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A OVERVIEW
In the supplementary materials, we first present visualizations of
our method’s performance under challenging conditions, including
occlusion and noise, to demonstrate its generalization capabilities
and robustness. Next, we showcase the results of our diverse human
motion prediction method, highlighting the unpredictability and
diversity of the future human motions, and illustrating the signif-
icance of diverse predictions for more accurate decision-making.
In addition, we also present the real-time deployment and real-
time results of our approach in the video of our supplemen-
tary materials. Finally, we present the specifics of the pretrained
LiDAR-based human parsing synthetic dataset, outlining the train-
ing methodologies and outcomes.

B MORE VISUALIZATION RESULTS
B.1 Occlusion and Noise Cases
In this section, we show the results of our method under occlusion
and noise, as in Figure. 1 and Figure. 2. Our methods can still accu-
rately forecast the future human motions even in such challenging
cases, further highlighting the robustness and generalization ability
of our approach.

B.2 Diverse Human Motion Prediction
Given the inherent spontaneity and unpredictability of human
behavior, we extend our framework to diverse human motion pre-
dictions, covering up to four potential future motions. Here, we
shown four different motion prediction results according to the
same point cloud observations in Figure 3.

B.3 Real-world Applications
We show more real-world demos in the video of our supplementary
materials to demonstrate the significance of our approach for real-
world applications.

C LIDAR-BASED HUMAN PARSING
C.1 Synthetic Data
We train our LiDAR-based human parsing model on a synthetic
dataset created using ray casting on human mesh models from
the AMASS [1] dataset. Detailed steps of synthetic data genera-
tion are outlined below. We generated 700,000 frames for train-
ing and 300,000 frames for validation. To simulate LiDAR point
clouds, human meshes are placed at distances ranging from 6 to
27 meters from a ray caster, using 2048 vertical scans (covering
360 degrees) and 128 LiDAR beams. Each beam’s emission direc-
tion is defined by a unit vector in the spherical coordinate sys-
tem, 𝑑 = [cos𝜑 sin𝜃, cos𝜑 cos𝜃, sin𝜑], where 𝜑 is the angle from
the emission direction to the XY plane and 𝜃 represents the az-
imuth. The LiDAR center is 𝑐 = [0, 0, 2]. The intersection point

𝑝 = [𝑝𝑥 , 𝑝𝑦, 𝑝𝑧] is computed using:

𝑝 = 𝑐 + 𝑑 𝑛
𝑇 (𝑞 − 𝑐)
𝑛𝑇𝑑

, (1)

where 𝑛 is the normal vector of the corresponding mesh and 𝑞

denotes any vertex point of the mesh. To bridge the gap between
synthetic data and real LiDAR scans, random occlusions and noise
are incorporated. The SMPL mesh vertices, which are known for
their ordered and regular structure, normally provide 24 human
body part labels. Due to the sparsity of LiDAR point clouds, we
have simplified these to 9 primary categories: head, left arm, right
arm, upper body, lower body, upper left leg, upper right leg, lower
left leg, and lower right leg. Each LiDAR point is automatically
labeled with the nearest vertex’s body part label, and randomly
added noises are labeled as "noise".

C.2 Training Details and Results
The objective of the LiDAR-based human parsing task is to assign a
label to each point, indicating its correspondence to a specific body
part or noise, functioning as a form of segmentation. To achieve
this, we implement the state-of-the-art object part segmentation
method, PointNext [2], training it on 700,000 simulated frames of
human LiDAR point clouds. We adhere to the training strategy
recommended by PointNext, which includes data augmentation
and training procedures. The experimental results of this method
on a validation dataset of 300,000 simulated LiDAR frames is de-
tailed in Table 1. Additionally, we also provide visualizations of
our pretrained LiDAR-based human parsing on real LiDAR scans,
illustrated in Figure 4.
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Figure 1: Visualisation of the results in the occlusion case demonstrates the robustness of our LiDAR-based human motion
prediction approach even in scenarios with occlusions. “GT” denotes the future ground truth skeletons.

Table 1: LiDAR-based human parsing results on the validation set of our synthetic data.

head left arm right arm upper body lower body upper left leg lower left leg upper right leg lower right leg noise miou
94.10 90.77 90.25 82.66 91.25 90.67 95.27 90.66 95.48 97.83 91.89
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Figure 2: Visualisation of the results in the noise case demonstrates the robustness of our LiDAR-based humanmotion prediction
approach even in noisy environments. “GT” indicates the future ground truth skeletons.
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Figure 3: Visualization results of our extended diverse humanmotion prediction on LIPD. “GT” refers to the future ground truth
skeletons. Using the same historical input, we display four different future motions predicted by our network simultaneously.
The predictions in the green dashed box are closest to the ground truth, while the other three in the blue dashed box, though
varying from the ground truth, depict plausible alternatives where a person might move forward or turn at different speeds.
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Figure 4: Visualisation of our pretrained LiDAR-based human parsing network applied to real LiDAR scans.
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