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Introduction

• In Cell Segmentation problem, we want to segment the cells

(nuclei) from the background

• To successfully train a cell segmentation network in fully-

supervised manner, we need ground-truth annotations of a

dataset

• However, such annotated dataset is highly unavailable because

– labeling process is tedious

– it requires domain experts (pathologists)

– it is expensive

Figure: Cell Segmentation
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Proposed solution

• We observed that, images from different cell datasets/organs

exhibit dissimilarity while their corresponding segmentation

ground-truth labels are quite similar

• Let’s assume, we have two datasets from two different organs

– one with annotations (source domain), another without annotation (target

domain)

• We apply a technique called Domain Adaptation with help of

the annotated dataset

Figure: Motivation behind the proposed solution
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Methodology

Figure: Complete architecture of CellSegUDA

• Segmentation network takes input images, and produces segmentation predictions

• Discriminator distinguishes between source-domain and target-domain prediction

• Decoder ensures that target domain predictions spatially correspond to target domain

images
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Experiments

• Datasets

– Dataset-1: KIRC (Kidney Renal Clear cell carcinoma)

- 486 patches of size 400x400 

– Dataset-2: TNBC (Triple Negative Breast Cancer)

- 50 patches of size 512x512

• Experimental setups of CellSegUDA (unsupervised domain 

adaptation)

• For CellSegSSDA (semi-supervised domain adaptation), we utilize 

incremental percentage (10%, 25%, 50% and 75%) of target dataset 

labels while training

Experiment 1 (KIRC → TNBC) Experiment 2 (TNBC → KIRC)

Training
100% of KIRC (with labels) +

80% of TNBC (w/o labels)

100% of TNBC (with labels) +

80% of KIRC (w/o labels)

Validation 10% of TNBC (with labels) 10% of KIRC (with labels)

Testing 10% of TNBC 10% of KIRC
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Experimental results

Method

Experiment 1

(KIRC → TNBC)

Experiment 2

(TNBC → KIRC)

IoU% Dice score IoU% Dice score

U-Net (source-trained)[1] 52.66 0.6875 54.82 0.7056

DA-ADV[2] 54.93 0.7079 55.43 0.7107

CellSegUDA w/o recons 56.56 0.72 56.91 0.7224

CellSegUDA 59.02 0.7394 57.09 0.7242

U-Net (source 100% + target 10%) 60.74 0.7534 56.89 0.7194

CellSegSSDA (source 100% + target 10%) 60.96 0.7557 58.81 0.7377

U-Net (source 100% + target 25%) 61.67 0.7607 59.32 0.7405

CellSegSSDA (source 100% + target 25%) 62.94 0.771 59.73 0.7443

U-Net (source 100% + target 50%) 56.73 0.7208 59.95 0.7464

CellSegSSDA (source 100% + target 50%) 63.59 0.7748 60.32 0.7494

U-Net (source 100% + target 75%) 59.06 0.7394 61.63 0.7592

CellSegSSDA (source 100% + target 75%) 64.96 0.7862 61.01 0.7541

U-Net (target-trained) 66.57 0.7985 62.04 0.7621

[1] U-net: Convolutional networks for biomedical image segmentation, MICCAI 2015

[2] Unsupervised domain adaptation for automatic estimation of cardiothoracic ratio, MICCAI 2018
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Visualizations

Figure: Visualization of segmentation for KIRC → TNBC.
Blue arrows indicate missing cells of previous methods, and Yellow arrows indicate false positives which are 

removed by following method.
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Conclusion

• A novel unsupervised domain adaptation framework is proposed

for segmenting cells in unannotated datasets utilizing

– adversarial learning

– domain adaptation in output space

– decoder network

• Then, it is extended to semi-supervised domain adaptation

considering

– a few annotations available from the target domain

• In both cases, significant improvement is achieved as compared

with the baseline methods

• Have questions?

– please contact at mohammadminhazu.haq@mavs.uta.edu


