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A APPENDIX

In this section, we describe the relationship between relative entropy and fisher information. We
also present the baselines, datasets details, C3 batchwise performance λ selection details, and ex-
perimental setup.

A.1 REPRESENTING THE CURRENT DERIVATIVE WITH THE FISHER INFORMATION MATRIX

Let us consider having a model with parameter θ and a likelihood function p(X | θ), where X is
observed data. The estimate of true parameter θ can be found by using estimator θ̂. The Fisher
information I(θ) can be defined as the expected value of the negative hessian of the log-likelihood
function.

I(θ) = E
[
−∂2 log p(X | θ)

∂θ∂θT

]
(1)

The Cramér-Rao Lower Bound (CRLB) states that for any unbiased estimator θ̂, the variance-
covariance matrix V (θ̂) satisfies the inequality property:

V (θ̂) ⪰ I−1(θ) (2)

The symbol ⪰ represents the following matrix inequalityV (θ̂)− I−1(θ) positive and semi-definite.

Now let us assume q(θ̂) as Gaussian distribution function to be estimated around parameter θ mean
and variance-covriance matrix V (θ̂) in such manner that:

q(θ̂) ≈ N (θ, V (θ̂)) (3)

We have a model f(x) which outputs a target distribution Q(y|x) for each given input
x. The DKL divergence for source to target distribution can be found by DKL(P ||Q) =∑

y P (y|x) log
(

P (y|x)
Q(y|x)

)
.

Considering y as continuous target variable, P (y|x) and Q(y|x) as Gaussian distributions with
means µP and µQ and variances σ2

P and σ2
Q.

Relative entropy can be computed in closed form using mean-variance of source and target distribu-
tion as follows:

DKL(P ||Q) =
1

2

[
log

(
σ2
Q

σ2
P

)
+

σ2
P + (µP − µQ)

2

σ2
Q

− 1

]
(4)

The DKL can be approximated as:

DKL(p(θ) ∥ q(θ̂)) ≈
∫

p(θ) log

(
p(θ)

N (θ, V (θ̂))

)
dθ (5)

With the help of CRLB we can replace V (θ̂) with I−1(θ) as V (θ̂) ⪰ I−1(θ), we get:

DKL(p(θ) ∥ q(θ̂)) ≈
∫

p(θ) log

(
p(θ)

N (θ, I−1(θ))

)
dθ (6)

which is the estimation of relative entropy by using a variance-covariance matrix of estimated
parameters with the help of FIM.
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A.2 THE FISHER INFORMATION MATRIX AS AN APPROXIMATION OF VARIATIONAL
POSTERIORS

Before introducing the penalty term which is one of our contributions we investigated the relation
between relative entropy (DKL) and FIM. Lets assume that θ is estimated parameter for given in-
put data folds i.e (X1,X2,X3,. . . , Xn) with a probability function P (x; θ). By using an unbiased
estimator θ̂(X1, X2, . . . , Xn) of θ, the variance estimator satisfies the following CRLB property.

σ2(θ̂) ≥ 1

nI(θ)
(7)

where I(θ) is Fisher information and n is sample size which can be described as:

I(θ) = −E
[
∂2 logP (X; θ)

∂θ2

]
(8)

It is crucial to understand the relation of FIM to DKL (DKL). We can find DKL between source to
target distributions P (x) and Q(x) with the same support set of X with K number of folds by:

DKL(P∥Q) =

∫
X

P (x) log

(
Q(x)

P (x)

)
dx (9)

If we assume P (x; θ) as true distribution for given input X with parameter θ and Q(x; θ̂) as arbitrary
target distribution with parameter θ̂ then we can rewrite DKL as:

DKL(P (·; θ) ∥ Q(·; θ̂)) = EX∼P (·;θ)

[
log

(
Q(X; θ̂)

P (X; θ)

)]
(10)

Consider the special case of Q(x; θ̂) parameterized by θ̂ whereby we want to minimize DKL w.r.t θ̂.
For this case DKL is at minimum if we have Q(x; θ̂) = P (x; θ̂). Thus we get:

D(P (·; θ) ∥ P (·; θ̂)) ≥ 0 (11)

By applying Taylor expansion up to second-order to the log P (x; θ̂) for true parameter θ we have:

logP (X; θ̂) = logP (X; θ)

+ (θ̂ − θ)
∂ logP (X; θ)

∂θ

− 1

2
(θ̂ − θ)2

∂2 logP (X; θ)

∂θ2
+O((θ̂ − θ)3)

(12)

By taking expectation w.r.t X we have:

EX∼P (·;θ)

[
logP (X; θ̂)− logP (X; θ)

]
=

(θ̂ − θ)EX∼P (·;θ)

[
∂ logP (X; θ)

∂θ

]
−1

2
(θ̂ − θ)2I(θ) +O((θ̂ − θ)3)

(13)

The left-hand in above mentioned equation is DKL i.e D(P (·; θ) ∥ P (·; θ̂)). As we know that DKL

is always non-negative, as so the right-hand side must also be non-negative. Thus we get:(
θ̂ − θ

2

)
I(θ) ≥ 0 (14)

It will hold for any θ̂, from this we can conclude that:

I(θ) ≥ 0 (15)

which is Fisher information. The following algorithm 1 provides an overview of our proposed
method C3.
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Algorithm 1 Dataset fragmentation and causal covariate shift correction
Require: model f(θ) parameterized by θ;

training dataset Dtr;
validation data Dv;
number of batches K
number of epochs T

1: procedure SHIFTCORRECTION(Dtr, Dv)
2: split Dtr into K batches
3: initialize f(θ) and L(x, y; θ)
4: for epoch← 1 to T do
5: for i← 1 to K do
6: for j ← i+ 1 to K do
7: DKL(Di, Dj)
8: for each pair (Di, Dj): L(x, y; θ) = −

∫
P (y(x)) log(P (y|x; θ))dθ − λ ×∫ ∂2 log p(X|θ)

∂θ∂θT dθ
9:10: end for

11: end for
12: update f(θ) using L(x, y; θ)
13: end for
14: return f(θ)
15: end procedure

B EXPERIMENTS

In this section, we demonstrate the efficacy of C3 against multiple baseline settings for causal co-
variate shift and on the benchmarks for natural covariate shift as a surrogate.

1. Baselines:
There are five baselines in our experiment:

• B1: Clean Verifying the effectiveness of C3 on datasets without any covariate shift.
• B2: Natural shift Consequences Analyzing the performance of the C3 in the presence

of natural covariate shift.
• B3: Causal shift Consequences Analyzing C3 performance in the presence of causal

shift caused by dataset fragmentation.
• B4: Loss Recaliberation Recaliberating the loss function and then measure the per-

formance of C3.
• B5: Correction correction of natural covariate shift via proxy with C3.

2. Model architecture: We used a five-layer convolutional neural network (CNN) with soft-
max cross-entropy loss. Our CNN model consists of 2 convolutional layers with pooling,
and 3 fully connected layers. The model architecture for all image-based benchmarks re-
mains consistent, for tabular datsets the model architecture differs from image-based but
remains the same for all tabular datasets. We used a multi-layer perceptron network for
tabular data with a hidden layer with 4 neurons, relu as an activation function, and Adam
optimizer. We set the hyper-parameter λ value within the range (0.01, 0.04, 0.07, 0.1) in
all of our experiments. We present λ = 0.1 results in this paper for all of our experiments.
All of our baselines are implemented in TensorFlow 2.11 1 and the code is anonymously
available at 2.

3. Machine Specification: We run all of our experiments on RTX 3090 Ti with 24 GB GPU
memory and 128 GB system memory.

4. Benchmarks: We compare the performance of C3 with standard cross validation and sig-
nificant importance based methods like: importance weighting (IW) Huang et al. (2006),

1www.tensorflow.org
2https://anonymous.4open.science/r/C3-C908/MNIST-Batchwise
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importance weighting cross-validation (IWCV) Sugiyama et al. (2007), kernel mean match-
ing (KMM) Gretton et al. (2009) and dynamic importance weighting (DIW) Fang et al.
(2020). They were strategically chosen to represent landmark literature and current state-
of-the-art.

5. Datasets: To compare the effectiveness of our developed method C3 we used 40 real-
world benchmarking datasets. To evaluate our method we used 13 image-based datasets
benchmarks and 27 binary datasets from KEEL repository as benchmarks Alcalá-Fdez
et al. (2011). The used image-based benchmarks, comprising: MNIST LeCun (1998),
Fashion-MNIST Xiao et al. (2017), Kuzushiji-MNIST Clanuwat et al. (2018), Permuted-
MNIST Goodfellow et al. (2013), MNIST-C Mu & Gilmer (2019) , SVHN Netzer et al.
(2011), Caltech101 Fei-Fei et al. (2004), Tiny ImageNet Krizhevsky et al. (2009), STL-10
Coates et al. (2011) CIFAR-10 and CIFAR-100 Krizhevsky et al. (2009), CIFAR10-C and
CIFAR100-C Hendrycks & Dietterich (2019).

6. Calibrating the penalty: One of our contributions to the paper is introducing the penalty
term as above mentioned. We calibrate the penalty term (λ) with different values in
batch/fold setup and present the result in Fig 1. We report λ = 0.1 results in our paper
because our method C3 is more robust to covariate shift. In figure 1 we can observe that
C3 performs better when we set λ = 0.1 as compared to other values.

Figure 1: Performance of C3 for varying λ in foldwise (k = 5) settings.

7. Experimental design: To study the effect of causal covariate shift caused by fragmenta-
tion, we perform evaluations on datasets with natural covariate shift and also on clean (free
of covariate shift) datasets. We use accuracy as the first and direct evaluation metric in
all experiments. We run each experiment 5 times and report average results due to spatial
constraints.

C DISCUSSION

To verify the effectiveness of C3, we perform batchwise experiments for causal covariate shift
whose results are presented in Table 1 which also validates B4 & B5. We consider batchwise
holdout cross-validation as a baseline in comparison to C3. To ensure better performance of C3 we
compare the mean accuracy over all batches µ1 of Table 2 and µ2 of Table 1. We report accuracy for
each single batch as well in all experimental settings to verify C3 performance. We then consider
C3 with the whole dataset as a baseline for our C3 batchwise method.
The ∆3 of Table 1 presents the difference between µ2 of Table 1 and µ1 of Table 2. The ∆3 shows
improvement in accuracy and provides support to our claim of causal covariate shift correction B5.
To verify B5 we executed C3 in batchwise settings on all dataset which results are reported in Table
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1.

Our proposed method C3, shows improvement in accuracy in almost every batchwise setting and
for each batch also as compared to the baseline. To validate the adaptive nature of C3 to natural
shift correction, we perform experiments on above mentioned datasets with natural shift. We notice
that C3 is able to correct natural shift when it tries to correct causal shift. C3 shows improvement in
accuracy for almost all benchmarks, like it shows 5%, 13.9%, and 8.6% improvement for Kuzushiji-
MNIST, CIFAR10-C, and Fashion-MNIST with 20 batch split. C3 also adapts to natural shift when
it tries to correct causal covariate shift.
C3’s accuracy improves as the number of batches decreases, due to statistics getting more robust
with larger supports. It is shown in Table 1. C3 7.5% for Fashion-MNIST and 6.9% improve-
ment in accuracy in 10 batch setup as compared to CV with the same batch setup. C3 improves
in accuracy with 7.2%, 7.2%, and 2.1% for Fashion-MNIST, Kuzushiji-MNIST, and Permuted-
MNIST when batch size is 6. For the batch size 5, the improvement is 9.7%,8.1%, and 7.3% for
CIFAR100, Kuzushiji-MNIST, and Fashion-MNIST. In 4 batches scenario we report 11.3%, 6.9%,
6.1%, and 5.8% improvement in accuracy for CIFAR-100, Khushiji-MNIST, Fashion-MNIST, and
CIFAR100-C. In the case of 2 batches the improvement in accuracy is 20.3%, 15.5%, 6.6%, and
6.3% for CIFAR-10, CIFAR-10, CIFAR100-C, and Khushiji-MNIST. Overall, C3 outperforms in
the batchwise case and in the case where a complete dataset is provided with other benchmarking
methods, and results are discussed ahead in the comparison with SOTA.
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Dataset
Baseline Batchwise accuracy Mean Variance ∆3 = µ2 − µ1

CV C3 B1 B2 B3 B4 B5 B6 µ2 σ2
2 ∆3(%)

Training data = 5% , Number of Batches = 20

MNIST 94.8 97.9 90.7 90.6 91 91.7 91.4 91.8 91.2 0.09 ↑ 2.5

Permuted-MNIST 95.1 97.6 91.1 89.8 90.2 90.4 91.5 90.7 90.3 0.26 ↑ 1.9

Fashion-MNIST 83.1 88.4 81.5 81.7 81.2 81.4 81.5 81.9 81.5 0.058 ↑ 8.6

Kuzushiji-MNIST 75.4 89.2 68.5 69.4 67.2 68 67.8 66.9 68.4 0.63 ↑ 5.0

CIFAR-10 71.5 88.7 50.9 51.4 52.2 48.9 50.3 57.4 51.8 7.18 ↑ 1.9

CIFAR-100 38.2 58.7 23.9 18.2 18.5 17.8 23.9 18.3 20.1 7.26 ↑ 1.8

CIFAR10-C 63.9 73.3 46.4 54.3 57.8 61.1 61.5 61.8 57.2 30.1 ↑ 13.9

CIFAR100-C 28.8 39.4 11.9 17.2 18.5 21.3 22.1 24.9 19.3 17.1 ↑ 0.9

Training data = 10% , Number of Batches = 10

MNIST 94.8 97.9 91.9 91.7 91.2 91.8 91.3 91.8 91.7 0.08 ↑ 0.6

Permuted-MNIST 95.1 97.6 91.6 91.9 91.3 91.6 90.1 91.2 91.5 0.31 0

Fashion-MNIST 83.1 88.4 79.5 82.4 81.6 79.5 82.3 81.9 81.2 1.21 ↑ 7.5

Kuzushiji-MNIST 75.4 89.2 71.4 70.4 71.7 70.7 70.5 70.9 70.9 0.71 ↑ 6.9

CIFAR-10 71.5 88.7 52.1 53.1 48.5 59.3 52.5 55.7 53.5 11.09 ↑ 0.9

CIFAR-100 38.2 58.7 27.2 25.8 20.4 17.0 21.9 22.8 22.5 11.3 ↑ 1.0

CIFAR10-C 63.9 73.3 52.7 59.9 61.9 64.4 66.1 65.7 61.7 21.1 ↑ 39.1

CIFAR100-C 28.8 39.4 16.2 22.1 24.8 27.2 26.8 27.3 21.1 15.6 ↓ 1.7

Training data = 15% , Number of Batches = 6

MNIST 94.8 97.9 93.2 92.6 93.2 93.5 93.1 93.3 93.2 0.09 ↑ 1.7

Permuted-MNIST 95.1 97.6 93.1 93 92.7 93.7 93.5 93.1 93.2 0.13 ↑ 2.1

Fashion-MNIST 83.1 88.4 81.4 81.9 82.9 80.9 82.3 82.2 81.9 0.49 ↑ 7.2

Kuzushiji-MNIST 75.4 89.2 73.8 73.9 74.4 74.6 73.9 74.2 74.2 0.13 ↑ 7.2

CIFAR-10 71.5 88.7 53.4 57.8 55.9 54.1 56.1 58.2 55.9 3.7 ↑ 2.0

CIFAR-100 38.2 58.7 25.8 22.4 26.6 23.4 22.9 24.7 24.3 2.34 ↑ 1.7

CIFAR10-C 63.9 73.3 58.4 61.1 63.2 64.3 67.4 66.9 63.5 9.87 ↑ 42.4

CIFAR100-C 28.8 39.4 21.9 25.5 27.2 28.7 28.5 29.5 26.8 6.6 ↑ 1.2

Training data = 20% , Number of Batches = 5

MNIST 94.8 97.9 93.6 93.8 94.3 93.7 93.8 – 93.8 0.07 ↑ 1.9

Permuted-MNIST 95.1 97.6 94.1 93.9 93.6 94.1 94.3 – 94 0.07 ↑ 2.2

Fashion-MNIST 83.1 88.4 82.8 83.1 82.1 81.4 82.6 – 82.4 0.44 ↑ 7.3

Kuzushiji-MNIST 75.4 89.2 75.4 76.3 75.8 75.1 75.6 – 75.6 0.21 ↑ 8.1

CIFAR-10 71.5 88.7 50.3 56.2 53.5 57.8 59.9 – 55.5 11.3 ↑ 18

CIFAR-100 38.2 58.7 34.2 35.4 33.9 34.9 34.7 – 34.6 11.7 ↑ 9.7

CIFAR10-C 63.9 73.3 58.4 63.3 64.3 66.5 66.2 – 63.7 8.53 ↑ 1.7

CIFAR100-C 28.8 39.4 22.1 25.4 27.4 28.9 29.7 – 26.7 7.43 ↑ 2.9

Training data = 25% , Number of Batches = 4

MNIST 94.8 97.9 94.4 94.4 94.3 94.4 – – 94.4 0.003 ↑ 2.0

Permuted-MNIST 95.1 97.6 94.4 94.3 94.5 94.5 – – 94.4 0.009 ↑ 2.8

Fashion-MNIST 83.1 88.4 82.8 83.2 83.6 83.5 – – 83.3 0.13 ↑ 6.1

Kuzushiji-MNIST 75.4 89.2 77.2 75.5 77.6 75.3 – – 76.4 1.37 ↑ 6.9

CIFAR-10 71.5 88.7 56.8 57.3 62.2 63.4 – – 59.9 8.47 ↑ 5.0

CIFAR-100 38.2 58.7 33.9 34.1 34.7 33.5 – – 34.1 0.18 ↑ 11.3

CIFAR10-C 63.9 73.3 60.9 64.4 66.8 68.3 – – 65.1 7.81 ↑ 3.7

CIFAR100-C 28.8 39.4 24.7 28.2 29.7 31.9 – – 28.6 6.86 ↑ 5.8

Training data = 50% , Number of Batches = 2

MNIST 94.8 97.9 95.9 96.1 – – – – 96 0.02 ↑ 2.5

Permuted-MNIST 95.1 97.6 95.7 96.1 – – – – 95.9 0.08 ↑ 2.4

Fashion-MNIST 83.1 88.4 84.2 84.4 – – – – 84.3 0.02 ↑ 4.5

Kuzushiji-MNIST 75.4 89.2 79.3 80.4 – – – – 79.8 0.61 ↑ 6.3

CIFAR-10 71.5 88.7 76.3 80.6 – – – – 78.4 4.62 ↑ 20.3

CIFAR-100 38.2 58.7 39.8 39.9 – – – – 39.85 .002 ↑ 15.5

CIFAR10-C 63.9 73.3 65.5 68.6 – – – – 67.1 2.4 ↑ 2.8

CIFAR100-C 28.8 39.4 31.2 34.8 – – – – 33 3.24 ↑ 6.6

Table 1: C3 Batchwise Accuracy
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Dataset
Baseline Batchwise accuracy Mean Variance

CV C3 B1 B2 B3 B4 B5 B6 µ1 σ2
1

Training data = 5% , Number of Batches = 20

MNIST 94.8 97.9 88.1 89.3 87.9 89.9 88.9 88.8 88.7 0.49

Permuted-MNIST 95.1 97.6 88 86.1 88.9 88.7 87.2 88.3 88.4 1.41

Fashion-MNIST 83.1 88.4 72.7 73.7 74.2 72.5 74 70.6 72.9 1.94

Kuzushiji-MNIST 75.4 89.2 63.6 63.4 62.2 66.7 58.3 63.4 63.4 5.59

CIFAR-10 71.5 88.7 44.1 49.0 50.3 50.7 51.2 54.5 49.9 9.67

CIFAR-100 38.2 58.7 13.1 16.5 18.1 19.3 20.4 22.7 18.3 9.17

CIFAR10-C 63.9 73.3 19.3 20.1 16.3 16.1 14.9 10.2 16.2 10.4

CIFAR100-C 28.8 39.4 11.1 16.3 19.1 19.7 21.6 22.3 18.4 14.2

Training data = 10% , Number of Batches = 10

MNIST 94.8 97.9 90.7 91.7 91.1 90.2 89.3 91.5 91.1 1.06

Permuted-MNIST 95.1 97.6 91.9 92.8 91.8 91.2 91.4 91.3 91.5 0.62

Fashion-MNIST 83.1 88.4 69.4 69.9 75.2 73.4 74.4 71.7 73.7 9.22

Kuzushiji-MNIST 75.4 89.2 64 63.6 64.1 64.9 65.2 64.5 64.0 1.15

CIFAR-10 71.5 88.7 47.9 52.8 52.9 53.7 54.5 54.1 52.6 4.87

CIFAR-100 38.2 58.7 17.3 20.3 22.2 23.3 24.7 21.2 21.5 5.51

CIFAR10- C 63.9 73.3 22.8 17.6 18.4 12.2 17.4 12.9 22.6 16.8

CIFAR100-C 28.8 39.4 15.5 21.9 25.2 26.6 27.1 20.5 22.8 16.3

Training data = 15% , Number of Batches = 6

MNIST 94.8 97.9 90.8 90.7 91.7 92.2 92.2 91.6 91.5 0.43

Permuted-MNIST 95.1 97.6 91.2 90.2 91.2 92.1 90.6 91.1 91.1 0.41

Fashion-MNIST 83.1 88.4 74.4 75.7 77.7 75 70.6 74.7 74.7 5.40

Kuzushiji-MNIST 75.4 89.2 66.9 67 66.4 69.9 64.8 67.2 67.0 2.73

CIFAR-10 71.5 88.7 50.9 51.2 53.9 53.8 57.1 56.9 53.9 5.91

CIFAR-100 38.2 58.7 18.2 21.1 22.5 23.4 24.1 24.4 22.6 4.57

CIFAR10- C 63.9 73.3 18.3 25.1 23.9 20.7 20.9 21.1 21.6 4.99

CIFAR100- C 28.8 39.4 18.2 19.9 21.2 21.9 25.6 27.1 22.3 9.64

Training data = 20% , Number of Batches = 5

MNIST 94.8 97.9 92.7 92.2 93.4 91.2 90.2 – 91.9 1.59

Permuted-MNIST 95.1 97.6 91 91.7 91.4 91.2 93.5 – 91.8 1.01

Fashion-MNIST 83.1 88.4 76.7 74.1 72 75.3 77.2 – 75.1 4.40

Kuzushiji-MNIST 75.4 89.2 68.3 69.2 67.7 65.5 66.8 – 67.5 2.02

CIFAR-10 71.5 88.7 36.9 38.5 37.5 36.8 37.9 – 37.5 0.50

CIFAR-100 38.2 58.7 19.7 22.3 23.5 24.4 24.9 – 22.9 3.43

CIFAR10- C 63.9 73.3 58.1 62.0 61.8 60.7 67.5 – 62.0 9.43

CIFAR100- C 28.8 39.4 20.0 23.2 23.2 26.7 26.1 – 23.8 5.77

Training data = 25% , Number of Batches = 4

MNIST 94.8 97.9 92.1 93.6 92.5 91.3 – – 92.4 0.92

Permuted-MNIST 95.1 97.6 92.1 92.2 90.5 91.6 – – 91.6 0.61

Fashion-MNIST 83.1 88.4 74.6 77.5 78.1 78.5 – – 77.2 3.12

Kuzushiji-MNIST 75.4 89.2 70.6 69.2 69.5 68.8 – – 69.5 0.60

CIFAR-10 71.5 88.7 51.9 52.7 56.9 58.1 – – 54.9 7.02

CIFAR-100 38.2 58.7 20.3 22.4 23.9 24.8 – – 22.8 2.7

CIFAR10- C 63.9 73.3 57.6 62.1 63.1 62.6 – – 61.4 4.81

CIFAR100- C 28.8 39.4 19.7 23.4 23.8 24.5 – – 22.8 3.64

Training data = 50% , Number of Batches = 2

MNIST 94.8 97.9 93.3 93.7 – – – – 93.5 0.08

Permuted-MNIST 95.1 97.6 93.3 93.7 – – – – 93.5 0.08

Fashion-MNIST 83.1 88.4 80 79.7 – – – – 79.8 0.04

Kuzushiji-MNIST 75.4 89.2 73.6 73.3 – – – – 73.5 0.04

CIFAR-10 71.5 88.7 56.2 60.1 – – – – 58.1 3.81

CIFAR-100 38.2 58.7 23.2 25.4 – – – – 24.3 1.21

CIFAR10- C 63.9 73.3 63.2 65.5 – – – – 64.3 1.32

CIFAR100- C 28.8 39.4 25.3 27.5 – – – – 26.4 1.21

Table 2: CV batch-wise accuracy
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