
A Expanded Calculations297

A.1 Minimum Variance Model Gradient298

Recall that under our assumptions the minimum variance trajectory distribution is:299

q
⇤(⌧) =

R(⌧)p(⌧)

Ep(⌧) [R(⌧)]
(11)

The trajectory distribution under our learned model is q(⌧), and the objective is to minimize300

KL(q?(⌧)||q(⌧)) by gradient based optimization. Then the gradient of the objective with respect to q301

is:302

rqKL(q⇤(⌧) || q(⌧)) (12)

= rq

Z
q
⇤(⌧) log

q
⇤(⌧)

q(⌧)
d⌧ (13)

= �
Z

q
⇤(⌧)rq log q(⌧)d⌧ (14)

= �
Z

p(⌧)
R(⌧)

Ep(⌧) [R(⌧)]
rq log q(⌧) (15)

= �Ep(⌧)


R(⌧)

Ep(⌧) [R(⌧)]
rq log q(⌧)

�
(16)

/ �Ep [R(⌧)rq log q(⌧)] (17)

The proportionality is because Ep(⌧) [R(⌧)] is a constant which can be be absorbed into the learning303

rate . Now using the definition of a trajectory distribution (Eq. 1) we see:304

rq log q(⌧) =
T�1X

t=1

rq log q(st+1|st, at) (18)

Giving us the result:305

rqKL(q⇤(⌧) || q(⌧)) / �
T�1X

t=1

Ep [R(⌧)rq log q(st+1|st, at)] (19)

B Planning and training loop306

Here we expand on how model learning, value estimation, and planning fit together in a model-based307

RL loop. We can plug in ESTIMATEVALUE (Alg. 1) as a subroutine that produces unbiased return308

estimates into many planning algorithms. For example, Alg. 3 defines RSPLANNER, a simple random309

shooting planner. At each timestep, RSPLANNER samples K distinct sequences of actions, with each310

sequence containing H (the planning horizon) sampled actions. Each individual action is sampled311

independently from a simple distribution ⇡ over the action space, such as a uniform or Gaussian312

distribution. RSPLANNER then uses ESTIMATEVALUE to estimate a return for each action sequence,313

and selects the sequence with the highest estimated return. The planner then returns the first action314

in that sequence as the action for the current timestep. The planning process is repeated at the next315

timestep, and so on until the end of the episode.316

Current approaches in model-based reinforcement learning tend to integrate planning and model317

training into an iterative loop: after training the model, they execute the planner in the real environment318

to collect some more data, and use this data to retrain the model. The pseudocode for MBRL319

in Alg. 3 shows how to do this with our framework. As MBRL uses RSPLANNER to rollout320

more trajectories, it stores the observed transitions and retrains the model (TRAINMODEL) and321

discriminator (TRAINDISCRIMINATOR) on the new data. We define those model and discriminator322

training subroutines in Alg. 2. Crucially, the objective in TRAINMODEL is return weighted as per323

Eq. 10, which trains the model to minimize value estimate variance in planning.324

9

Function TRAINMODEL
input :Trajectory dataset T = {⌧}
Initialize q(·|s, a) with random

parameters;
while not converged do

⌧ = {st, at}Tt=1 ⇠ T ;
/* See Eq. 10 */
L = �

P
t
R(⌧) log q(st+1|st, at);

Update q by rL
end
Result: Trained model q

Function TRAINDISCRIMINATOR
input :Learned model q(·|s, a)
input :Transition dataset

T = {(s, a, s0)}
Initialize D with random parameters;
while not converged do

(s, a, s0) ⇠ T ; // Sample
transition
s̃
0 ⇠ q(·|s, a) ; // Fake next
state

/* Classification loss */
L = � log(D(s, a, s0))� log(1�
D(s, a, s̃0)) Update D by rL

end
Result: Trained discriminator D (logits

D̃)
Algorithm 2: Training dynamics model and
discriminator

Function RSPLANNER
input :Current state st

input :Plan horizon H

input :Action sampling distribution ⇡

for i = 1 to K do
/* Sample action sequences

*/
a(i) {a(i)1 , · · · , a(i)

H
} i.i.d⇠ ⇡;

end
/* Select best action sequence

*/
a
argmax

a(i)
ESTIMATEVALUE(st,a(i));

at a1;
Result: at

Function MBRL
input :ROLLOUT(·): Executes given

planner in real environment,
produces trajectory

T {}; // Trajectory dataset
for j = 1 to J do

⌧ ROLLOUT(RSPLANNER);
T T [{⌧};
q(·|s, a) TRAINMODEL(T);
D TRAINDISCRIMINATOR(q(·|s, a), T);

end
Algorithm 3: Planning and MBRL Loop

C Environments325

IcyRoad: The agent drives a car down a straight but icy road with extends in the +x direction. If the326

car exceeds a threshold x-velocity (ẋ > 2), there is a high chance of swerving off the road in either327

the +y or �y directions, incurring a negative reward. The four dimensional observations give the328

car’s position and velocity s = (x, y, ẋ, ẏ), and there are 3 discrete actions for accelerating (increase329

ẋ by 1), decelerating (decrease ẋ by 1) and cruising (ẋ stays the same). The velocities and states330

are updated using simple Euler integration, and the reward is ẋ with bonuses for higher speeds and331

penalties for swerving:332

r(s, a) =

8
<

:

ẋ� 6, |y| > 1 (off road)
ẋ+ 8, |y|  1, ẋ > 2 (high speed bonus)
ẋ otherwise

(20)

The agent’s car is always initialized with (x, y, ẋ, ẏ) = (0, 0, 1, 0), and each episode proceeds for 5333

timesteps before terminating.334

Intersection: Here the agent again controls a car, this time approaching an intersection with an335

oncoming car entering the intersection at the same time (Fig. 2). Depending on the episode the336

oncoming car will randomly turn left or right with 50% chance. If it turns left, the agent’s car must337

slow down to avoid collision. The observation is 10 dimensional and contains the positions and338

velocities of both cars as well as their heading (angle). The agent’s car moves in the +y direction,339

and has 3 discrete actions for accelerating, decelerating, or neither along the y-axis. The reward is:340

r(s, a) = ẏagent � 10 · �[collision] (21)

where �[condition] is 1 if the condition is true and 0 otherwise. The cars are initialized in fixed341

positions entering the intersection from opposite directions, with a velocity of 5 (for the agent) or �5342

(for the oncoming car), and each episode is 25 timesteps.343

10

