470 A Additional results

In the following, we provide additional experimental results, namely the number of time-respecting paths in the test graphs along with the required computation time (table 4), the training and inference times for the GCN and the DBGNN model (table 5 and table 6), the optimal order of a *k*-th order De Bruijn graph model, inferred using the statistical model selection approach from [37] (table 7), additional results for the number of hits among the top-ranked nodes for betweenness and closeness centrality (table 8 and table 9).

Table 4: Computational complexity of path calculations in the test data. All results were obtained on a workstation with AMD Ryzen 9 3900X 12-core CPU and 64 GB RAM

data set	number of time-respecting paths	computation time
ants-1-1	27,308	190.62 s
ants-1-2	1,614	1.24 s
ants-2-1	362	0.24 s
ants-2-2	3,547	6.02 s
company-emails	64,246	285.64 s
eu-email-2	11,599	22.11 s
eu-email-3	2,770	6.37 s
eu-email-4	12,951	48.63 s
sp-hospital	139,724	206.97 s
sp-hypertext	264,300	356.02 s
sp-workplace	7,350	1.04 s
sp-highschool	1,680,651	10,159.71 s
haggle	38,079	4.97 s

Table 5: Training and inference time for betweenness centrality in seconds

experiments	Tra	in	Eval		
	DBGNN	GCN	DBGNN	GCN	
ants-1-1	4.525004	3.976138	0.002476	0.002315	
ants-1-2	4.415789	4.192388	0.002383	0.002264	
ants-2-1	4.333990	4.093549	0.002967	0.002304	
ants-2-2	4.316440	4.088560	0.002610	0.003562	
company-emails	4.577491	4.918629	0.002660	0.002632	
eu-email-2	6.221958	5.719684	0.002624	0.002226	
eu-email-3	6.269507	5.765907	0.002470	0.002503	
eu-email-4	6.419320	5.738349	0.002483	0.002109	
haggle	4.474058	3.991820	0.002908	0.002142	
sp-highschool	12.662649	7.989266	0.003281	0.004080	
sp-hospital	8.203254	7.664485	0.003546	0.001961	
sp-hypertext	13.615240	7.816432	0.002886	0.002269	
sp-workplace	8.429780	7.874174	0.002305	0.002002	

experiments	Tra	in	Eval		
-	DBGNN	GCN	DBGNN	GCN	
ants-1-1	4.321659	4.092447	0.002468	0.002743	
ants-1-2	4.317691	4.237622	0.002660	0.002339	
ants-2-1	4.348724	4.054908	0.002440	0.002278	
ants-2-2	4.326630	4.243561	0.002483	0.002158	
company-emails	4.577662	4.416060	0.003556	0.002216	
eu-email-2	6.485234	5.914584	0.002528	0.002099	
eu-email-3	6.450350	5.999103	0.002631	0.002527	
eu-email-4	7.260510	7.324913	0.003136	0.002314	
haggle	4.649249	4.042492	0.002969	0.002297	
sp-highschool	12.592707	9.586796	0.003289	0.002356	
sp-hospital	8.688761	8.480865	0.002494	0.002364	
sp-hypertext	9.988247	8.148300	0.003354	0.002093	
sp-workplace	8.595048	7.866499	0.002670	0.002505	

Table 6: Training and inference time for closeness centrality in seconds

Table 7: Result of detection of optimal order based on likelihood ratio test.

data set	K_{opt} train	K_{opt} val
ants-1-1	2	2
ants-1-2	2	2
ants-2-1	1	1
ants-2-2	2	2
company-emails	2	2
eu-email-4	1	1
eu-email-2	2	2
eu-email-3	1	1
sp-hospital	2	2
sp-hypertext	2	2
sp-workplace	2	2
sp-highschool	2	2
haggle	2	2

 Table 8: Results for hitsIn5 and hitsIn10 for prediction of temporal betweenness centrality and learning rate for which each experiment performed best

		DBGNN			GCN	
Experiment	hitsIn5	hitsIn30	lr	hitsIn5	hitsIn30	lr
ants-1-1	2.467 ± 0.973	17.533 ± 4.377	0.100	0.400 ± 0.516	17.4 ± 2.757	0.010
ants-1-2	3.2 ± 0.664	24.133 ± 0.937	0.100	2.5 ± 0.707	17.700 ± 2.058	0.100
ants-2-1	1.633 ± 0.718	18.667 ± 1.295	0.010	1.2 ± 0.919	15.7 ± 1.947	0.010
ants-2-2	1.333 ± 0.711	21.6 ± 1.429	0.100	1.2 ± 0.632	21.5 ± 1.78	0.100
company-emails	0.2 ± 0.484	18.7 ± 1.765	0.100	0.2 ± 0.632	16.3 ± 3.164	0.001
eu-email-4	1.4 ± 0.932	14.233 ± 1.87	0.010	1.1 ± 1.101	11.7 ± 3.889	0.001
eu-email-2	1.233 ± 0.898	14.467 ± 1.717	0.001	1.4 ± 0.966	15.2 ± 2.486	0.001
eu-email-3	2.967 ± 0.615	19.467 ± 1.383	0.001	1.5 ± 1.08	15.3 ± 3.498	0.001
sp-hospital	1.467 ± 0.937	22.767 ± 1.524	0.100	2.1 ± 0.876	23.4 ± 1.43	0.010
sp-hypertext	1.3 ± 0.794	18.833 ± 1.931	0.010	2.1 ± 0.568	19.3 ± 1.337	0.001
sp-workplace	1.7 ± 0.651	19.500 ± 1.28	0.100	2.1 ± 1.101	22.200 ± 1.135	0.100
sp-highschool	1.933 ± 0.64	16.167 ± 1.859	0.010	1.000 ± 0.0	16 ± 1.247	0.001
haggle	1.633 ± 0.809	24.933 ± 1.015	0.010	2.8 ± 1.033	23.9 ± 1.969	0.001

Table 9: Results for hitsIn5 and hitsIn10 for prediction of temporal closeness centrality and learning rate for which each experiment performed best

		DBGNN			GCN	
Experiment	hitsIn5	hitsIn30	lr	hitsIn5	hitsIn30	lr
ants-1-1	3.700 ± 0.535	25.200 ± 0.925	0.100	0.600 ± 0.966	15.700 ± 1.947	0.010
ants-1-2	3.933 ± 0.365	27.100 ± 0.662	0.100	1.600 ± 0.516	16.900 ± 2.283	0.001
ants-2-1	5.000 ± 0.0	28.200 ± 0.407	0.100	2.400 ± 1.506	20.200 ± 2.741	0.100
ants-2-2	3.767 ± 0.568	26.367 ± 0.556	0.001	0.700 ± 0.675	20.100 ± 2.234	0.001
company-emails	3.467 ± 0.507	26.333 ± 0.606	0.100	1.500 ± 0.85	14.700 ± 2.406	0.001
eu-email-4	4.167 ± 0.461	26.833 ± 0.913	0.100	1.400 ± 1.174	10.700 ± 3.433	0.001
eu-email-2	4.833 ± 0.379	25.133 ± 0.73	0.100	0.900 ± 1.287	9.700 ± 3.234	0.100
eu-email-3	4.000 ± 0.0	27.000 ± 0.0	0.100	1.300 ± 0.949	20.600 ± 1.506	0.100
sp-hospital	2.667 ± 0.711	23.800 ± 0.847	0.100	1.300 ± 0.483	20.800 ± 0.422	0.001
sp-hypertext	4.100 ± 0.481	26.033 ± 0.765	0.001	0.800 ± 0.422	19.600 ± 0.843	0.001
sp-workplace	3.2 ± 0.551	24.500 ± 0.572	0.010	1.7 ± 1.059	20.400 ± 1.897	0.001
sp-highschool	2.967 ± 0.615	21.733 ± 1.081	0.001	0.000 ± 0.0	8.300 ± 1.16	0.001
haggle	4.333 ± 0.479	$\textbf{28.433} \pm 0.504$	0.100	0.400 ± 0.699	17.700 ± 7.304	0.010

Layer	Input dimensions	Output dimensions	Activation Function				
GCNConv	V	16	Sigmoid				
GCNConv	16	8	ELU				
Linear layer	8	1	ELU				
Table	Table 10: Overview of proposed model architecture for simple GCN						
Layer	Input dimen	sions Output dimension	ons Activation Function				
GCNConv first or	der $ V $	16	Sigmoid				
GCNConv second	l order $ E $	16	Sigmoid				
Bipartite layer	16	8	ELU				

Model architecture and Details on Hyperparameters B 477

Table 11: Overview of proposed model architecture for DBGNN

1

ELU

Static vs temporal centralities 478 С

Linear layer

Let G = (V, E) be a (static) graph, where V is a set of vertices or nodes and $(v, w) \in E$ are 479 potentially directed edges or links from node v to w. Let us further consider weighted graphs, 480 where we have a function $w: E \to \mathbb{N}$ that assigns integer weights to edges. In a static network 481 G = (V, E), we define a path (or walk) of length l from v_0 to v_l as any sequence of nodes v_0, \ldots, v_l 482 iff $(v_{i-1}, v_i) \in E$ for $i = 1, \dots, l$. If every node occurs only once in the sequence, we call the 483 sequence a simple path. A shortest path between two nodes v and w is a (not necessarily unique) path 484 of legth l such that all other paths from v to w have length $l' \ge l$. 485

In static networks, shortest paths between pairs of nodes allow us to define path-based nodes 486 centralities, which can be used to identify influential nodes. Here, we briefly introduce two important 487 path-based centrality measures, namely betweenness and closeness centrality. For static networks 488 4

without temporal interactions the betweenness centrality of a node
$$v$$
 is calculated as

8

$$c_B(v) = \sum_{s \neq v \neq t \in V} \frac{\sigma_{s,t}(v)}{\sigma_{s,t}}$$

where $\sigma_{s,t}$ is the number of the shortest paths between nodes s and t and $\sigma_{s,t}(v)$ is the number of 490 such paths that pass through node v. In other words the node is considered central if there are many 491

shortest paths that pass through the node. The closeness centrality on the other hand is defined as 492

$$c_C(v) = \frac{1}{\sum_{u \in V} d(u, v)}$$

where d(u, v) describes the distance (length of the shortest path) of node u to node v. Thus, in terms 493 of closeness a node is considered more central if the overall distance to all other nodes in the graph is 494 relatively small. 495

To contrast the temporal path-based centralities defined in section 2 with the corresponding static 496 497 centralities defined above, in fig. 2 and fig. 3 we plot the temporal vs. static betweenness and closeness

centralities of all nodes for all 13 empirical temporal graphs considered in our work (cf. table 1). 498

Figure 2: Static vs temporal betweenness centralities of all nodes in 13 empirical dynamic graphs

Figure 3: Static vs temporal closeness centralities of all nodes in 13 empirical dynamic graphs

499 **D** Visualization of Node embeddings

The plots in appendix D show the node emebddings obtained for a GCN and DBGNN model trained to predict temporal closeness centrality (a, b) as well as temporal betweenness centrality (c, d) for the eu-email-4 data set.

(a) Embedding of nodes based on DBGNN model trained for prediction of temporal closeness centrality in euemail-4

(c) Embedding of nodes based on DBGNN model trained for prediction of temporal betweenness centrality in euemail-4

(b) Embedding of nodes based on GCN architecture trained for prediction of temporal closeness centrality in eu-email-4

(d) Embedding of nodes based on GCN architecture trained for prediction of temporal betweenness centrality in eu-email-4