
Intro	to	Reachability	Code
Sylvia	Herbert



The	toolboxes

• toolboxLS (Ian	Mitchell)
• Used	for	solving	PDEs	using	level	set	methods
• Basic	Reachability	tools

• helperOC (mostly	Mo	Chen)
• More	refined	tools	for	using	toolboxLS
• Code	from	research	in	lab

Notes:	We	will	use	two	toolboxes.		The	first	is	the	level	set	toolbox	that	solves	general	PDEs	using	level	set	
methods.		The	second	is	the	optimal	control	repo	that	our	lab	has	developed	to	do	reachability	stuff.



Download/Installation	instructions

1. Follow	the	instructions	for	downloading	toolboxLS here:	
http://www.cs.ubc.ca/~mitchell/ToolboxLS/

2. Download	or	clone	the	helperOC repository	from	
here: https://github.com/HJReachability/helperOC

3. Put	both	the	toolboxLS and	helperOC folder/repo	and	subfolders	
into	your	matlab path

4. On	matlab in	the	command	line,	type	the	following:	tutorial_test()
5. If	code	doesn't	run,	you	don't	see	a	figure,	or	you	get	an	error,	

email sylvia.herbert@berkeley.edu



Motivating	Example:	Dubins Car

𝑥̇ = 𝑣 cos 𝜃 + 𝑑+
𝑦̇ = 𝑣 sin 𝜃 + 𝑑/
𝜃̇ = 𝜔 + 𝑑1

𝜔 ∈ 𝜔345, 𝜔37+
d ∈ [𝑑345, 𝑑37+]

𝑣
𝜃

Notes:	For	our	tutorial	example	we	will	be	using	a	standard	dubins car	with	the	dynamics	shown



Finding	the	optimal	control	&	disturbance

𝑥̇ = 𝑣 cos 𝜃 + 𝑑;
𝑦̇ = 𝑣 sin 𝜃 + 𝑑<
𝜃̇ = 𝜔 + 𝑑=

H ∗= min	
													B

max	
	E

𝛻𝑉 𝑧 𝑡 , 𝑡 ⋅ 𝑓 𝑧, 𝜔, 𝑑, 𝑡

H∗ = min
B
max
E
(pN𝑥̇ + pO𝑦̇ + p1𝜃̇)

𝛻V = pN, pO, p1 ;

H∗ = min
B
max
E
{pN 𝑣 cos 𝜃 + 𝑑+ + pO 𝑣 sin 𝜃 + 𝑑/ + p1 𝜔 + 𝑑1 }

H∗ = min
B
max
E

pN𝑑+ + pO𝑑/ + p1 𝜔 + 𝑑1 + extra	terms

H∗ = min
B

p1𝜔 +max{
E

pN𝑑+ + pO𝑑/ + p1𝑑1} + extra	terms

Notes:	To	find	the	optimal	control	and	disturbance	we	must	find	the	argmin/argmax of	the	hamiltonian,	as	described	in	the	
intro	to	reachability	theory	tutorial



𝜔∗ = argmin
B

p1𝜔

𝑑+∗ = argmax{
EY

pN𝑑+}

𝑑/∗ = argmax{
EZ

pO𝑑/}

𝑑[∗ = argmax{
E\

pO𝑑[}

If	p] ≥ 0,	𝜔∗ = 𝜔345,	else	𝜔∗ = 𝜔37+

If	p` ≥ 0,	d`∗ = 𝑑37+,	else	d`∗ = 𝑑345

Finding	the	optimal	control	&	disturbance

H∗ = min
B

p1𝜔 +max{
E

pN𝑑+ + pO𝑑/ + p1𝑑1} + whatever

𝜔 ∈ 𝜔345, 𝜔37+
d ∈ [𝑑345, 𝑑37+]

Notes:	Here	we	show	what	the	optimal	control	and	disturbance	will	be,	and	how	we	will	input	
them	into	the	control.		If	you	have	a	more	complicated	control	space	or	non-affine	control	inputs,	
you	could	use	a	solver	instead	and	plug	that	into	the	optimal	control	and	disturbance	files.



Coding	up	the	Dubins Car

• Dubins Car	will	be	a	subset	of	the	dynSys class
• helperOCà dynSysà DubinsCar

• DubinsCar.m defines	the	dubins car	class	and	its	related	properties	
and	methods/functions
• dynamics.m defines	the	dynamics.	Note	that	we	define	it	twice	
depending	on	how	the	function	is	called	(with	a	cell	of	states	or	a	
single	state)
• optCtrl.m defines	the	optimal	control.	We	simply	plug	in	the	control	
we	derived	in	the	previous	slide
• optDstb.m defines	the	optimal	disturbance	in	the	same	way

Notes:	Here	we	define	how	to	create	your	vehicle	class	with	its	dynamics	and	how	to	find	its	optimal	control/disturbance.



tutorial_test.m

1. Run	Backward	Reachable	Set	(BRS)	with	a	goal
2. Same	thing	but	add	in	computing	an	optimal	trajectory	after
3. Run	Backward	Reachable	Tube	(BRT)	with	a	goal,	optimal	trajectory
4. Add	disturbance
5. Change	to	a	BRT	with	an	avoid	set	(instead	of	a	goal),	remove	

trajectory
6. Change	to	a	Forward	Reachable	Tube	(FRT)
7. Add	obstacle

Notes:	Open	helperOC/ReachabilityWorkshop/tutorial_test.m
Right	now	it	is	set	to	run	#1	on	this	slide.
The	comments	describe	how	to	change	the	code	depending	on	what	you	want	to	solve.



Making	the	grid

𝑁+

𝑥

𝑦

Notes:	When	making	the	grid,	this	is	what	you	are	essentially	doing.		N	is	the	number	of	grid	points	in	each	dimension



Setting	the	target

𝑥

𝑦

Notes:	The	target	in	this	case	is	a	circle	at	the	origin	in	position	space	with	radius	R.	This	target	can	be	reached	at	any	
angle,	so	we	make	it	a	cylinder	in	3D



Practice!

• Try	running	the	different	scenarios,	raise	your	hand	if	you	have	any	
questions


