FlowBack: A Flow-matching Approach for Generative Backmapping of Biomolecules

Objective

- Generate an **ensemble** of all-atom (AA) structures consistent with a single coarse-grained (CG) trace
- Develop generalized approach applicable to various biomolecules and CG models
- Improve on and compare against existing methods:

GenZProt¹

- VAE-based, internal coordinates
- Fast but limited diversity

DiAMoNDBack²

- Diffusion-based, autoregressive
- Good diversity but slow

Flow-matching

Generative approach to learn an ordinary differential equation that transforms one distribution into another³

 $x_1 \sim q_1(x_1)$ $x_0 \sim q_0(x_0 | x_1, \sigma_p, M)$ $t \sim \mathcal{U}(0, 1)$

Interpolate and noise

 $x_t \sim \mathcal{N}(\mu_t, \sigma_t^2 \mathbf{I})$ $x_t[M] \leftarrow \mu_t[M]$

Regress against vector field

 $v_{\theta} \leftarrow EGNN_{\theta}(x_t, t, M) - x_t$ $u_t \leftarrow x_1 - x_0$ $\mathscr{L}_{\text{CFM}} \leftarrow \|v_{\theta} - u_t\|^2$

Euler Integrate

Bond Score 1 Percent of bonds within 10% of reference

Clash Score I Percent of residues within 1.2 Å of any other residue

Diversity Score Similarity of reference to generate distribution

Simulation Time