A Derivation of Eq. 12 and 13

Recall that, in Section 2.3 our goal is to make initialized GCN isometric. Instead of exactly compute
such initialization by solving an optimization, we propose the following objective, which has a
closed-form solution:

W* = argmin Z H(aia;—r) ® (WTW) — (eie;r) ®ICH2) (19)
WERCIXCLJ-G[N] F

In this section, we give the detailed derivation to reach the closed-form solution. Notice that both
aiajT and e; e;-r are sparsely structured. Let AlD) — aiajT and E(7) = eiejT, then we have:
Gaj) _ J 1 (i,m)€&and(j,n) el Gj) _ J 1 m=iandn=j

A = { 0 Otherwise ’ Euin = 0 Otherwise ’ (20)
where A%J,Z , ngijn) denotes the m-th row and the n-th column entry of A3 pla), respectively.
Hence, for m,n € [N] such that (i,m) € € and (j,n) € £ but m # i or n # j, the block-wise
difference at location (m, n) remains W TW. While for m = i and n = j, the block difference
is WTW — I as A contains self-loop (i.e., (4,7) € £ and (j,j) € £). Then we can simply our
objective Eq. 19 as below:

. 2 2
W' = argmin Y 3 HAS@*,?,L)WTWH +HWTW—ICH @1)
WGRC’XCiJe[] m,ne[N] F F
' (m,n)#(i,5)

T 2 T 2
— argmin Y (di+dj+didj)HW WH +N2HW W—ICH G
WERS™C jeN] g g

To solve Eq. 22, we decompose the diagonal and off-diagonal components from W TW. For
off-diagonal terms, we can minimize them to zeros, thus we have w;wl = 0, where we note
that wy, denotes the k-th column of W. For on-diagonal terms, it is equivalent to minimizing
Yije(di + dj + didj)|[will3 + N*(|lwk |3 — 1)* for every & € [C]. Then combining both
arguments above, the optimal solution should satisfy:

N2
Yijevy(di+1)(d; +1)
wjw; =0 Vk,l € [C), k #1, (24)

vk € [C], (23)

w3 =

which reaches our final conclusion in Eq. 14. To compute this magnitude given a graph, one needs to
first compute the degree of each node, and plug them into our Eq. 12. The complexity to compute
this value is as small as O(NN?), which is significantly lower than directly optimizing Eq. 10.

B Description of Methods in Table 3

Table 3 presents a comparison of our Gradient-Guided Rewiring dynamic rewiring with respect to
various fancy methods to improve the trainability of deep vanilla-GCNs [1] such as skip-connections,
regularization. Our formal description of these methods are:

B.1 Skip Connections

Skip-connections [23, 24, 38, 20] helps in alleviating the problem of over-smoothing and significantly
improve the accuracy and training stability of deep GCNs. For a L layer GCN, we can apply various
type of skip-connections after certain graph convolutional layers with the current and preceding
embeddings X!, 0 < [< L. We have compared our method with the following four representative
types of skip connections:

1. Residual Connection: X' = (1 —a)- X' +a- X'}

16

2. Initial Connection: X' = (1—a)- X'+ - X°

3. Dense Connection: X' = COM({X"*,0 < k <1})

4. Jumping Connection: X* = COM({X"*,0 < k < L})
where « is residual and initial connections is a hyperparameter to weight the contribution of a node
features from the current layer / and previous layers. Jumping connection is a simplified case of dense

connection and it is only applied at the end of the whole forward propagation process to combine the
node features from all previous layers.

B.2 Graph Normalization

Graph normalization [28, 62, 63, 64, 65] re-scale node embeddings over an input graph to constrain
pairwise node distance and thus alleviate over-smoothing. Our investigated normalization mechanisms
are formally depicted as follows:

1. BatchNorm: x. j = - zyE@y) 4 g

std(x. ;
2. PairNorm: T; = ©; — + S x;, PairNorm(z;; 8) = o8t
' i~ im1 Ty (i3 5) (5 20 1Z:13)1/2

3. NodeNorm: NodeNorm(x;; p) = W

where x. ; € RY denotes the j-th row of X (the j-th channel), z; € R denotes the i-th column
of X (the i-th node features), s in PairNorm is a hperparameter controlling the average pair-wise
variance and p in NodeNorm denotes the normalization order.

C Dataset Details

Table 7 provided provides the detailed properties and download links for all adopted datasets. We
adopt the following benchmark datasets since i) they are widely applied to develop and evaluate GNN
models, especially for deep GNNs studied in this paper; ii) they contain diverse graphs from small-
scale to large-scale or from homogeneous to heterogeneous; iii) they are collected from different
applications including citation network, social network, etc.

Dataset Nodes Edges Features Classes Download Links
Cora 2,708 5,429 1,433 7 https://github.com/kimiyoung/planetoid/raw/master/data
Citeseer 3,327 4,732 3,703 6 https://github.com/kimiyoung/planetoid/raw/master/data
PubMed 19,717 44,338 500 3 https://github.com/kimiyoung/planetoid/raw/master/data
OGBN-ArXiv 169,343 1,166,243 128 40 https://ogb.stanford.edu/
CoauthorCS 18,333 81,894 6805 15 https://github.com/shchur/gnn-benchmark/raw/master/data/npz/
Computers 13,381 245,778 767 10 https://github.com/shchur/gnn-benchmark/raw/master/data/npz/
Photo 7,487 119,043 745 8 https://github.com/shchur/gnn-benchmark/raw/master/data/npz/
Texas 183 309 1,703 5 https://raw.githubusercontent.com/graphdml-uiuc- jlu/geom-gcn/master
Wisconsin 183 499 1,703 5 https://raw.githubusercontent.com/graphdml-uiuc- jlu/geom-gcn/master
Cornell 183 295 1,703 5 https://raw.githubusercontent.com/graphdml-uiuc- jlu/geom-gcn/master
Actor 7,600 33,544 931 5 https://raw.githubusercontent.com/graphdml-uiuc- jlu/geom-gcn/master

Table 7: Graph datasets statistics and download links.

17

