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.1 Further experimental analysis and results
.1.1 Does trajectory attention make better use of motion cues?

In the main paper (and below in Section .1.2), we provide evidence that action classification on
the Something—Something V2 (SSv2) dataset [8] is more reliant on motion cues than the Kinetics
dataset [10], where appearance cues dominate and a single-frame model achieves high accuracy.
Improved performance on SSv2 is one way to infer that our model makes better use of temporal
information, however, here we consider another way. We artificially adjust the speed of the video
clips by changing the temporal stride of the input. A larger stride simulates faster motions, with
adjacent frames being more different. If our trajectory attention is able to make better use of the
temporal information in the video than the other attention mechanisms, we expect the margin of
improvement to increase as the temporal stride increases. As shown in Figure 1, this is indeed what
we observe, with the lines diverging as temporal stride increases, especially for the motion cue-reliant
SSv2 dataset. Since the same number of frames are used as input in all cases, the larger the stride, the
more of the video clip is seen by the model. This provides additional confirmation that seeing a small
part of a Kinetics video is usually enough to classify it accurately, as shown on the bottom left, where
the absolute accuracy is reported.

.1.2 How important are motion cues for classifying videos from the Kinetics-400 and
Something—-Something V2 datasets?

To determine the relative importance of motion cues compared to appearance cues for classifying
videos on two of the major video action recognition datasets (Kinetics-400 and Something—Something
V2), we trained a single frame vision transformer model and compare the results to a multi-frame
model that can reason about motion. The single frame was sampled from the video at random.
Table 1 shows that single-frame action classifiers can do almost as well as video action classifiers
on the Kinetics-400 dataset, implying that the motion information is much less relevant. In contrast,
classifying videos from the Something-Something V2 dataset clearly requires this motion information.
Therefore, to excel on the SSv2 dataset, a model must reason about motion information. Our model,
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Figure 1: Does trajectory attention make better use of motion cues? Performance of transformer
models with joint space-time attention, divided space-time attention, and trajectory attention, as
the temporal stride increases, on the Kinetics-400 dataset (left) and the Something—Something V2
dataset (right). Top: top-1 accuracy margin relative to trajectory attention (difference of accuracy
and trajectory accuracy). Bottom: absolute top-1 accuracy shown for reference. If our trajectory
attention is able to make better use of the temporal information in the video than the other attention
mechanisms, we expect the accuracy margin between the methods to increase as the temporal stride
increases. This is indeed the observed behaviour, especially for the motion cue-reliant SSv2 dataset.
A larger stride simulates greater motion between input frames, which trajectory attention is better
able to model and reason about. Note that the larger the stride, the more of the video clip is seen by
the model; for all plots, the rightmost side of the axis corresponds to the entire video clip. Note also
that the strides for SSv2 are written as multiples of .S, the stride needed to evenly sample the entire
video clip.

which introduces an inductive bias that favors pooling along motion trajectories, is able to do this and
sees corresponding performance gains.

.1.3  Which classes is the performance difference larger with and without the trajectory
attention?

The class labels with the largest performance increase (given in parentheses) on the Something-
Something v2 dataset are: “Spilling [something] next to [something]” (18%), “Pretending to put
[something] underneath [something]” (15%), and “Trying to pour [something] into [something],
but missing so it spills next to it” (14%). The classes with the largest performance decrease are:
“Putting [something] that can’t roll onto a slanted surface, so it stays where it is” (10%), “Putting
[something] on a flat surface without letting it roll” (9%), and “Showing a photo of [something] to the
camera” (8%). It is apparent that classes involving predominantly stationary objects do not benefit
from trajectory attention, as we would expect.



Table 1: Importance of motion cues for the K-400 and SSv2 datasets. A classifier for the K-400
dataset performs well when all motion information is removed (1 frame model), while a classifier for
the SSv2 dataset performs very poorly. Therefore, SSv2 is a better dataset for evaluating video action
classification, where the combination of appearance and motion is critical.

Dataset Top-1 accuracy (1 frame) Top-1 accuracy (8 frames) A
Kinetics-400 73.2 79.7 6.5
Something—Something V2 27.1 66.5 394

Figure 2: Trajectory attention maps. In this sequence of frames from Kinetics-400 (row 1) and
Something-Something V2 (row 3), we show the attention maps at each frame given an initial query
point (red point). We see that the model learns to implicitly track along motion paths (yellow arrow)
using our trajectory attention module.

.1.4 Trajectory attention maps

In Figure 2, we show qualitative results of the intermediate attention maps of our trajectory attention
operation. The learned attention maps appear to implicitly track the query points across time, a
strategy that is easier to learn with the inductive bias instilled by trajectory attention.

.1.5 How long does it take to train Motionformer model?

For Table 3c, using Motionformer with orthoformer approximation, 16 prototypes take 384 GPU
hours, 64 prototypes take 800 GPU hours, and 128 prototypes take 1216 GPU hours. For the Kinetics-
400 state-of-the-art table, the Mformer-B model took 384 GPU hours, the Mformer-L took 1334
GPU hours, and Mformer-HR model took 1376 GPU hours to train. Our baseline Mformer-B model,
which outperforms TimeSformer-B by over 1%, takes similar GPU hours (416 (ours) vs the 416 GPU
hours reported in Table 2 of TimeSformer). We cannot directly compare to ViViT because they didn’t



report training time, but they used a very large transformer (24 layers) compared to ours (12 layers)
and so we expect the training time for their approach to be significantly greater.

.1.6 Semi-supervised Video Object Segmentation on DAVIS 2017

We evaluate our baseline Motionformer Kinetics-pretrained model (16x16 with Trajectory Attention)
on the semi-supervised video object segmentation task on the DAVIS 2017 dataset as in Jabri et al. [9]
in Table 2. We directly use the attention maps of our Motionformer model in the label propagation
setting, as in [9]. We report mean (m) of standard boundary alignment (F) and region similarity (J)
metrics. We attain a competitive J&F-Mean of 60.6. For comparison, DINO [3] obtains J&F-Mean
of 62.3 with the same architecture (ViT-B/16x16), but by using a self-supervised learning task on
IM-1K. We expect that we could significantly improve the performance by using an 8x8 patch size,
as this was shown to be highly effective for the task [3].

Table 2: DAVIS 2017 Video object segmentation. We evaluate the quality of frozen features on
video instance tracking. We report mean region similarity 7,,, and mean contour-based accuracy JF,.

Method Data Arch. (T&F)m  TIm  Fm
Supervised

ImageNet INet VIT-S/8 66.0 639 68.1
STM [14] I/D/Y RN50 81.8 79.2 843
Ours K-400 Mformer-B/16 60.6 583 629
Self-supervised

CT[17] VLOG RN50 48.7 464 50.0
MAST [11] YT-VOS RNI18 65.5 63.3 67.6
STC [9] Kinetics RNI8 67.6 64.8 70.2
DINO [3] INet ViT-B/16 62.3 60.7 63.9

.2 Implementation details

Preprocessing. During training, we randomly sample clips of size 16x224x224 at a rate of 1/4
from 30 FPS videos, thereby giving an effective temporal resolution of just over 2 seconds. We
normalize the inputs with mean and standard deviation 0.5, rescaling in the range [—1, 1]. We use
standard video augmentations such as random scale jittering, random horizontal flips and color
jittering. For smaller datasets such as Something—Something V2 and Epic-Kitchens, we additionally
apply rand-augment [5]. During testing, we uniformly sample 10 clips per video and apply a 3 crop
evaluation [7].

Training. For all datasets, we use the AdamW [12] optimizer with weight decay 5 x 1072, a
batch size per GPU of 4, label smoothing [15] with alpha 0.2 and mixed precision training [ 3]. For
Kinetics-400/600 and Something-Something V2, we train for 35 epochs, with an initial learning rate
of 107%, which we decay by 10 at epochs 20, 30. As Epic-Kitchens is a smaller dataset, we use a
longer schedule and train for 50 epochs with decay at 30 and 40.

Long Range Arena benchmark details. For the Long-Range Arena benchmark [16], we used the
training, validation, and testing code and parameters from the Nystromformer Github repository. The
Performer [4] implementation was ported over to PyTorch from the official Github repo, and the
Nystromformer [ 9] implementation was used directly from its Github repository.

Computing resources. Ablation experiments were run on a GPU cluster using 4 nodes (32 GPUs)
with an average training time of 12 hours. Experiments for comparing with state-of-the-art models
used 8 nodes (64 GPUs), with an average training time of 7 hours.

Libraries. For our code implementation, we used the timm [ 18] library for our base vision trans-
former implementation, and the PySlowFast [6] library for training, data processing, and the
evaluation pipeline.


https://github.com/mlpen/Nystromformer
https://github.com/google-research/google-research/tree/master/performer
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Checklist

1. For all authors. ..

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes] We claim that current self-attention mechanisms for
video transformers [, 2] don’t provide an inductive bias that facilitates the modelling
of motion trajectories, which we think limits their ability to perform well on datasets
that rely heavily on motion information, such as Something-Something V2 (SSV2).
We validate this claim in Tab. ?? where our proposed trajectory attention significantly
outperforms these alternatives on SSv2. We also how that our proposed attention ap-
proximation, Orthoformer, is as good or better than alternatives on the LRA benchmark
in Tab. ?? and can approximate our trajectory attention Tab. ??.

(b) Did you describe the limitations of your work? [Yes] See the conclusion, Section ??,
where the two most significant limitations are highlighted.

(c) Did you discuss any potential negative societal impacts of your work? [Yes] See
“Potential negative societal impacts” in Section 2?.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes] Yes we have read the ethics review guidelines and ensured that our paper
conforms to them.


https://github.com/facebookresearch/slowfast
https://github.com/facebookresearch/slowfast
https://github.com/rwightman/pytorch-image-models

2. If you are including theoretical results. . .

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A |
3. If you ran experiments. . .

(a) Did you include the code, data, and instructions needed to reproduce the main ex-
perimental results (either in the supplemental material or as a URL)? [ Yes] We have
included code in the supplementary material.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Section .2 and the supplementary material.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? Training and testing video transformer models multiple
times is very expensive in terms of time, computation and electricity. However, we
evaluate on multiple datasets with sufficiently consistent results.

(d) Did you include the total amount of compute and the type of resources used (e.g.,
type of GPUs, internal cluster, or cloud provider)? [Yes] Included in supplementary
material.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets. . .
(a) If your work uses existing assets, did you cite the creators? [Yes] We used and cited
the following libraries in supplementary material: SlowFast, Timm, Epic-Kitchens.
(b) Did you mention the license of the assets? [Yes] Yes, see Section .2.
(c) Did you include any new assets either in the supplemental material or as a URL?
We didn’t use any new assets in our paper
(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [Yes] Yes, see Section ??.
(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [Yes] Yes, see Section ??.
5. If you used crowdsourcing or conducted research with human subjects. . .

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [IN/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A ]
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