 32.0 27.5 29.7
aug 28.4 28.8 32.7 29.6 28.7 27.2

Table 4. CLIP similarity scores. Higher values indicate better
alignment between images and robot-centric descriptions.

Visual examples in Figure 11 demonstrate how our aug-1118
mentation successfully adapts human motions to robotic1119
kinematics. The CLIP similarity scores in Table 4 con-1120
firm that the augmented images maintain comparable align-1121
ment with robot-centric descriptions. CLIP scores occa-1122
sionally decrease for some tasks, likely due to minor ar-1123
tifacts in hand-object interaction synthesis. However, as1124
demonstrated in the following subsections, these discrep-1125
ancies do not impede downstream policy performance, sug-1126
gesting that H2R prioritizes functionally relevant visual fea-1127
tures over pixel-perfect realism.1128

Failure Cases Analysis of the Real-world Experiment In1129
addition to evaluating the success rate, we performed a de-1130
tailed analysis of all failure cases by decomposing each task1131
into distinct operational phases, as shown in Table 5. We1132
divided three real-world tasks into multiple stages based on1133
the complete motion sequence of a robotic arm. For each1134
task, we classified the failure cases according to the furthest1135
phase achieved, where later stages correspond to higher task1136
completion levels.1137

In our real-world evaluation, we show the frequency dis-1138
tribution of task-specific failure cases in Figure 8.we find1139
that regardless of the task or model used in the experiments,1140
Case 1 constitutes a significant proportion of the failure1141
cases. A major reason for this is the policy’s inability to1142
accurately locate the position to interact with the target ob-1143
ject. This misalignment can be attributed to various factors1144
such as camera noise, environmental lighting changes, ob-1145
ject occlusions, or the model’s limited adaptability to new1146
environments. To delve deeper into these issues, we present1147

tasks Pick and Place Stack Cubes Pick from Box
case1 Picking failure Picking failure Picking failure
case2 Placing failure Stacking failure Placing failure
case3 Success Success Closing failure
case4 / / Success

Table 5. Cases of each real-world task. We list 3 cases for Pick
and Place task, 3 cases for Stack Cubes task and 4 cases for Pick
from Box task.

Figure 8. Failure case analysis. We divided each task into 3-4
cases to enable a detailed analysis of execution failure causes and
finer-grained evaluation.

detailed examples of typical failure cases in Figure 9. These 1148
factors can prevent the end-effector from correctly identi- 1149
fying and approaching the target location, leading to task 1150
failure. We also observe that H2R-augmented visual repre- 1151
sentation models not only improve overall success rates in 1152
real-world tasks but also significantly reduce the occurrence 1153
of Case 1 failures across most of the tasks, which indicates 1154
that even in failed attempts, the robot demonstrates higher 1155
partial-task completion. 1156
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Figure 9. Failure case visualization. We provided first-person visualizations from the robot’s viewpoint for every failure scenario.

Figure 10. Real-world task. Illustration of three real-world manipulation tasks ranging from simple to complex.
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Figure 11. H2R samples. Visual comparison between original human data (top) and our augmented data (bottom).
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