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• ~65k structures from PDB up to 1000 residues in length5

• 1577 protein-DNA complexes from DNAproDB database6

• mmSeqs clustering to build 50 sequence protein-DNA validation set
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• Generate an ensemble of 

all-atom (AA) structures 

consistent with a single 

coarse-grained (CG) trace

• Develop generalized 

approach applicable to 

various biomolecules and 

CG models

• Improve on and compare 

against existing methods:

Backmapping

(one to many)

Coarse-graining

(many to one)

FlowBack: A Flow-matching Approach for 

Generative Backmapping of Biomolecules 

TATA-Binding protein-DNA trajectory 

generated by AICG + 3SPN.2 Model9

• Proteins are coarse-grained such that only Cα atoms are retained

• DNA reduced to 3-site-per-nucleotide (3SPN) representation, 

beads places at sugar, base, and phosphate centers of mass
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DiAMoNDBack2

- Diffusion-based, autoregressive

- Good diversity but slow

GenZProt1

- VAE-based, internal coordinates

- Fast but limited diversity
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Generative approach to learn an ordinary differential 

equation that transforms one distribution into another3
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