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A1. Backmapping
Given an AA molecular configuration xNAA×3 we can ap-
ply an AA → CG map to transform this configuration into
XNCG×3 where NCG ≪ NAA. It is often not possible
to recover the original structure, however we may seek an
inverse mapping to deterministically or generatively pro-
duce candidate structures x̂ that approximate the original
configuration.

Given a CG trace and knowledge the AA bond graph, we
can construct a “noisy” version xNAA×3

0 of the target struc-
ture x1 by assigning each AA atom to a CG bead according
to some mapping M and normally distribute atoms around
the bead as x0 ∼ N (x1[M ], σ2

pI). The parameter σp de-
termines how tightly the AA beads are distributed, and the
distribution of structures serves as a physically informed
prior q0(x0) for our flow-matching objective.

A2. Training and test data
A2.1. Protein training set

We adopted the same dataset as used previously by Jones et
al. (Jones et al., 2023), however we removed all sequences
longer than 1000 residues in length. The maximum cutoff of
1000 residues was selected based on the largest sequences
that could be accommodated with batch size of 1 in 24
GB VRAM GPU. It should be noted that a much lower
VRAM overhead is required during inference as compared
to training, therefore excessive VRAM is not required to run
the trained model. All structures were previously verified
to have a complete set of sidechain and backbone atoms
at each residue, physically plausible bond lengths, and no
steric clashes or overlaps. A validation set of 100 sequences
was randomly selected for hyperparameter tuning. For more
details on the data cleaning procedure see (Jones et al.,
2023).
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A2.2. Protein test set

We adopted the same test sets as used by Jones et al. (Jones
et al., 2023), which includes 24 proteins from the CASP12
protein folding challenge (Moult et al., 2014) and 11 AA
trajectories from DEShaw (DES) research (Lindorff-Larsen
et al., 2011). The CASP sequences range between 80-600
residues and include 16 single-chain and 8 multi-chain pro-
teins. The DES sequences range from 10-80 and contain
2000 frames evenly strided and concatenated from multiple
independent trajectories as decribed previously (Jones et al.,
2023).

A2.3. Coarse-grained protein trajectories

We performed inference on trajectories previously studied
by Jones et al(Jones et al., 2023). Trajectories were gen-
erated by a machine learned force-field (Majewski et al.,
2022) that were parameterized by an equivariant transformer
(Thölke & De Fabritiis, 2022) to learn gradients of the en-
ergy at each CG bead. We back-mapped 2000 frames of
three different types of proteins – BBA, A3D, and PRB
– and report the average score across all three proteins in
Table 3 of the main text. A comparison of each individual
protein to the DiAMoNDBack model is shown below along
with visualization of the generated ensemble.

A2.4. DNA-protein training set

Sequences were aggregated from the PDB (Berman et al.,
2000; 2003) according to the list of 5830 sequences con-
tained in the DNAProDB server (Sagendorf et al., 2017;
2020). Sequences were removed that contained non-
cononical base pairs or residues. Sequences containing
abasic sites or any nucleotide whose atom count deviated
from the expected value were also removed. Remaining
sequences were stripped of any ions, ligands, waters, or
other components that were not DNA or protein chains. A
maximum cutoff of 120 DNA base pairs and 500 protein
residues was used to filter out extremely large sequences.
After completing these filtering steps, a total of 1577 struc-
tures remained for training, test, and validation.
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A2.5. DNA-protein test set

We used the MMseqs2 algorithm (Steinegger & Söding,
2017) to build validation and test sets with minimal struc-
tural overlap with the train set. We independently clus-
tered DNA and proteins sequences using a coverage of 50%
and sensitivity of 0.5, forming 1008 DNA clusters and 455
protein clusters. Because we also test our model on MD
trajectories sequences generated from PDBs in our dataset
(1pue and 1cdw), we manually placed these sequences in
the test set along with six other sequences that shared the
same protein or DNA cluster. Next we randomly sampled
additional sequences and included all protein and DNA clus-
ter members in the test set until we compiled a minimum of
45 sequences. We repeated this procedure for the validation
set, producing a total of 55 sequences in test set and 45 se-
quences in the validation with no overlap between DNA or
protein clusters. Evaluation on the validation set was used
for hyperparameter tuning, and results in Figure 2 of the
main text are all from the test set. Clash score and diveristy
distribution are shown in Figure A1. Hydrogen bond counts
are shown in Figure A2.

Figure A1. Clash and diversity scores computed over five gener-
ated samples of all 55 sequences in the protein-DNA test set.

Figure A2. Hydrogen bond counts in reference structure vs. av-
erage hydrogen bond counts in generated structures. From left
to right protein-protein, DNA-DNA, and DNA-proteins complex
bond counts.

A2.6. DNA-protein coarse-grained trajectory

We backmapped CG trajectories kindly provided by the
Takada group based on the work of Tan et al. (Tan & Takada,
2018). These trajectories use the 3SPN.2C forcefield (Hinck-
ley et al., 2013; Freeman et al., 2014) to model DNA and the
AICG2+ force-field (Li et al., 2011; 2014) for proteins, both
of which are compatible with our DNA-protein FlowBack
model trained above. An additional position-weight-matrix
(PWM) interaction was applied during the simulation to
capture the sequence dependent interactions between pro-
teins and DNA. We applied an even striding to obtain 500
frames of a TATA-binding protein (TBP) and generated
three samples AA structures per frame. Bond score and hy-
drogen bond calculations in Figure 3 were performed with
respect to a single AA reference structure as there are no
AA reference structures for each individual frame.

A3. Evaluation Metrics
Each molecular configuration and simulation frames was
scored by bond score, clash score, and diversity score. Statis-
tics for each score were calculated over 3-5 generated sam-
ples per frame. Tables 1-3 in the main text show scores
averaged across i) 24 PDB test structures ii) 2000 frames
× 11 AA proteins and iii) 2000 frames × 3 CG proteins.
Because the diversity score is computed over the generated
ensemble, we do not report an error over samples for this
metric. The PULCHRA model is deterministic and therefore
does have a reportable error for any of the three metrics.

A3.1. Diversity Metric

As previously defined in Jones et al. (Jones et al., 2023), the
diversity metric is calculated by comparing the mean root-
mean-squared distance (RMSD) of i) all generated structures
with respect to the reference (RSMDref ), and ii) the mean
RSMD of all generated structures with respect to each other
(RSMDgen). If these two values are very close to each
other, then we obtain a diversity score near zero indicating
that the reference structure is indistinguishable from the
generated ensemble.

RMSDref =
1

G

G∑
i

RMSD(xgen
i , xref ) (1)

RMSDgen =
2

G(G− 1)

G∑
i

(i−1)∑
j

RMSD(xgen
i , xgen

j )

(2)

DIV = 1− RMSDgen

RMSDref
(3)
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A4. Model parameters
A4.1. Flow-matching parameters

There are three noise parameters that are tuned to optimize
flow-matching performance and stability. The standard de-
viation σt of the Gaussian used to noise the interpolated
structure µt was set to 0.005. The standard deviation σp,
used in our prior distribution, was set to 0.003. During infer-
ence, the value of σp can be independently tuned from the
value used during training. We achieved the best results for
bond and clash scores using a value of 0.003 during infer-
ence. However, we achieved better diversity scores—while
maintaining strong bond and clash performance—by using
a value of 0.005. This later model is reported as FlowBack-
N in the main text. Additional bond quality and diversity
scores for varied σp during training and inference are shown
in Figure A3. An L1 training objective between the pre-
dicted vector field vθ and the reference vector field ut was
adopted to enhance stability. We used 100 integration steps
for all results presented in the main text.
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Figure A3. Bond score and diversity metric as a function of σp

values used during training and inference.

A4.2. EGNN Architecture

To fit our model to the flow-matching objective, a neural
network architecture is required that can predict a structure
x̂t given some interpolated structure xt and a corresponding
atomic featurization h. The model f should be equivariant
to rotational and translational transformations T such that
the predicted structure is equivalent regardless of the applied
transformation x̂1 = f(T (xt), h) = T (f(xt, h)). We adopt
the Equivariant Graph Neural Network (EGNN) architecture
developed by Satorras et al (Satorras et al., 2021) by modi-
fying the implementation available at https://github.
com/lucidrains/egnn-pytorch. The model is im-
plemented in PyTorch (Paszke et al., 2019) and uses the
Adam otpimizer (Kingma & Ba, 2014). We embed a one
hot encoding and atom type a, residue/bead type r, and
atom position p and sum these to form our feature em-
bedding. Additionally, we add the flow-matching time
t directly to these feature to form our final embedding
h = Ea(a) + Er(r) + Ep(p) + t. We did not observe any

benefit by embedding or concatenating the time condition-
ing. The Euclidean positions of all atomic coordinates were
passed in as xt and the positions of CG beads were masked
to ensure their positions would be identical in the output
prediction x̂t. Graph edges were specified by the nearest 15
neighbors in Euclidean space. The dimension of the feature
embedding and EGNN hidden layers were set to 32. The
number of EGNN layers was set to 6; bond quality and clash
scores as a function of the number of layers and training
epochs are shown in Figure A4. Each training batch only
contained one molecular topology (and therefore constant
nodes) but included B different times t sampled uniformly
on the interval [0, 1]. Batch size was varied on-the-fly as a
function of the number of atoms in a given topology Na and
the maximum number of atoms in the training set Nmax as
B = Nmax/Na. For the protein model Nmax = 8070 and
for the DNA-protein Nmax = 6299.
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Figure A4. Bond and clash score as a function of EGNN layer
depth and number of training epochs on the 65k protein training
set.

A4.3. Incorporating DNA residues

Minor modifications to the FlowBack featurization and data-
loading procedure were required to accommodate DNA
residues. All structures were re-ordered such that proteins
residues precede DNA residues, ordered N→C and 5′ →
3′ respectively. We then appended virtual atom positions
corresponding to the sugar, base, and phosphate centers of
mass used in the 3SPN representation. All DNA atoms were
mapped to one of these beads in order to build the CG prior;
protein atoms were mapped to their respective Cα atoms as
described above. The atom type and residue type one-hot
encodings were expanded to 68 and 25, respectively, on
order to accomodate DNA bead types.

A4.4. Correcting protein stereoisomers

To detect D-form stereoisomers during the integration pro-
cess, we pause the ODE at tflip = 0.2 and compute three
vectors with respect to each Cα for all residues that are not
glycines,

https://github.com/lucidrains/egnn-pytorch
https://github.com/lucidrains/egnn-pytorch
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v1 = xN − xCα

v2 = xC − xCα

v3 = xCβ − xCα.

(4)

The chirality with respect to the Cα stereocenter can be cal-
culated by finding the signed volume of the parallelepiped
formed by these three vectors,

V = (v1 × v2) · v3

If V > 0, Cα is an L center
If V < 0, Cα is a D center

For all residues that are detected with D center, we apply
a reflection of that residue’s sidechain atoms across the
plane of symmetry formed by (xN, xCα, xC). Let xs be the
position vector of an atom in the sidechain. The reflection
of xs across the chiral plane can be computed as follows:

1. Define the normal vector n to the plane:

n =
(xCα

− xN)× (xC − xN)

∥(xCα − xN)× (xC − xN)∥

2. Compute the reflection of xs:

x′
s = xs − 2(xs · n)n

where x′
s is the reflected position vector.

In the case of terminal residues, we apply this reflection
to the N or C terminus and do so with respect to the plane
defined by (xC, xCα, xCβ) or (xN, xCα, xCβ), respectively.

Although it is possible for the chirality to flip at a later
time, we have found that the linearity of the flow tends to
lock-in the approximate geometry of sidechain early in the
integration process. In order to ensure final configuration
retain L-stereocenters, we perform an additional detection
and flipping step at t = 1.0. The initial detection and
flipping time tflip was identified by sweeping across values
from 0.01 to 0.99 and identifying a tradeoff in bond quality
and clash score in PDB and DES validation sets (Figure
A5). Updated bond quality, clash, and diverity scores with
stereocenter correction are shown below for the PDB and
DES test sets.

Table 1. Model performances on CASP12 test set with and without
the addition of chiral (flip) correction.

MODEL BOND (↑) CLASH (↓) DIV (↓)

FLOWBACK-N 99.47 ±0.01 0.18± 0.25 0.03
FLOWBACK-N (FLIP) 99.34 ±0.01 0.70± 0.13 0.03
FLOWBACK 99.67 ±0.01 0.08± 0.09 0.19
FLOWBACK (FLIP) 99.57 ±0.02 0.32± 0.09 0.19

Table 2. Model performances on DESRES test set with and without
the addition of chiral (flip) correction.

MODEL BOND (↑) CLASH (↓) DIV (↓)

FLOWBACK-N 99.11 ±0.004 0.11± 0.05 0.08
FLOWBACK-N (FLIP) 99.15 ±0.002 0.45± 0.05 0.07
FLOWBACK 99.56 ±0.003 0.06± 0.01 0.23
FLOWBACK (FLIP) 99.47 ±0.002 0.19± 0.03 0.23

Figure A5. Optimizing tflip in order to maximize the bond quality
and clash score of the PDB and DES validation sets. After the
specified ODE time, D-form sidechains are identified and flipped
once (top row) or continuously (bottom row) in order to produce
final structures with desired L-form stereochemistry.
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and De Fabritiis, G. Machine learning coarse-grained
potentials of protein thermodynamics. arXiv preprint
arXiv:2212.07492, 2022.

Moult, J., Fidelis, K., Kryshtafovych, A., Schwede, T., and
Tramontano, A. Critical assessment of methods of protein
structure prediction (casp)—round x. Proteins: Struct.,
Funct., Bioinf., 82:1–6, 2014.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., et al. Pytorch: An imperative style, high-performance
deep learning library. Advances in neural information
processing systems, 32, 2019.

Sagendorf, J. M., Berman, H. M., and Rohs, R. Dnaprodb:
an interactive tool for structural analysis of dna–protein
complexes. Nucleic acids research, 45(W1):W89–W97,
2017.

Sagendorf, J. M., Markarian, N., Berman, H. M., and Rohs,
R. Dnaprodb: an expanded database and web-based tool
for structural analysis of dna–protein complexes. Nucleic
Acids Res., 48(D1):D277–D287, 2020.

Satorras, V. G., Hoogeboom, E., and Welling, M. E (n)
equivariant graph neural networks. In International con-
ference on machine learning, pp. 9323–9332. PMLR,
2021.
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