
Privacy-Preserving Large Language Models
(PPLLMs)

Draft Document (for Review)

Abstract—Recently large language models (LLMs) have gained
significant attention as they have shown surprising signs of
artificial general intelligence (AGI). Artificial intelligence and
large language models can be used for various good purposes,
such as digital assistants for knowledge creation. However, such
powerful models can have potential risks as well. Among other
concerns and risks are security and privacy risks that AI models
can pose to data as well as users. In this article, we discuss how
mathematical structures, such as polynomial and vector spaces,
and privacy-preserving delegation of polynomial and matrix-
vector functions can be used for transforming a computational
model (including LLMs) to a privacy-preserving computational
model.

Furthermore, we highlight some well-known cryptographic
constructions along with some solutions by which LLMs can
be improved, in the sense that they can preserve the privacy and
security of data and thus users. Overall, privacy-preserving and
zero-knowledge LLMs, that we introduce in this article, could be
potential solutions for preserving the privacy of data and users
to some good and reasonable extent. More importantly, perhaps
AI models should be trained on publicly available trustworthy
data; and the trained models should be compressed and used by
users locally.

Index Terms—Privacy-Preserving Computation, Private Poly-
nomial Computation, Privacy-Preserving Large Language Mod-
els, Secure Computation, Fully Homomorprhic Encryption,
Peivacy-Preserving Machine Learning, Zero-Knowledge Lan-
guage Models, Trustworthy AI, Security and Privacy Risks of
AI Models, FHE, PPLLM, ZKLLM, PPML, ZKML

I. INTRODUCTION

In the last couple of years artificial intelligence (AI) and
large language models (LLMs) have gained significant at-
tention; and have already been used by many users around
the world. This has been due to advances in generative AI
models that can show human-level capabilities in text and
image generation; and can even possibly pass the Turing
test. Since OpenAI released its state-of-the-art pre-trained
large language model (known as ChatGPT) the AI research
and development have, perhaps, entered a new era. On one
hand, companies and the so-called tech giants have accelerated
the development of their AI tools (e.g., OpenAI’s ChatGPT
and DALL-E, Google’s PaLM-2, PaLM-E, Bard, and Gemini,
Meta’s LLaMA, Microsoft’s Bing Chat, Baidu’s Ernie Bot,
etc.) [1]. On the other hand, there have been more concerns
about how these models are and will be used. The pioneers of
AI, by large, agree that further research and development on
AI should be done very cautiously. Some AI pioneers, even,

believe that there should be a short pause on AI research and
development; so that the society can be prepared for adopting
such advanced AI tools.

Large language models (LLMs) and generally AI tools can
be used for various good purposes, e.g., in education and
research, as digital assistants, as knowledge or search engines,
medical education [2], etc. But, there are other important
aspects of AI technologies that should be taken care of more
responsibly. Some challenging aspects of AI models that have
raised concerns include, but are not limited to, algorithmic
bias, alignment, inaccuracy of the models due to hallucina-
tion, data privacy and security [3]. To make a long story
short, most of the story revolves around data, computational
models, and how they are developed and used. Perhaps, it
would be appropriate to call these two terms (i.e., data and
computational models) the digital gold or maybe digital oil of
the current technological era; in the sense that computational
models and data function like the engine and fuel for some of
the important and revolutionary businesses that might affect
the lives of billions of people in the near future.

To have a better understanding of the situation, we are going
to focus on these two key terms, i.e., data and computational
models. Non-digital data, e.g., paper documents, has been
around for a long time. Yet, as the world has become more
digital data-driven, more challenges and opportunities have
emerged. The result of decades of scientific works and techno-
logical development can be seen on several popular branches
of computer science/engineering, i.e., big data, cryptogra-
phy (with sub-fields such as zero-knowledge proof, secure
computation, fully homomorphic encryption, Blockchain and
cryptocurrencies) and artificial intelligence (with sub-fields
such as artificial neural networks, machine learning, deep
learning, reinforcement learning, NLP, large language models,
computer vision, etc.).

When it comes to preserving data and also users’ pri-
vacy, there is a well-known technique called cryptography.
Cryptography, as a tool or technique for data protection,
has been around for a long time. According to historical
evidence, people have used basic cryptographical techniques
since thousands of years ago. Since mid and in the second
half of the twentieth century and with the growth of digital
data and devices, modern cryptography gained much more
attention and saw significant progresses. Among others, there
are several areas in cryptography that are more relevant to this

work, e.g., secure computation [4], [5], fully homomorphic
encryption (FHE) [6]–[8], private polynomial computation
(PPC) [9], zero-knowledge proofs (ZKP) [10], secret sharing
(SS) [11], [12], verifiable secret sharing (VSS) [13] (see also
[14]), garbled circuits (GC) [4], [5], oblivious transfer (OT)
[15], universal circuits (UC) [16] (see also [17]), differential
privacy [18], secure function evaluation (SFE) [19], etc. The
main theme behind these constructions and notions is how to
perform computation securely, or how to do computation on
data without revealing the data.

The cryptographic constructions mentioned above enable
one to run the computational models in such a way that the
privacy and security of data can be preserved to some good
extent. These techniques provide a variety of solutions and
mathematical tools to configure different levels of privacy and
security measures both on data and computational models.
While hard security solutions such as fully homomorphic
encryption (FHE) [6]–[8] can provide very strong data security
guarantees, soft security measures such as trust and reputation
[20], [21] can be helpful for designing trustworthy and robust
models. On the other hand differential privacy-based solutions
[18], [22] enable us to preserve data privacy by adding some
randomness to data; and zero-knowledge proof (ZKP) systems
[10] enable a party to prove a statement without revealing any
information about the statement.

In this article we take a systematic approach for tackling the
data privacy problem. Specifically, we discuss how polynomial
spaces [23] and vector spaces [24] can be used for encoding
and encrypting data; and how the delegation of polynomial
and matrix-vector functions can be used for transforming a
computational model to a privacy-preserving computational
model. Furthermore, we highlight some well-known crypto-
graphic techniques by which a typical computational model
(including machine learning, artificial neural network, artificial
intelligence, and large language models), can be turned into a
privacy-preserving and zero-knowledge computational model.
To this end, we first define the concepts of zero-knowledge
and privacy-preserving computational models.

A. Article Organization

This article is organized as follows. In Section II we provide
some definitions and propositions which highlight the goals
that we want to achieve in this article. In Section III we discuss
the cryptographic building blocks that are used in this article.
Particularly, in sub-section III-A we review the delegation
of polynomial and matrix-vector functions. In sub-section
III-B we discuss some privacy-preserving transformations of
polynomial and matrix-vector functions. In sub-section III-C
we present a novel transformation for transforming (or turning)
AI and large language models (LLMs) into privacy-preserving
models. Section IV provides the discussion and future research
directions. The article is concluded in section V.

II. DEFINITIONS AND CRYPTOGRAPHIC CONSTRUCTIONS

In this section we provide some definitions to highlight the
key aspects of current data and computational paradigm which

is common in various data- and model-driven applications
including in AGI, AI, ML, and LLM models.

Definition 1 (Computational Model). A computational model,
or simply a model, is a computer program (or in general a
Turing machine) that can perform computations or arithmetic
operations on data.

In the context of this article, a computational model can
be as simple as a computer program that performs basic
arithmetic gates/operations on numbers (e.g., addition and
multiplication), or basic but challenging operations (e.g., se-
cure comparison a.k.a., Yao’s Millionaires’ problem [4], [5]).
A computational model can also be as complicated as a deep
and very large artificial neural network (such as large language
models with billions of parameters) that performs extensive
computations on vectorized data and tensors. Definition 1 is
the base definition which we will use for the next definitions.

Definition 2 (Zero-Knowledge Model). A zero-knowledge
computational model, or a zero-knowledge model, is a com-
putational model that gains no knowledge about the data,
prompts, or queries that the model receives and processes.

A zero-knowledge computational model (zk-model) is es-
sentially a computational model that cannot gain any knowl-
edge about the private data which is given to it for processing.
One might wonder how it could be possible to perform
computations on data without gaining knowledge about the
data. The answer would be that this paradigm of computation
has been the motivation behind many attempts on secure or
privacy-preserving computation (see, e.g., seminal works [4],
[25] and [6], [7] among other references listed throughout this
article).

It should be noted that the notion of zero-knowledge in
this article is a little different than zero-knowledge in other
contexts in which there is a prover and a verifier. In such
contexts, typically there is a prover and a verifier, where the
prover wants to prove possessing some statement without re-
vealing any information about the statement. However, here in
the context of this article zero-knowledge refers to the notion
of performing some computation on data without revealing
any knowledge about the data (thus zero-knowledge). This
terminology is to emphasize the fact that in this context there
is a client (or user) who has some query or prompt (possibly
with private data). The user wants to send the query or prompt
to a computational model so that the model can process it. But,
the user is not interested in revealing any information about
the query. This setting is similar to the scenario of private
information retrieval (PIR) or private set intersection (PSI)
which are well-studied problems in secure computation on
databases [26] and [27].

Definition 3 (Privacy-Preserving Model). A privacy-
preserving computational model, or a privacy-preserving
model, is a zero-knowledge model that does not reveal any
information about the private data, prompts, or queries that
the models receives and processes.

Definition 3 defines and highlights the requirements that
our desired model should meet. A privacy-preserving computa-
tional model is a model which has two important properties: 1)
it is zero-knowledge; and 2) it does not reveal any information
about the private data (or private prompts or queries) it
receives and processes. It should be emphasized that these two
requirements are independent. Importantly, as we will discuss
later in Section III, a privacy-preserving model can be a model
which is trained on publicly available data, then is compressed
and would be utilized locally by a client without sending any
data to any (trusted or untrusted) third parties. While the zero-
knowledge property of the model stresses more on the fact that
the local model itself should not gain any knowledge about the
queries or prompts that it receives and processes.

Next, we discuss how a computational model can be trans-
formed to a privacy-preserving computational model. The
following proposition provides the theoretical guarantees that
any computational model can be transformed to (or converted
into) a model that it does not gain any knowledge about the
data that it processes and does not reveal any information
about that data. Furthermore, the proposition pinpoints the
general-purpose cryptographic constructions that can be used
for the transformation or conversion of the computational
model.

Proposition 1 (Privacy-Preserving Model Transformation).
Any computational model can be transformed to a privacy-
preserving model using appropriate cryptographic construc-
tions. This can be achieved thanks to constructions such
as secure computation and secure function evaluation (SFE)
techniques.

Proposition 1 essentially states that for any computational
model we can design a privacy-preserving version of that,
in the sense that the model can do its job without gaining
any knowledge about the private data that it receives and
without revealing the data to any third parties (regardless of
the third party being trusted or untrusted). This important
can be achieved thanks to cryptographic constructions, e.g.,
private polynomial computation (PPC) [9], fully homomorphic
encryption (FHE) [6]–[8], garbled circuits [4], [5] or universal
circuits [16] (see also [17]), secure function evaluation (SFE)
[19], and other encoding and encryption techniques that we
will discuss in the next section. It should be noted that
Proposition 1 is in spirit of significant works and research on
secure computation and secure function evaluation construc-
tions (including the well-known GMW protocl [25] and the
OT protocols [15]).

III. PRIVACY-PRESERVING LLMS (PPLLMS) USING
SECURE POLYNOMIAL AND MATRIX-VECTOR

DELEGATIONS

In this section we present some ideas that are useful for
transforming or turning a computational model into a privacy-
preserving computational model. Particularly, we illustrate
how to instantiate a privacy-preserving version of a typical
large language model (PP-LLM).

The main idea for constructing a privacy-preserving model
is as follows. The two main components, i.e., data and the
computational model need to be re-engineered. Regarding
the computational model, it needs to be re-designed while
considering and applying secure function evaluation (SFE)
techniques at the functionality level, e.g., using PPC construc-
tions [9], FHE techniques [6]–[8] or garbled circuits [4], [5].
In addition, the model needs to be compressed and the user
should run a local copy of the trained model. This allows
the users to have more/better control over their data and the
computational model.

For the other component, i.e. data, well-designed data and
feature engineering techniques should be considered at the
level of data preparation; some prompt engineering techniques
should be considered for query submission as well as for de-
coding the model’s responses to the users’ query. Furthermore,
we should differentiate between (and separate) the publicly
available data (on which the model is trained) and the user’s
data that is sent to a trained model (which consist of user’s
queries or prompts, possibly with private data). This step can
consist of encoding the private data in some embedding spaces,
e.g., vector spaces [24] or polynomial spaces [23]. As a result
of this step, the prompt or query is encoded as a numerical
vector or a polynomial in an embedding space.

Encoding and embedding data in some embedding spaces
provides the opportunities to apply appealing and powerful
transformations or techniques on the data. It also facilitates
applying other security/privacy countermeasures on the en-
coded data. For example, one can apply some differential
privacy technique (e.g., the sparse vector technique, a.k.a., the
SVT [18]) on data to add some randomness to the private
data. It is also possible to take a more protective approach
and completely encrypt the private data using (fully) homo-
morphic encryption techniques for performing computation
on encrypted data (e.g., by applying some of the schemes
suggested in the draft of FHE standard [8]).

We would like to emphasize that encoding data in poly-
nomial spaces [23], enables applying a wide variety of
cryptographic techniques on the encoded data (e.g., private
polynomial computation [9], polynomial delegation [28], [29],
data provenance using provenance polynomials or semirings
[30], [31], polynomial commitments [28], secret sharing [12],
Reed-Solomon and MDS codes [32] for PIR [33], [34],
quadratic arithmetic programs (QAP) [35] and R1CS [36] for
applying ZKP protocols, polytopes and polynomial zonotopes
for verification and increasing robustness of AI models [37],
[38]), etc.

A. Polynomial and Matrix-Vector Delegations as Novel
Prompt Engineering Solutions for PPLLMs

Polynomial spaces [23] (including rings of polynomials and
polynomials as a mathematical structure) have shown to be of
much applicability in different scientific areas, including in
secure and verifiable computation. For example, most of the
promising fully homomorphic encryption schemes are based
on the cyclotomic ring of polynomials and the Ring-LWE

problem [39], which is a well-known and extensively-used
problem in applied cryptography. Polynomials have also been
extensively utilized in zero-knowledge proof systems as a
powerful tool for arithmetization of computation (see e.g.,
QAP [35] and R1CS [36]). Other applications of polynomials
include private polynomial computation (PPC) [9], provenance
polynomials and semirings [30], [31], polynomial classifiers
[40], polynomial neural networks [41]–[43], and a more recent
application of RS codes called FRI protocol (fast Reed-
Solomon Interactive Oracle Proof) [44], which is useful for
zero-knowledge proof (ZKP) systems.

Verifiable polynomial delegation (VPD) [28], [29] is yet
another polynomial-based construction which can potentially
be a suitable technique for data privacy in outsourced compu-
tations to untrusted parties [45] as well as for zero-knowledge
proof systems [29]. Polynomial delegation is a technique that
allows a party to delegate the computation (evaluation) of a
polynomial to a third party (also to verify the computation
result). This technique has been very useful for computation
outsourcing and verifiable computation (see e.g., [45]–[47]).

A recent and appealing research trend is to add privacy-
preserving capabilities to polynomial delegation techniques
[45], [48]. There are different approaches for adding privacy-
preserving capabilities to polynomial delegation techniques
[45], [48]. Some examples in the literature include using
fully homomorphic encryption techniques (e.g., [49], [50]),
multiparty computation (e.g., [51]), secret sharing (e.g., [52]),
homomorphic hashing technique (e.g., [53]), linearly homo-
morphic structure-preserving signatures (e.g., [54]), homomor-
phic authenticated encryption (e.g., [55]), privacy-preserving
homomorphic MACs [56], [57] etc. In this article we consider
techniques similar to those proposed in [45], [48].

B. Privacy-Preserving Transformations of Polynomial and
Matrix-Vector Functions

Here we briefly describe the interesting privacy-preservation
approach of [45], as it supports the delegation of both poly-
nomial and matrix-vector functions. We then present our
solution for privacy-preserving large language models (PP-
LLMs), which can be instantiated using the transformations
described in [45] or other similar constructions, e.g., those of
[46], [48] or [58].

Researchers in [45] have proposed two transformations for
privacy-preserving delegation of polynomial and matrix-vector
functions on inputs in finite fields (e.g., Zq for a prime number
q). The transformation for privacy-preserving delegation of
polynomial functions uses a noisy encoding algorithm and
relies on hard computational assumptions, i.e., noisy curve
reconstruction assumption [59] (which in turn is based on
noisy polynomial reconstruction [60]). The transformation
consists of several steps, including key generation, problem
generation, compute and verify algorithms. The main steps
of the polynomial transformation are summarized below [45]
(detailed steps and description of the transformation for poly-
nomial functions can be seen in Section 3.3 of [45]):

• KeyGeneration: generates a pair of public and private key.

• Problem Generation: generates a public noisy variation of
the input vector and a private value for its reconstruction.

• Compute: computes an encoded variation of the function
output.

• Verify: verifies the computation result.
The transformation for matrix-vector functions (i.e., matrix-

vector multiplication) relies on other cryptographic construc-
tions, i.e., pseudo-random functions (PRFs), somewhat or
partial homomorphic encryption (SHE), and homomorphic
hash functions [45]. The main steps of this transformation are
similar to the steps of transformation for the polynomial func-
tions (described above), where each step consists of several
other steps pertinent to the cryptographic construction being
used [45].

C. A Privacy-Preserving Transformation for AI and LLM
Models

In this section we provide a transformation for turning a
typical AI and LLM model into a privacy-preserving one.

In data-driven and model-driven computation scenarios,
there are typically two key components and two or more
parties involved. For example, for the case of AI and large
language models (LLMs), there are two key parts, namely the
user’s data (e.g., query or prompt) and the trained AI or LLM
model. The parties in this scenario include the user (client),
the computational model as an AI agent, and sometimes the
model owner (typically the developers and maintainers of the
computational model). Our idea for turning an AI or LLM
model to a privacy-preserving one is to encode and embed the
user’s data in polynomial spaces [23] and vector spaces [24];
and to represent the model as polynomial and matrix-vector
functions.

Our proposed transformation takes place in two steps. The
user’s data is encoded in polynomial and/or vector spaces
[23] and [24]. This can be achieved after applying feature
extraction and vectorization techniques on the user’s query
or prompt. For this purpose common techniques such as
Word2Vec [61], GloVe [62], or other similar techniques can be
utilized. The trained AI or LLM model needs to be represented
as polynomial and/or matrix functions. To do this, the model
might need to be compressed first. Model compression [63]
is a technique for reducing the number of parameters of a
large computational model using different techniques such
as pruning or knowledge distillation (see e.g., [64], [65]).
It should be noted that some compression approaches can
significantly decrease the size of computational model. For
example, researchers in [66] have discussed that hashing
techniques [67] along with embedding tables and parameter
sharing setups have the potential to compress a computational
model 10000×.

Once the data is encoded in polynomial and vector spaces
and the model is compressed and represented as polynomial
and matrix functions, the prediction task of the model is
reduced to evaluation of polynomial and/or matrix-vector func-
tions. This can be done using privacy-preserving delegation
of polynomial and matrix functions [45], [48]. With these

pre-processing on data and computation model, our proposed
transformation for privacy-preserving large language model is
as follows:

• Feature Extraction: extracts the features of the user’s
query or prompt.

• Vectorize & Encode the Data: embeds the extracted
features in a vector and/or polynomial embedding space.

• KeyGeneration: generates the required cryptographic pa-
rameters (including public and private keys).

• Encrypt: applies approperiate encryption techniques on
the encoded data.

• Compress and Arithmetize the Model: compresses the
computational model and provides a polynomial and/or
matrix-vector representation of the compressed computa-
tional model.

• Delegate the Computation: passes the encoded/encrypted
data to the arithemtized computational model.

• Evaluate & Compute: computes the arithemtized model
on the encoded (encrypted) data, e.g., on encoded queries
or prompts.

• Decode & Decrypt: decodes (and decrypts) the response
of the computational model to the user’s query or prompt.

The above steps provide a general-purpose solution for
transforming a computational model to a privacy-preserving
computational model. Depending on the computational model
different customized cryptographic constructions can be used
for instantiating a privacy-preserving version of the model.

It should be noted that most of the computations in artifi-
cial neural networks, which are commonly used in artificial
intelligence and large language models, are readily in the
form of matrix-vector functions. This can provide a significant
gain thanks to fast computational frameworks such as Py-
Torch, TensorFlow, or Google’s XLA (accelerated linear alge-
bra framework). Furthermore, other commonly-used building
blocks in neural networks (including activation functions such
as the ReLu function) can be approximated using polynomial
function techniques such as Taylor series or Chebyshev poly-
nomials. For approximating the (ReLu) activation function in
homomorphic evaluation of neural networks, interested readers
might refer to [68], [69] or [70]–[72], that have provided
solutions based on Taylor series or Chebyshev polynomials.

IV. DISCUSSION AND FUTURE RESEARCH DIRECTIONS

The rise of artificial general intelligence (AGI) models,
including the large language models (LLMs) such as Ope-
nAI’s ChatGPT, DALL-E, Google’s PaLM-E and Bard, have
increased the concerns about the risks that AI models can
potentially have to the society and the future of humanity.
Among other risks and concerns are risks to the security and
privacy of data (as well as users’ privacy).

When it comes to data security and privacy (and users’ pri-
vacy), cryptographic solutions are among the most useful and
effective solutions. There are different cryptographic construc-
tions that can be applicable for data privacy in ML, AI and par-
ticularly large language models (LLMs). Such constructions
generally fall under the category of secure computation (a.k.a.,

privacy-preserving or secure multiparty computation). Some
seminal and important landmarks in secure computation in-
clude the GMW protocl [25], the interesting idea behind fully
homomorphic encryption [6], secure multiparty computation
(MPC) [73], [74], oblivious transfer protocols [15], garbled
circuits [4], [5] or universal circuits [16], secret sharing [11],
[12], zero-knowledge proof (ZKP) [10], differential privacy
[18], [22], Blockchain and decentralized computation [75].

The aforementioned references have laid the foundations,
perhaps, for the next generation of computing systems, i.e., se-
cure and verifiable computation that allows parties to perform
computation on their data without revealing their data. With
these fundamental works in mind, there are different avenues
for future research and works.

One direction is to evaluate how well and efficient the
existing secure computation techniques perform for privacy-
preserving artificial intelligence models (including large lan-
guage models). Particularly, the interaction of a user with a
large language model can be modeled as a two-party compu-
tation scenario (2PC), wherein the model owner (typically the
company that develops and hosts the trained model) is one
party; and the second party is the user or client who sends
prompts and queries to the model. This scenario is also closely
related to private information retrieval (PIR) [76], in which
there is a database server and a client who sends queries to
the database. PIR is a fairly well-researched application of
privacy-preserving computation; and this allows one to apply
PIR techniques on LLM models. The similarity between PIR
and PPLLMs is that in both cases there are some user(s)
who want to submit queries or prompts to the database or
the language model. But the user is not willing to reveal
their private data to the database server or to the language
model. Similarly, the owner of the computational model or
the database server might not be interested in revealing the
algorithms behind their models.

Another line of research is with regard to the notion of ro-
bustness and trustworthy AI and LLM models. Large language
models turn out to suffer from some intrinsic shortcomings,
such as hallucination, algorithmic bias and biasedness (being
biased), alignment, uncertainty, and sometimes inaccuracy.
Soft security measures, e.g., trust and reputation, [20], [21]
along with secure computation constructions, e.g., secure
trust evaluation (STE) [77], can be used for addressing such
fundamental issues of AI or LLM models. For instance,
trust and reputation systems can be used for categorizing
different sources of knowledge on which a language model is
trained. Then by training AI and language models on more
trustworthy data (originated from trustworthy sources), the
predictions of the model can potentially be more reliable.
In addition, uncertainty quantification techniques [78], e.g.,
the well-known concept of entropy in information theory, can
be used for assessing the uncertainty of AI, ML, and LLM
models.

Some interesting and less explored lines of research might
potentially be to study the integration of polynomial networks
[43] and polynomial classifiers [40] with secure computation

constructions based on polynomials (e.g., secret sharing [11],
[12], FHE schemes based on the cyclotomic ring of polyno-
mials [8], and private polynomial computation [9]). Polyno-
mials have very appealing properties and have been utilized
for various applications quite extensively (see for example,
polynomial neural networks (PNN) [41], orthogonal polyno-
mial neural networks ([79], [80]), deep polynomial neural
networks [42], and polynomial classifiers [40]). As encoding
techniques, polynomials enable encoding/encrypting the data
(see e.g., Reed-Solomon Error-Correcting codes [32]); and
as universal approximators [40], they enable approximating
various functions. Yet, their capability for arithemtization of
computation makes them appropriate tools for zero-knowledge
proof applications (see e.g., QSP and QAP [35], QRP [81] and
R1CS [36]).

Robustness analysis of neural networks and their verification
are other interesting and important areas of research that seek
more attentions, particularly because of extensive usage of
neural networks in different domains of AI, e.g., in self-driving
and autonomous vehicles. There are several works that have
proposed some solutions for the verification and robustness
of neural networks [82]–[84]. Among others, polytopes and
polynomial zonotopes are some polynomial-based approaches
that have been studied [38], [83]. Particularly, since polyno-
mials can behave as a bridge between secure computation
and other applications, polytopes and zonotopes can be a
potential approach for designing secure verification methods
for neural networks that can increase the robustness of AI
systems. By unifying and mixing different secure computation
and polynomial-based constructions with machine learning
models, it is possible to build more secure and trustworthy
machine learning and artificial intelligence models as well as
efficient and privacy-preserving big data frameworks [85].

V. CONCLUSION

In this article we defined the concepts of zero-knowledge
and privacy-preserving computational models. We discussed
how polynomial and vector spaces (as encoding and embed-
ding techniques) can be used for encoding and encrypting
data; and how privacy-preserving delegation of polynomial and
matrix-vector functions can be used for transforming a compu-
tational model into a privacy-preserving computational model.
Furthermore, we highlighted some well-known cryptographic
solutions that can be used for preserving data and users’
privacy in artificial intelligence and large language models
(LLMs).

There are various cryptographic solutions, e.g., private
polynomial computation (PPC), fully homomorphic encryption
(FHE), secure computation, secure function evaluation (SFE),
garbled circuits (GC), verifiable secret sharing (VSS), that can
be used for encrypting or encoding users’ query or prompts
before the prompts or queries are sent to a computational
model, e.g., a large language model (LLM). On the other
hand, soft security measures, e.g., trust and reputation, are
helpful social mechanisms that can be used for modeling
trustworthy data and constructing robust and trustworthy ML

and AI models. Besides cryptographic solutions, compressing
language models and cloning privacy-preserving models to
clients computational devices can add another layer of privacy-
protection. Yet, decentralized computational models trained
using federated learning techniques on publicly available trust-
worthy data, along with reinforcement learning from human
feedback (RLHF), can be potential trustworthy solutions that
consider and incorporate human values.

REFERENCES

[1] J. Rudolph, S. Tan, and S. Tan, “War of the chatbots: Bard, bing chat,
chatgpt, ernie and beyond. the new ai gold rush and its impact on higher
education,” Journal of Applied Learning and Teaching, vol. 6, no. 1,
2023.

[2] T. H. Kung, M. Cheatham, A. Medenilla, C. Sillos, L. De Leon,
C. Elepaño, M. Madriaga, R. Aggabao, G. Diaz-Candido, J. Maningo,
et al., “Performance of chatgpt on usmle: Potential for ai-assisted
medical education using large language models,” PLoS digital health,
vol. 2, no. 2, p. e0000198, 2023.

[3] OpenAI, “Gpt-4 technical report,” 2023.
[4] A. C. Yao, “Protocols for secure computations,” in 23rd annual sym-

posium on foundations of computer science (sfcs 1982), pp. 160–164,
IEEE, 1982.

[5] A. C.-C. Yao, “How to generate and exchange secrets,” in 27th annual
symposium on foundations of computer science (Sfcs 1986), pp. 162–
167, IEEE, 1986.

[6] R. L. Rivest, L. Adleman, M. L. Dertouzos, et al., “On data banks and
privacy homomorphisms,” Foundations of secure computation, vol. 4,
no. 11, pp. 169–180, 1978.

[7] C. Gentry, “Fully homomorphic encryption using ideal lattices,” in
Proceedings of the forty-first annual ACM symposium on Theory of
computing, pp. 169–178, 2009.

[8] M. Albrecht, M. Chase, H. Chen, J. Ding, S. Goldwasser, S. Gorbunov,
S. Halevi, J. Hoffstein, K. Laine, K. Lauter, et al., “Homomorphic en-
cryption standard,” Protecting privacy through homomorphic encryption,
pp. 31–62, 2021.

[9] N. Raviv and D. A. Karpuk, “Private polynomial computation from
lagrange encoding,” IEEE Transactions on Information Forensics and
Security, vol. 15, pp. 553–563, 2019.

[10] S. GOLDWASSER, S. MICALI, and C. RACKOFF, “The knowledge
complexity of interactive proof systems,” SIAM journal on computing,
vol. 18, no. 1, pp. 186–208, 1989.

[11] G. R. Blakley, “Safeguarding cryptographic keys,” in Managing Re-
quirements Knowledge, International Workshop on, pp. 313–313, IEEE
Computer Society, 1979.

[12] A. Shamir, “How to share a secret,” Communications of the ACM,
vol. 22, no. 11, pp. 612–613, 1979.

[13] B. Chor, S. Goldwasser, S. Micali, and B. Awerbuch, “Verifiable secret
sharing and achieving simultaneity in the presence of faults,” in 26th
Annual Symposium on Foundations of Computer Science (sfcs 1985),
pp. 383–395, IEEE, 1985.

[14] A. Chandramouli, A. Choudhury, and A. Patra, “A survey on perfectly
secure verifiable secret-sharing,” ACM Computing Surveys (CSUR),
vol. 54, no. 11s, pp. 1–36, 2022.

[15] M. O. Rabin, “How to exchange secrets with oblivious transfer,”
Cryptology ePrint Archive, 2005.

[16] L. G. Valiant, “Universal circuits (preliminary report),” in Proceedings
of the eighth annual ACM symposium on Theory of computing, pp. 196–
203, 1976.

[17] H. Lipmaa, P. Mohassel, and S. Sadeghian, “Valiant’s universal circuit:
Improvements, implementation, and applications,” Cryptology ePrint
Archive, 2016.

[18] C. Dwork, M. Naor, O. Reingold, G. N. Rothblum, and S. Vadhan, “On
the complexity of differentially private data release: efficient algorithms
and hardness results,” in Proceedings of the forty-first annual ACM
symposium on Theory of computing, pp. 381–390, 2009.

[19] T. Schneider, “Practical secure function evaluation.,” in Informatiktage,
pp. 37–40, 2008.

[20] L. Rasmusson and S. Jansson, “Simulated social control for secure
internet commerce,” in Proceedings of the 1996 workshop on New
security paradigms, pp. 18–25, 1996.

[21] B. Yu and M. P. Singh, “A social mechanism of reputation management
in electronic communities,” in Cooperative Information Agents IV-
The Future of Information Agents in Cyberspace: 4th International
Workshop, CIA 2000, Boston, MA, USA, July 7-9, 2000. Proceedings
4, pp. 154–165, Springer, 2000.

[22] C. Dwork, “Differential privacy,” in Automata, Languages and Program-
ming: 33rd International Colloquium, ICALP 2006, Venice, Italy, July
10-14, 2006, Proceedings, Part II 33, pp. 1–12, Springer, 2006.

[23] C. D. Godsil, “Polynomial spaces,” Discrete Mathematics, vol. 73, no. 1-
2, pp. 71–88, 1988.

[24] J.-L. Dorier, “A general outline of the genesis of vector space theory,”
Historia mathematica, vol. 22, no. 3, pp. 227–261, 1995.

[25] O. Goldreich, S. Micali, and A. Wigderson, “How to play any mental
game, or a completeness theorem for protocols with honest majority,” in
Providing Sound Foundations for Cryptography: On the Work of Shafi
Goldwasser and Silvio Micali, pp. 307–328, 2019.

[26] W. Gasarch, “A survey on private information retrieval,” Bulletin of the
EATCS, vol. 82, no. 72-107, p. 113, 2004.

[27] D. Morales, I. Agudo, and J. Lopez, “Private set intersection: A system-
atic literature review,” Computer Science Review, vol. 49, p. 100567,
2023.

[28] A. Kate, G. M. Zaverucha, and I. Goldberg, “Constant-size commitments
to polynomials and their applications,” in Advances in Cryptology-
ASIACRYPT 2010: 16th International Conference on the Theory and
Application of Cryptology and Information Security, Singapore, Decem-
ber 5-9, 2010. Proceedings 16, pp. 177–194, Springer, 2010.

[29] J. Zhang, T. Xie, Y. Zhang, and D. Song, “Transparent polynomial
delegation and its applications to zero knowledge proof,” in 2020 IEEE
Symposium on Security and Privacy (SP), pp. 859–876, IEEE, 2020.

[30] T. J. Green, G. Karvounarakis, and V. Tannen, “Provenance semirings,”
in Proceedings of the twenty-sixth ACM SIGMOD-SIGACT-SIGART
symposium on Principles of database systems, pp. 31–40, 2007.

[31] J. Závodnỳ, “On factorisation of provenance polynomials,” in 3rd
USENIX Workshop on the Theory and Practice of Provenance (TaPP
11), 2011.

[32] I. S. Reed and G. Solomon, “Polynomial codes over certain finite fields,”
Journal of the society for industrial and applied mathematics, vol. 8,
no. 2, pp. 300–304, 1960.

[33] R. Freij-Hollanti, O. W. Gnilke, C. Hollanti, and D. A. Karpuk, “Private
information retrieval from coded databases with colluding servers,”
SIAM Journal on Applied Algebra and Geometry, vol. 1, no. 1, pp. 647–
664, 2017.

[34] R. Tajeddine, O. W. Gnilke, and S. El Rouayheb, “Private information
retrieval from mds coded data in distributed storage systems,” IEEE
Transactions on Information Theory, vol. 64, no. 11, pp. 7081–7093,
2018.

[35] R. Gennaro, C. Gentry, B. Parno, and M. Raykova, “Quadratic span
programs and succinct nizks without pcps,” in Advances in Cryptology–
EUROCRYPT 2013: 32nd Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Athens, Greece,
May 26-30, 2013. Proceedings 32, pp. 626–645, Springer, 2013.

[36] E. Ben-Sasson, A. Chiesa, M. Riabzev, N. Spooner, M. Virza, and N. P.
Ward, “Aurora: Transparent succinct arguments for r1cs,” in Advances in
Cryptology–EUROCRYPT 2019: 38th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Darm-
stadt, Germany, May 19–23, 2019, Proceedings, Part I 38, pp. 103–128,
Springer, 2019.

[37] N. Kochdumper, C. Schilling, M. Althoff, and S. Bak, “Open-and closed-
loop neural network verification using polynomial zonotopes,” in NASA
Formal Methods Symposium, pp. 16–36, Springer, 2023.

[38] C. Schilling, M. Forets, and S. Guadalupe, “Verification of neural-
network control systems by integrating taylor models and zonotopes,” in
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36,
pp. 8169–8177, 2022.

[39] V. Lyubashevsky, C. Peikert, and O. Regev, “On ideal lattices and
learning with errors over rings,” Journal of the ACM (JACM), vol. 60,
no. 6, pp. 1–35, 2013.

[40] W. M. Campbell, K. T. Assaleh, and C. C. Broun, “Speaker recognition
with polynomial classifiers,” IEEE Transactions on Speech and Audio
Processing, vol. 10, no. 4, pp. 205–212, 2002.

[41] S.-K. Oh, W. Pedrycz, and B.-J. Park, “Polynomial neural networks
architecture: analysis and design,” Computers & Electrical Engineering,
vol. 29, no. 6, pp. 703–725, 2003.

[42] G. G. Chrysos, S. Moschoglou, G. Bouritsas, J. Deng, Y. Panagakis, and
S. Zafeiriou, “Deep polynomial neural networks,” IEEE transactions on
pattern analysis and machine intelligence, vol. 44, no. 8, pp. 4021–4034,
2021.

[43] D. F. Specht, “Generation of polynomial discriminant functions for
pattern recognition,” IEEE Transactions on Electronic Computers, no. 3,
pp. 308–319, 1967.

[44] E. Ben-Sasson, I. Bentov, Y. Horesh, and M. Riabzev, “Fast reed-
solomon interactive oracle proofs of proximity,” in 45th international
colloquium on automata, languages, and programming (icalp 2018),
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.

[45] L. F. Zhang and R. Safavi-Naini, “Protecting data privacy in publicly
verifiable delegation of matrix and polynomial functions,” Designs,
Codes and Cryptography, vol. 88, no. 4, pp. 677–709, 2020.

[46] D. Fiore and R. Gennaro, “Publicly verifiable delegation of large poly-
nomials and matrix computations, with applications,” in Proceedings of
the 2012 ACM conference on Computer and communications security,
pp. 501–512, 2012.

[47] S. Benabbas, R. Gennaro, and Y. Vahlis, “Verifiable delegation of
computation over large datasets,” in Advances in Cryptology–CRYPTO
2011: 31st Annual Cryptology Conference, Santa Barbara, CA, USA,
August 14-18, 2011. Proceedings 31, pp. 111–131, Springer, 2011.

[48] B. Song, D. Zhou, J. Wu, X. Yuan, Y. Zhu, and C. Wang, “Protecting
function privacy and input privacy in the publicly verifiable outsourcing
computation of polynomial functions,” Future Internet, vol. 15, no. 4,
p. 152, 2023.

[49] M. Barbosa and P. Farshim, “Delegatable homomorphic encryption
with applications to secure outsourcing of computation.,” in CT-RSA,
vol. 7178, pp. 296–312, Springer, 2012.

[50] K.-M. Chung, Y. Kalai, and S. Vadhan, “Improved delegation of compu-
tation using fully homomorphic encryption,” in Advances in Cryptology–
CRYPTO 2010: 30th Annual Cryptology Conference, Santa Barbara,
CA, USA, August 15-19, 2010. Proceedings 30, pp. 483–501, Springer,
2010.

[51] P. Ananth, N. Chandran, V. Goyal, B. Kanukurthi, and R. Ostrovsky,
“Achieving privacy in verifiable computation with multiple servers–
without fhe and without pre-processing,” in Public-Key Cryptography–
PKC 2014: 17th International Conference on Practice and Theory in
Public-Key Cryptography, Buenos Aires, Argentina, March 26-28, 2014.
Proceedings 17, pp. 149–166, Springer, 2014.

[52] L. F. Zhang, “Multi-server verifiable delegation of computations: Uncon-
ditional security and practical efficiency,” Information and Computation,
vol. 281, p. 104740, 2021.

[53] D. Fiore, R. Gennaro, and V. Pastro, “Efficiently verifiable computation
on encrypted data,” in Proceedings of the 2014 ACM SIGSAC Confer-
ence on Computer and Communications Security, pp. 844–855, 2014.

[54] B. Libert, T. Peters, M. Joye, and M. Yung, “Linearly homomorphic
structure-preserving signatures and their applications,” Designs, Codes
and Cryptography, vol. 77, pp. 441–477, 2015.

[55] C. Joo and A. Yun, “Homomorphic authenticated encryption se-
cure against chosen-ciphertext attack,” in Advances in Cryptology–
ASIACRYPT 2014: 20th International Conference on the Theory and
Application of Cryptology and Information Security, Kaoshiung, Taiwan,
ROC, December 7-11, 2014, Proceedings, Part II 20, pp. 173–192,
Springer, 2014.

[56] S. Li, X. Wang, and R. Xue, “Toward both privacy and efficiency of
homomorphic macs for polynomial functions and its applications,” The
Computer Journal, vol. 65, no. 4, pp. 1020–1028, 2022.

[57] S. Li, X. Wang, and R. Zhang, “Privacy-preserving homomorphic
macs with efficient verification,” in Web Services–ICWS 2018: 25th
International Conference, Held as Part of the Services Conference
Federation, SCF 2018, Seattle, WA, USA, June 25-30, 2018, Proceedings
16, pp. 100–115, Springer, 2018.

[58] Q. Yu and A. S. Avestimehr, “Entangled polynomial codes for secure,
private, and batch distributed matrix multiplication: Breaking the” cubic”
barrier,” in 2020 IEEE International Symposium on Information Theory
(ISIT), pp. 245–250, IEEE, 2020.

[59] Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai, “Cryptography from
anonymity,” in 2006 47th Annual IEEE Symposium on Foundations of
Computer Science (FOCS’06), pp. 239–248, IEEE, 2006.

[60] M. Naor and B. Pinkas, “Oblivious polynomial evaluation,” SIAM
Journal on Computing, vol. 35, no. 5, pp. 1254–1281, 2006.

[61] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their composi-
tionality,” Advances in neural information processing systems, vol. 26,
2013.

[62] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors
for word representation,” in Proceedings of the 2014 conference on
empirical methods in natural language processing (EMNLP), pp. 1532–
1543, 2014.

[63] C. Buciluǎ, R. Caruana, and A. Niculescu-Mizil, “Model compression,”
in Proceedings of the 12th ACM SIGKDD international conference on
Knowledge discovery and data mining, pp. 535–541, 2006.

[64] F. Mireshghallah, A. Backurs, H. A. Inan, L. Wutschitz, and J. Kulkarni,
“Differentially private model compression,” in Advances in Neural
Information Processing Systems.

[65] M. Gupta and P. Agrawal, “Compression of deep learning models for
text: A survey,” ACM Transactions on Knowledge Discovery from Data
(TKDD), vol. 16, no. 4, pp. 1–55, 2022.

[66] A. Desai and A. Shrivastava, “The trade-offs of model size in large
recommendation models: A 10000 × compressed criteo-tb dlrm model
(100 gb parameters to mere 10mb),” arXiv preprint arXiv:2207.10731,
2022.

[67] A. Shrivastava, Probabilistic hashing techniques for big data. Cornell
University, 2015.

[68] J. H. Cheon, A. Kim, M. Kim, and Y. Song, “Homomorphic encryption
for arithmetic of approximate numbers,” in Advances in Cryptology–
ASIACRYPT 2017: 23rd International Conference on the Theory and
Applications of Cryptology and Information Security, Hong Kong, China,
December 3-7, 2017, Proceedings, Part I 23, pp. 409–437, Springer,
2017.

[69] J. S. Yoo, J. H. Hwang, B. K. Song, and J. W. Yoon, “A bitwise
logistic regression using binary approximation and real number division
in homomorphic encryption scheme,” in Information Security Practice
and Experience: 15th International Conference, ISPEC 2019, Kuala
Lumpur, Malaysia, November 26–28, 2019, Proceedings 15, pp. 20–40,
Springer, 2019.

[70] S. Obla, X. Gong, A. Aloufi, P. Hu, and D. Takabi, “Effective activation
functions for homomorphic evaluation of deep neural networks,” IEEE
Access, vol. 8, pp. 153098–153112, 2020.

[71] R. Podschwadt and D. Takabi, “Classification of encrypted word em-
beddings using recurrent neural networks.,” in PrivateNLP@ WSDM,
pp. 27–31, 2020.

[72] E. Hesamifard, H. Takabi, and M. Ghasemi, “Cryptodl: towards deep
learning over encrypted data,” in Annual Computer Security Applications
Conference (ACSAC 2016), Los Angeles, California, USA, vol. 11, 2016.

[73] M. Hastings, B. Hemenway, D. Noble, and S. Zdancewic, “Sok: General
purpose compilers for secure multi-party computation,” in 2019 IEEE
symposium on security and privacy (SP), pp. 1220–1237, IEEE, 2019.

[74] R. Cramer, I. B. Damgård, et al., Secure multiparty computation.
Cambridge University Press, 2015.

[75] G. Zyskind, O. Nathan, and A. Pentland, “Enigma: Decentral-
ized computation platform with guaranteed privacy,” arXiv preprint
arXiv:1506.03471, 2015.

[76] B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan, “Private informa-
tion retrieval,” Journal of the ACM (JACM), vol. 45, no. 6, pp. 965–981,
1998.

[77] M. G. Raeini and M. Nojoumian, “Secure trust evaluation using mul-
tipath and referral chain methods,” in Security and Trust Management:
15th International Workshop, STM 2019, Luxembourg City, Luxembourg,
September 26–27, 2019, Proceedings 15, pp. 124–139, Springer, 2019.

[78] M. Abdar, F. Pourpanah, S. Hussain, D. Rezazadegan, L. Liu,
M. Ghavamzadeh, P. Fieguth, X. Cao, A. Khosravi, U. R. Acharya, et al.,
“A review of uncertainty quantification in deep learning: Techniques,
applications and challenges,” Information Fusion, vol. 76, pp. 243–297,
2021.

[79] C. K. Chak, G. Feng, and C. M. Cheng, “Orthogonal polynomials
neural network for function approximation and system modeling,” in
Proceedings of ICNN’95-International Conference on Neural Networks,
vol. 1, pp. 594–599, IEEE, 1995.

[80] A. Gu, T. Dao, S. Ermon, A. Rudra, and C. Ré, “Hippo: Recurrent
memory with optimal polynomial projections,” Advances in neural
information processing systems, vol. 33, pp. 1474–1487, 2020.

[81] C. Ganesh, A. Nitulescu, and E. Soria-Vazquez, “Rinocchio: Snarks for
ring arithmetic,” Cryptology ePrint Archive, 2021.

[82] T. Gehr, M. Mirman, D. Drachsler-Cohen, P. Tsankov, S. Chaudhuri, and
M. Vechev, “Ai2: Safety and robustness certification of neural networks
with abstract interpretation,” in 2018 IEEE symposium on security and
privacy (SP), pp. 3–18, IEEE, 2018.

[83] Y. Zhang and X. Xu, “Safety verification of neural feedback systems
based on constrained zonotopes,” in 2022 IEEE 61st Conference on
Decision and Control (CDC), pp. 2737–2744, IEEE, 2022.

[84] G. Anderson, S. Pailoor, I. Dillig, and S. Chaudhuri, “Optimization
and abstraction: a synergistic approach for analyzing neural network
robustness,” in Proceedings of the 40th ACM SIGPLAN conference on
programming language design and implementation, pp. 731–744, 2019.

[85] M. G. Raeini and M. Nojoumian, “Privacy-preserving big data analyt-
ics: from theory to practice,” in Security, Privacy, and Anonymity in
Computation, Communication, and Storage: SpaCCS 2019 International
Workshops, Atlanta, GA, USA, July 14–17, 2019, Proceedings 12,
pp. 45–59, Springer, 2019.

	Introduction
	Article Organization

	Definitions and Cryptographic Constructions
	Privacy-Preserving LLMs (PPLLMs) using Secure Polynomial and Matrix-Vector Delegations
	Polynomial and Matrix-Vector Delegations as Novel Prompt Engineering Solutions for PPLLMs
	Privacy-Preserving Transformations of Polynomial and Matrix-Vector Functions
	A Privacy-Preserving Transformation for AI and LLM Models

	Discussion and Future Research Directions
	Conclusion
	References

